# Fixed Points in 5d Gauge Theories

Lorenzo Di Pietro (Università di Trieste)

18/12/2023

Asymptotic Safety Meets Particle Physics & Friends

work with F. De Cesare, M. Serone 2107.00342, 2212.11848

An <u>open question</u>: is there any interacting CFT in 5d (or above) without supersymmetry?

Deformations of free theory are all irrelevant.

SUSY example based on string theory construction. UV completion of supersymmetric gauge theories.

#### A promising setup: non-abelian gauge theories

$$\int d^5 x \, {
m tr} rac{1}{4g^2} \left[ F_{\mu\nu} F^{\mu\nu} 
ight] \, \, ext{(+ matter)}$$

$$[g^2] = E^{-1}$$



#### **Interacting UV fixed point?**



CFT with a relevant deformation that corresponds to  $g^{-2}$  and flows to this EFT.

More restrictive:  $g^{-2}$  only relevant deformation.

Phase diagram:

$$\overbrace{\phantom{a}}^{\circ}$$
??? CFT Gauge theory

#### Methods to study this problem

- Epsilon-expansion
- Lattice
  [Florio, Lopes, Matos, Penedones]
- Deformations of the SCFT

  [Benetti-Genolini, Honda, Kim, Tong, Vafa]
- Bootstrap
  [Li, Poland]
- Functional renormalization group [Gies]

#### **Epsilon-expansion**

Dimensional continuation from 4d to  $d=4+2\epsilon$ 

$$\beta_g = \epsilon g + b_0 g^3 + \mathcal{O}(g^5) , b_0 < 0$$

#### weakly-coupled UV fixed point:

for  $\epsilon \ll 1$ :  $g_*^2 \sim \epsilon$  [Peskin] (1980)



To reach 5d: resummation and extrapolation.

Most updated analysis previous to our work:

[Morris] (2004) used 4 loop result and "optimal truncation" to extrapolate.

Evidence for existence of fixed point up to 5d for pure YM.

In the meantime: 5 loop beta function and mass anomalous dimension for non-abelian gauge theory with fermions.

[Baykov, Chetyrkin, Kuhn, 1606.08659] [Herzog et al, 1701.01404] [Luthe et al, 1709.07718] [Chetyrkin et al, 1709.08541]

- Why reconsider it now?
- Update with 5 loops and Borel-Padé resummation
- New results from lattice
- New proposed construction from SCFT
  - Can we trust this method? Should we worry about UV rather than IR fixed point?
- Analogy: Gross-Neveu and NLSM in  $d=2+\epsilon$

- Applications?
- A case study for asymptotic safety: simpler than gravity, cross-checks between functional RG and other methods
- Extra-dimensional models: cutoff can be higher than  $g^{-2}$  if CFT exists
- Knowledge of the phase diagrams of the higher dimensional theory can lead to constraints on lower dimensional theories, e.g. living on domain walls, or by dimensional reduction

[Gaiotto, Komargodski, Seiberg]

Evidence for fixed point for  $n_c = 2$ ,  $n_f = 0$ 



Error bars are estimates, not rigorous.

Similar evidence for  $n_f=0$  ,  $n_c$  up to 4 and  $n_c=2$  ,  $n_f$  up to 4



Error bars are estimates, not rigorous.

Scaling dimensions  $\operatorname{tr}[F_{\mu\nu}F^{\mu\nu}]$ 



Error bars are estimates, not rigorous.

Scaling dimensions  $\bar{\psi}\psi$ 



Error bars are estimates, not rigorous.

#### Similar approach for conformal window of QCD:



Evidence for conformal window down to  $n_f = 12$ 

#### Similar approach for conformal window of QCD:

[DP, Serone]



Evidence for conformal window down to  $n_f = 12$ 

Some remarks about resummation of perturbation theory:

$$f(\lambda) \sim \sum_{n=0}^{\infty} c_n \lambda^n$$
 is divergent asymptotic, i.e.

$$f(\lambda)-\sum_{n=0}^N c_n\lambda^n=\mathcal{O}(\lambda^{N+1})$$
 however the series diverges.  $f(\lambda)$  non analytic in  $\lambda=0$ .

Typical growth of coefficients:  $c_n \sim n!a^n$  for large n

## Optimal truncation: $N \approx \frac{1}{|a|\lambda}$

Minimizes the error:  $\sim e^{\frac{1}{|a|\lambda}}$  adding more terms the approximation gets worse

Our resummation technique: **Borel-Padé** 

#### **Borel resummation:**

$$\mathcal{B}f(t) = \sum_{n=0}^{\infty} \frac{c_n}{n!} t^n$$

$$\int_{-\infty}^{\infty} dt e^{-t} \mathcal{D}f(t)$$

$$f_{\mathcal{B}}(\lambda) = \int_0^\infty dt \, e^{-t} \mathcal{B} f(t\lambda)$$

Singularities expected: Instantons and Renormalons.



ambiguity signals that we are missing  $\propto e^{-t_1/\lambda}$ 

Then why Borel resummation for something not Borel resummable?

Because the error is anyway better than optimal truncation



large-order behavior controlled by the singularity closest to the origin

$$t_0 = 1/a$$
  $c_n \sim n!a^n$ 

Therefore: 
$$e^{-|t_0|/\lambda} > e^{-t_1/\lambda}$$

So far, we imagined to know the full asymptotic series.

In practice we have a finite number of terms.

#### We use Padé approximants:

$$[\mathcal{B}f(t)]_N = \sum_{n=0}^N \frac{c_n}{n!} t^n$$

$$[\mathcal{B}f(t)]_{[m,k]} = \frac{\sum_{n=0}^{m} a_n t^n}{1 + \sum_{n=1}^{k} b_n t^n}, \ m+k = N$$

#### **Estimate of the error:**

Convergence (1): variation of arbitrary parameter in the Borel transform

$$\mathcal{B}_b f(t) = \sum_{n=0}^\infty \frac{c_n}{\Gamma(n+b+1)} t^n$$
 ,  $f_{\mathcal{B}_b}(\lambda) = \int_0^\infty dt \, t^b \, e^{-t} \, \mathcal{B}_b f(t\lambda)$ 

- Convergence (2): diff. with lower order Padé
- Non-perturbative corrections:  $\propto e^{-\frac{2}{\beta_0 a}}$

We sum these contributions.

#### **Summary so far:**

Evidence from resummation of epsilon-expansion that the fixed point survives up to 5d, for:

SU(2) QCD with 
$$n_f \leq 4$$

pure YM with 
$$n_c \leq 4$$

#### Observables:

ΥM

| $\overline{n_c}$ | 2         | 3         | 4         |
|------------------|-----------|-----------|-----------|
| $\gamma_g^*$     | -1.76(72) | -1.76(62) | -1.76(18) |

SU(2) QCD

| $\overline{}_{n_f}$     | 0         | 1         | 2         | 3         | 4         |
|-------------------------|-----------|-----------|-----------|-----------|-----------|
| $\overline{\gamma_g^*}$ | -1.76(72) | -1.78(58) | -1.74(50) | -1.66(51) | -1.45(63) |
| $\gamma^*$              |           | -0.47(12) | -0.52(21) | -0.57(41) | -0.65(88) |

#### **Deformation of the SCFT**

SU(2) SQCD with  $N_f$  flavors has UV completion for  $0 \le N_f \le 7$ :  $E_{N_f+1}$  SCFT [Seiberg]

[Benetti-Genolini, Honda, Kim, Tong, Vafa] : SUSY-breaking relevant deformation of  $E_1$  as UV completion of SU(2) YM.



#### How can we test this scenario?

It predicts the flow:



#### **Monotonic quantity:**



$$-F_{\rm UV} > -F_{\rm IR}$$

[Klebanov, Pufu, Safdi]

Hard to compute in interacting CFT. Possible in  $E_1$  thanks to SUSY.

[Chang, Fluder, Lin, Wang]

We can compute  $-F_{\rm IR}$  using epsilon expansion:

$$ilde{F} = \sin\left(rac{\pi d}{2}
ight) \log Z_{S^d} \quad ext{with} \quad d = 4 + 2\epsilon$$

[Klebanov, Giombi]

#### Up to two loops:

$$\begin{split} \delta \widetilde{F}(\epsilon) &= (n_c^2 - 1) \frac{31\pi}{90} + \left( (n_c^2 - 1)4.696 - \pi \log \left( \frac{\operatorname{vol}(SU(n_c))}{(2\pi)^{n_c^2 - 1}} \right) \right) \epsilon \\ &+ (n_c^2 - 1) \left( \frac{n_f \pi (584n_f n_c - 1089 - 737n_c^2)}{484n_c (11n_c - 2n_f)^2} + \frac{386\pi + 363\pi (\gamma + \log(4\pi)}{726} - 10.098 \right) \epsilon^2 + \mathcal{O}(\epsilon^3) \,. \end{split}$$

#### Extrapolation:



The flow is allowed! Remarkably close to  $E_1$  value.

### Thank You

What, finally, is the importance of the set of observations we have discussed here? I must say frankly that I do not know.

from [Peskin] (1980)