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An open question: is there any interacting CFT in 5d
(or above) without supersymmetry?

Deformations of free theory are all irrelevant.

SUSY example based on string theory construction.
UV completion of supersymmetric gauge theories.



A promising setup: non-abelian gauge theories
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Interacting UV fixed point?
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CFT with a relevant deformation that corresponds to
g~ * and flows to this EFT.

More restrictive: g~ * only relevant deformation.
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Methods to study this problem

I Epsilon-expansion

B | attice

" Deformations of the SCFT

" Bootstrap

2 Functional renormalization group



Epsilon-expansion

Dimensional continuation from 4d to d=4+2¢
B, :eg+b0g3+()(g5) . by <0

== weakly-coupled UV fixed point:
for e < 1: g: ~ e

g

To reach 5d: resummation and extrapolation.



Most updated analysis previous to our work:

used 4 loop result and “optimal
truncation” to extrapolate.

Evidence for existence of fixed point up to 5d
for pure YM.

In the meantime: 5 loop beta function and
mass anomalous dimension for non-abelian
gauge theory with fermions.



* Why reconsider it now?

B Update with 5 loops and Borel-Padé resummation
I New results from lattice
B New proposed construction from SCFT

» Can we trust this method”? Should we worry about
UV rather than IR fixed point?

I Analogy: Gross-Neveu and NLSM in d =2 + ¢



* Applications?

B8 A case study for asymptotic safety:
simpler than gravity, cross-checks between
functional RG and other methods

I Extra-dimensional models: cutoff can be
higher than ¢~ if CFT exists

I Knowledge of the phase diagrams of the
higher dimensional theory can lead to
constraints on lower dimensional theories,
e.g. living on domain walls, or by
dimensional reduction



We considered SU(n.) with 7y fundamental
Dirac fermions. Results:

W Evidence for fixed point for n. =2, ny =0
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We considered SU(n.) with ny fundamental
Dirac fermions. Results:

B Similar evidence for ny =0, n. up to 4
and n.=2,nfupto4d
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We considered SU(n.) with ny fundamental
Dirac fermions. Results:

I Scaling dimensions tr[F,, F*]
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We considered SU(n.) with ny fundamental
Dirac fermions. Results:
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Error bars are estimates, not rigorous.



Similar approach for conformal window of QCD:
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Evidence for conformal window down to ny = 12



Similar approach for conformal window of QCD:
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Evidence for conformal window down to ny = 12



Some remarks about resummation of perturbation theory:

FO)~ D) el g divergent asymptotic, i.e.
n=0
N
FA) =) enA™ = O(AYT!) however the series diverges.
n=0 f(A) non analyticin A =0.

Typical growth of coefficients: ¢, ~ nla"™ for large n

1

Optimal truncation: N ~ W

Minimizes the error: ~ eTsI* adding more terms the
approximation gets worse




Our resummation technique: Borel-Padé
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ambiguity signals that we are missing & e~ t1/A



Then why Borel resummation for something not Borel
resummable?

Because the error is anyway better than
optimal truncation
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large-order behavior controlled by
the singularity closest to the origin

to=1/a wemp cn ~ nla”

Therefore: e~ ltol/A S o=t/




So far, we imagined to know the full asymptotic series.

In practice we have a finite number of terms.

We use Padé approximants:




Estimate of the error:

I Convergence (1): variation of arbitrary
parameter in the Borel transform

O
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I Convergence (2): diff. with lower order Padé
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. Non-perturbative corrections: e #Foe

We sum these contributions.



Summary so far:

Evidence from resummation of epsilon-expansion
that the fixed point survives up to 5d, for:

SU(2) QCD with ny <4
pure YM with n. <4

Observables:

Ne 2 3 4
YM Yq -1.76(72) -1.76(62) -1.76(18)

ng 0 1 2 3 1

SU(Q) QCD vi -1.76(72) -1.78(58) -1.74(50) -1.66(51) -1.45(63)

~* — -0.47(12) -0.52(21) -0.57(41) -0.65(88)




Deformation of the SCFT

SU(2) SQCD with N flavors has UV completion
for 0 < Nf < 7T: ENf+1 SCFT

: SUSY-breaking
relevant deformation of E; as UV completion of SU(2)
YM.

SYM




How can we test this scenario?

It predicts the flow: Monotonic quantity:
Er

\/ _F =log Zg-

CFT (?) —Fyv > —Hr

Hard to compute in interacting CFT.
Possible in £; thanks to SUSY.



We can compute —f1r using epsilon expansion:

~ d
I = sin (%) log Zga with d =4+ 2¢

Up to two loops:
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Extrapolation:
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The flow Is allowed! Remarkably close to E; value.



Thank You

What, finally, is the importance of the set of ob-
servations we have discussed here? 1 must say frankly
that I do not know.
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