

Assembly and operation of bent silicon pixel sensors towards the ALICE ITS3

Alperen YÜNCÜ

May 8, 2024

< ロ > < 同 > < 回 > < 回 >

ALICE

Detector and main goals

- Study of QGP in heavy-ion collisions at LHC
 - i.e. up to O(10k) particles to be tracked in a single event
- Reconstruction of charm and beauty hadrons
- Interest in low momentum (≲1 GeV/c) particle reconstruction

イロト イヨト イヨト イヨト

Current Inner Tracking System (ITS2)

- ITS2 is expected to perform according to specifications or even better
- The inner barrel is ultra-light (0.35% X₀ per layer) but still most of the material comes from supports ⇒ further improvements seem possible
- Key questions:
 - Can we get closer to the interaction point?
 - Can we reduce the meterial budget even further?

_			•••
~ ~ ·		V/I INI	7 VI I
A1	neren	Y I IIV	
7 M			

< ロ > < 同 > < 回 > < 回 >

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling

・ロト ・ 四ト ・ ヨト ・ ヨト

э

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling
- Removal of water cooling
 - Possible if power consumption stays below 20 mW/cm²
 - Air cooling

イロト イヨト イヨト イヨト

4/26

э

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling

Removal of water cooling

- Possible if power consumption stays below 20 mW/cm²
- Air cooling
- 0.31 % X₀ per layer

イロト イヨト イヨト イヨト

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling
- Removal of water cooling
 - Possible if power consumption stays below 20 mW/cm²
 - Air cooling
 - 0.31 % X₀ per layer
- Removal of the circuit boards (power+data)
 - Possible if integrated on chip

イロト イヨト イヨト イヨト

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling
- Removal of water cooling
 - Possible if power consumption stays below 20 mW/cm²
 - Air cooling
 - 0.31 % X₀ per layer
- Removal of the circuit boards

(power+data)

- Possible if integrated on chip
- 0.14 % X₀ per layer

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling
- Removal of water cooling
 - Possible if power consumption stays below 20 mW/cm²
 - Air cooling
 - 0.31 % X₀ per layer
- Removal of the circuit boards

(power+data)

- Possible if integrated on chip
- 0.14 % X₀ per layer
- Removal of mechanical support
 - Benefit from increased stiffness by bending Si wafers into cylinderical shape

•

Observations:

ITS3 detector concept

Beam pipe Inner/Outer Radius (mm)		16.0/16.5	
IB Layer Parameters	Layer 0	Layer 1	Layer 2
Radial position (mm)	18.0	24.0	30.0
Length (sensitive area) (mm)		280	
Pseudo-rapidity coverage	±2.5	±2.3	±2.0
Active area (cm ²)	610	816	1016
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280 x 94
Number of sensors per layer		2	
Pixel size (µm ²)	O (10 x 10)		

Key ingredients:

- 280 mm wafer-scale sensors, fabricated using stitching (Tower Partners Semiconductor (TPSCo) 65 nm CMOS Imaging Sensor (CIS) process)
- Thinned down to 20-40 μm (0.02-0.04% X₀), making them flexible
- Bent to the target radii
- Mechanically held in place by carbon foam ribs

Key benefits:

- Extremely low material budget: 0.02-0.04% X₀ (beampipe: 500 µm Be: 0.14% X0)
- Homogeneous material distribution: negligible systematic error from material distribution

The whole detector will comprise six (!) sensors (current ITS IB: 432) and barely anything else

AI	peren	YUN	ICL

イロト イ理ト イヨト イヨト

5/26

ITS3 performance

- Improvement on pointing resolution is factor of 2 over all momenta.
- Large improvement on tracking efficiency especially for low momenta.

イロト イ理ト イヨト イヨト

- Bending modulus
- Elastic plastic region
- Breaking point
- Minimum radius

э

Bending Test (3-point test)

イロト イヨト イヨト イヨト

Bending Test (4-point test)

Bending Test (4-point test)

Sensor	Young's Modulus (GPa)
65nm-40um	104 ± 63
65nm-50um	126 ± 76
SuperALPIDE-30um	89 ± 54
SuperALPIDE-40um	102 ± 62
SuperALPIDE-50um	117 ± 71
Single Crystal Silicon	130-185

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

- Monolithic Active Pixel Sensors are quite flexible
 - already at thicknesses that are used for current detectors
- Bending force scales as (thickness)⁻³
 - large benefit from thinner sensors
- Breakage at smaller radii for thinner chips
 - again benefit from thinner sensors

ITS3 TARGET RADIUS AND THICKNESS ARE VERY FEASIBLE

Bent ALPIDE

doi.org/10.1016/j.nima.2021.166280

Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially logarithmic scale (10⁻¹ to 10⁻⁵) to show fully efficient rows. Each data point corresponds to at least 8k tracks.

- Bent ALPIDE has high efficiency
- ASICs are functional in bent ALPIDE

・ロト ・聞 ト ・ ヨト ・ ヨト

- µITS3 a mock-up of final ITS3
 - 6 ALPIDE bent to ITS3 target radii
 - Experience with handling thin, bent silicon was gained
- A Cu target is placed in the center, expect to see 120 GeV p-Cu collisions

<<p>・日本

μ ITS3 Preperation Setup

Alperen YÜNCÜ

May 8, 2024

イロト イヨト イヨト イヨト

14/26

μ ITS3 in Testbeam

- The setup has tested in SPS
- 120 GeV hadron beam is used. •

 μ ITS3

Pseudorapidity Distribution

イロト イヨト イヨト イヨト

æ

μ ITS3 acceptance

Vertex positions of real Data

Generated vertex positions

Generated tracks

 10⁶ Random tracks are created to check geometrical acceptance of the detector

_		
~ ~ -	 V/I IN	
	• • • • • • • • • • • • • • • • • • •	

μ ITS3 acceptance

æ

μ ITS3 comprasion with pythia

Pythia version		
Number of events		
Collision Type		
Beam Energy		
Beam particle		
Target		

 $\begin{array}{l} 8.310 \\ 99869 \\ {\rm Fixed \ Target} \\ 120 \ {\rm GeV} \\ \pi^+ \\ {\rm Cu} \end{array}$

イロト イヨト イヨト イヨト

æ

Super ALPIDE

- To study the bending and interconnection of large pieces of processed chips, "super-ALPIDE" is built.
- Comprises of 1 silicon piece cut from an ALPIDE wafer size of 14 cm×6 cm

∃ >

Super ALPIDE

	chips
2 0 1 2	138.18 mm
3 4 5 6 7 8 9 10 11 - 32 33 14 15 16 17 18 19 20 21 22 - 22 24 25 66 27 28 29 30 33 33	
. 34 35 36 37 38 39 40 41 42	
· 43 (44 (45	

18 ALPIDE chips, covering about a half of an ITS3 half-Layer0

- Super-ALPIDEs are actually an array of ALPIDES.
- They consist 9×2 ALPIDE chips.

Alperen YÜNCÜ

HighRR

< ロ > < 同 > < 回 > < 回 >

Picking up Super ALPIDE Chips

- Tested different methods how to pick large and very thinned chips
- Die-ejector with fine grid is the most efficient.

Alperen YÜNCÜ

HighRR

Exoskeleton

- 3-D printed.
- Designed to support super-ALPIDEs after bending.
- Windows to reach interconnection points at middle of super-ALPIDE

MAPS in Foil

- A method to protect MAPS and its interconnection as part of R&D for bending thin slicon.
- MAPS are embeded in polyimide film with a copper layer for interconnections.
- For the first prototype ALPIDE sensors are used.
- Features:
 - Mechanical support
 - Mechanical protection
 - Electrical interconnection

< ロ > < 同 > < 回 > < 回 >

doi.org/10.1016/j.nima.2021.166280

- Mechanical and bending tests indicates polymide film successfully protects sensors from mechanical damages
- Unlike naked MAPS, bending proccess is not tottally irreversible

A D M A A A M M

- Slicon is flexible enough to achieve targeted radii fot ITS3
- The effeciency of bent MAPS is close enough to flat ones
- Thanks to Super-ALPIDE study we have the know-how about how to deal with large and thin chips
- Further R&D for assembly and operation for bent MAPS are ongoing