Naturally small neutrino mass with asymptotic safety and gravitational-wave signatures

Abhishek Chikkaballi

Based on

JHEP 11(2023) 224 (arXiv:2308.1122) with Kamila Kowalska, Enrico Maria Sessolo

National Center for Nuclear Research (NCBJ) Warsaw, Poland

20 December 2023 Asymptotic Safety meets Particle Physics and Friends Workshop

UV complete theory: all the couplings approach a fixed point

 \Longrightarrow The theory can be extrapolated to infinitely large energy scales

Predictions and free parameters

Fixed point: where all the couplings stay constant with the changing scale $-\beta_i(\{g_i\}) = 0$

Linearized flow equation near the fixed point

Stability matrix:
$$M_{ij} \equiv \left. \frac{\partial \beta_i}{\partial g_j} \right|_{\{g_i^*\}} \longrightarrow \{\theta_i\}$$
 Critical exponents

I Choosing free-parameters at the UV boundary fixes the flow of all the couplings

Gravity corrections above the Planck scale

Gravity correction to beta functions of gauge $(\{g\})$ and Yukawa couplings $(\{y\})$

 $\beta_g = \beta_g^{SM+NP} - f_g(G^*, \Lambda^*)g$

 $\beta_y = \beta_y^{SM+NP} - f_y(G^*, \Lambda^*)y$

Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17

These corrections

- are universal: does not distinguish internal symmetries
- can cure UV divergencies
- can improve predictive power

Gravity corrections above the Planck scale

Gravity correction to beta functions of gauge ({g}) and Yukawa couplings ({y}) $\beta_a = \beta_a^{SM+NP} - f_a(G^*, \Lambda^*)g$ Reuter, Saueressig, hep-th/0110054 \tilde{G}

 $\beta_y = \beta_y^{SM+NP} - f_y(G^*, \Lambda^*)y$

Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17

These corrections

- are universal: does not distinguish internal symmetries
- can cure UV divergencies
- can improve predictive power

SM + U(1)_x
$$\begin{cases} \frac{dg_Y}{dt} = \frac{41}{6} \frac{g_Y^3}{16\pi^2} - f_g g_Y \\ \frac{dg_X}{dt} = 11 \frac{g_X^3}{16\pi^2} - f_g g_X \end{cases}$$

Fig from K. Kowalska

(Recalling last year's Kamila Kowalska's talk)

Dynamical mechanism of small neutrino mass generation from asymptotic safety

How can we explain the tiny mass of neutrinos?

Dirac mass:
$$m_D \bar{\nu}_R \nu_L$$

 $y_\nu \bar{\nu}_R \phi \nu_L \xrightarrow{SSB} y_\nu v_\phi \bar{\nu}_R \nu_L$
 $\implies m_D = y_\nu v_\phi$
Majorana mass: $m_M \bar{\nu}_R \nu_R^C$
 $\begin{pmatrix} 0 & m_D \\ m_D & m_M \end{pmatrix} \xrightarrow{\text{diagonalize}} m_1 m_2 \approx m_D^2$
 $\implies m_1 = \frac{(y_f v_\phi)^2}{m_M}$

Unnaturally small y_{ν}

see-saw mechanism

Case 1: The Majorana mass and the seesaw scale

Relevant beta functions: $\beta_{q_V} = \frac{1}{16\pi^2} \frac{41}{6} g_y^3 - f_q g_Y$ $\beta_{y_t} = \frac{y_t}{16\pi^2} \left(\frac{9}{2} y_t^2 - \frac{17}{12} g_y^2 + y_v^2 \right) - f_y y_t$ $\beta_{y_{\nu}} = \frac{y_{\nu}}{16\pi^2} \left(3y_t^2 + \frac{5}{2}y_{\nu}^2 - \frac{3}{4}g_Y^2 \right) - f_y y_{\nu}$ Fixed-point analysis: If $f_y > f_{y,Crit}$ \implies IR-attractive fixed-point is at: $y_{\nu}^{*} \neq 0$, $y_{t}^{*} \neq 0$ i.e $\theta_{y_{\nu}} < 0$ (at $y_{\nu}^* \neq 0$) Majorana mass: $M_{\nu} \approx \frac{(y_{\nu} v_h)^2}{m}$

K.Kowalska, S.Pramanick, E.M. Sessolo, 2204.00866

Majorana neutrinos, still prediction of the seesaw scale

Abhishek Chikkaballi

Case 2: Dynamical mechanism of small neutrino Yukawa

Fixed point analysis:

If $f_y < f_{y,Crit} \approx 8 \times 10^{-4}$ \implies IR attractive fixed-point at $y_{\nu}^* = 0$ i.e. $\theta_{y_{\nu}} < 0$ at $y_{\nu}^* = 0$

K.Kowalska, S.Pramanick, E.M. Sessolo, 2204.00866

Case 2: Dynamical mechanism of small neutrino Yukawa

Fixed point analysis:

If $f_y < f_{y,Crit} \approx 8 \times 10^{-4}$ \implies IR attractive fixed-point at $y_{\nu}^* = 0$ i.e. $\theta_{y_{\nu}} < 0$ at $y_{\nu}^* = 0$

K.Kowalska, S.Pramanick, E.M. Sessolo, 2204.00866

Abhishek Chikkaballi

QG perspective on naturalness of this mechanism in SMRHN

■ IR attractive fixed-point at $y_{\nu}^* = 0$ is a crucial condition for this mechanism i.e. $\theta_{y_{\nu}} \approx \frac{-2}{3}g_Y^{*2} + \frac{3}{2}y_t^{*2} < 0 \implies g_Y^* \neq 0$ $f_a \approx 0.0097$

Eichhorn et.al. 1709.07252

QG perspective on naturalness of this mechanism in SMRHN

IR attractive fixed-point at $y_{\nu}^* = 0$ is a crucial condition for this mechanism i.e. $\theta_{y_{\nu}} \approx \frac{-2}{3}g_Y^{*2} + \frac{3}{2}y_t^{*2} < 0 \implies g_Y^* \neq 0$ $f_q \approx 0.0097$

Values of f_g and f_y from asymptotically safe Quantum Gravity (QG)

A. Eichhorn et. al. 1707.01107, 1604.02041

$$f_g(\tilde{G}_N^*, \tilde{\Lambda}^*) \approx \frac{\tilde{G}_N^*(1-4\tilde{\Lambda}^*)}{4\pi(1-2\tilde{\Lambda}^*)^2}$$

$$f_y(\tilde{G}_N^*, \tilde{\Lambda}^*) \approx \left(\frac{\tilde{G}_N^*(-56\tilde{\Lambda}^{*3}-103\tilde{\Lambda}^{*2}+235\tilde{\Lambda}^*-96)}{12\pi(8\tilde{\Lambda}^*-10\tilde{\Lambda}^*+3)^2}\right)^2$$

Eichhorn et.al. 1709.07252

QG perspective on naturalness of this mechanism in SMRHN

IR attractive fixed-point at
$$y_{\nu}^* = 0$$
 is a crucial
condition for this mechanism i.e.
 $\theta_{y_{\nu}} \approx \frac{-2}{3}g_Y^{*2} + \frac{3}{2}y_t^{*2} < 0 \implies g_Y^* \neq 0$
 $f_g \approx 0.0097$

Values of f_g and f_y from asymptotically safe Quantum Gravity (QG)

A. Eichhorn et. al. 1707.01107, 1604.02041

$$f_g(\tilde{G}_N^*, \tilde{\Lambda}^*) \approx \frac{\tilde{G}_N^*(1-4\tilde{\Lambda}^*)}{4\pi(1-2\tilde{\Lambda}^*)^2}$$

$$f_y(\tilde{G}_N^*, \tilde{\Lambda}^*) \approx \left(\frac{\tilde{G}_N^* \left(-56\tilde{\Lambda}^{*3} - 103\tilde{\Lambda}^{*2} + 235\tilde{\Lambda}^* - 96\right)}{12\pi \left(8\tilde{\Lambda}^* - 10\tilde{\Lambda}^* + 3\right)^2}\right)$$

 \tilde{G}_N^* and $\tilde{\Lambda}^*$ depend on the number of Dirac fermions, gauge fields, and scalar fields

Eichhorn et.al. 1709.07252

QG perspective on naturalness of this mechanism in B-L

Gauged
$$U(1)_{B-L}$$
 model:

$$\mathcal{L} \supset -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}X^{\mu\nu} + i\bar{f}\left(\partial^{\mu} - ig_{Y}Q_{Y}\tilde{B}^{\mu} - ig_{B-L}Q_{B-L}\tilde{X}^{\mu}\right)\gamma_{\mu}f$$
IR-attractive fixed-point at $y_{\nu}^{*} = 0$ is possible even

$$g_X = \frac{g_{B-L}}{\sqrt{1-\epsilon^2}}$$
$$g_\epsilon = -\frac{\epsilon g_Y}{\sqrt{1-\epsilon^2}}$$

 f_g determines g_X and g_ϵ

QG perspective on naturalness of this mechanism in B-L

Gauged
$$U(1)_{B-L}$$
 model:

$$\mathcal{L} \supset -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}X^{\mu\nu} + i\bar{f}\left(\partial^{\mu} - ig_{Y}Q_{Y}\tilde{B}^{\mu} - ig_{B-L}Q_{B-L}\tilde{X}^{\mu}\right)\gamma_{\mu}f$$
IR-attractive fixed-point at $y_{\nu}^{*} = 0$ is possible even

 $g_X = \frac{g_{B-L}}{\sqrt{1-\epsilon^2}}$ $g_\epsilon = -\frac{\epsilon g_Y}{\sqrt{1-\epsilon^2}}$

f_g determines g_X and g_ϵ

Abhishek Chikkaballi

Fixed points of the gauge-Yukawa system

Conditions on the choice of fixed points:

- \blacksquare Feasible dynamical mechanism: $y^*_\nu=0$, irrelevant
- $\blacksquare g_Y^* = 0, \text{ relevant} \Longrightarrow f_g > 0.0097$
- Matching top-quark mass

Abhishek Chikkaballi

Predictions in the B-L model

Benchmark points for different f_g and f_y such that

- IR-attractive fixed-point at $y^*_\nu=0$
- Predictions for the New Physics couplings (g_X, g_{ϵ}, y_N)

$$\mathcal{L}_M = -y_N^{ij} S \,\nu_{R,i} \,\nu_{R,j} + \text{H.c.}$$

	f_g	f_y	g_X^*	g_{ϵ}^{*}	y_N^*		$g_X (10^{5,7,9} { m GeV})$	$g_{\epsilon} \left(10^{5,7,9} { m GeV} ight)$	$y_N \left(10^{5,7,9} { m GeV} ight)$	
BP1	0.01	0.0005	0.10	-0.55	0.12	Τ	0.29, 0.29, 0.30	-0.26, -0.27, -0.28	0.16, 0.16, 0.16	
BP2	0.05	-0.005	0.70	-1.32	0.47		0.40, 0.41, 0.44	-0.52, -0.56, -0.61	0.42, 0.44, 0.45	
BP3	0.02	-0.0015	0.10	-0.75	0.0	Τ	0.12, 0.12, 0.12	-0.33, -0.35, -0.37	0.0	
BP4	0.03	-0.004	0.10	0.75	0.0		0.09, 0.09, 0.09	0.23, 0.25, 0.28	0.0	

RGE flow ensures $y_N = 0$; not some global symmetry

Dirac
$$(y_N = 0)$$
 : BP3, BP4 Majorana $(y_N \neq 0)$: BP1, BP2

Experimental constrains on kinetic mixing and direct coupling of Z^\prime

 $v_S > 10 \text{ TeV} >> v_H$

$$\epsilon = \frac{g_{\epsilon}}{\sqrt{g_Y^2 + g_{\epsilon}^2}} \approx 0.5 - 0.8$$

Possible signatures?

Possible signatures? Gravitational Waves!

SSB through Coleman-Weinberg mechanism

- Since $v_H \ll v_S$, H and S effectively decouple from each other
- $S_{min} \text{ through Coleman-Weinberg mechanism} V_{tot}(\phi) = V_{CW}(\phi) + V_{thermal}(\phi), \quad \phi \equiv Re(S)$

The Yukawa coupling effect is also included

$$\begin{aligned} V_{CW}(\phi) &= \frac{1}{2} m_S^2(t) \phi^2 + \frac{1}{4} \lambda_2(t) \phi^4 \\ &+ \frac{1}{128 \pi^2} \left[20 \lambda_2^2(t) + 96 \, g_X^4(t) - 48 \, y_N^4(t) \right] \phi^4 \left(-\frac{25}{6} + \ln \frac{\phi^2}{\mu^2} \right) \end{aligned}$$

$$\begin{split} m^2_{Z'}(\phi) &= 4\,g_X^2\,\phi^2 \\ \mathsf{m}^2_{\nu_R}(\phi) &= 2\,y_N^2\,\phi^2 \\ \mathsf{m}^2_\phi(\phi) &= 3\,\lambda_2\,\phi^2 + m_S^2 \\ \mathsf{m}^2_G(\phi) &= \lambda_2\,\phi^2 + m_S^2 \end{split}$$

 $V_{\text{thermal}}(\phi, T) = \frac{T^4}{2\pi^2} \sum n_i J_i\left(\frac{m_i^2(\phi)}{T^2}\right)$

Gravitational waves from FOPT

 $V_{eff} \longrightarrow$ Bubble nucleation($\Gamma(T)$) \longrightarrow Thermal parameters(α, T_{rh}, β) $\longrightarrow h^2\Omega(f)$

Bubble nucleation rate \$ \$ depth of potential, barrier between vacua

The strength of the signal $(h^2\Omega(f))$ \uparrow the latent heat, β , T_{rh}

$$\Omega^{peak}(\alpha,\beta,T_{rh}), f^{peak}(\alpha,\beta,T_{rh})$$
$$\longrightarrow \mathsf{h}^{2}\Omega(f) = h^{2}\Omega^{peak} \times \mathcal{F}(f/f^{peak})$$

_

GW signals with scale-invariance $(m_S^2 = 0)$

If $g_X \lesssim 0.25$, the percolation temperature (T_P) is below QCD phase-transition

	$g_X (10^{5,7,9} { m GeV})$	$y_N (10^{5,7,9} \text{GeV})$
BP1	0.29, 0.29, 0.30	0.16, 0.16, 0.16
BP2	0.40, 0.41, 0.44	0.42, 0.44, 0.45
BP3	0.12, 0.12, 0.12	0.0
BP4	0.09, 0.09, 0.09	0.0

GW signals with scale-invariance $(m_S^2 = 0)$

- V_{CW} is shallower when $y_N \neq 0$
 - Nucleation termination condition is not met

GW signals with scale-invariance $(m_S^2 = 0)$

- V_{CW} is shallower when $y_N \neq 0$
 - Nucleation termination condition is not met

No GW signal with $m_S^2 = 0$

QG perspective on scale-invariance

Gravity corrections to (m_S, λ_S) . Similar to gauge and Yukawa

Fig from E.M. Sessolo

QG perspective on scale-invariance

Gravity corrections to (m_S, λ_S) . Similar to gauge and Yukawa

J. M. Pawlowski, M. Reichert, C. Wetterich, and M. Yamada; 1811.11706 A. Pastor-Gutierrez, J. M. Pawlowski, and M. Reichert; 2207.09817

FRG based calculations suggests $f_{\lambda} < 0$. However, including higher dimensional operators of scalar field and curvature terms could alter this conclusion.

GW with different v_S and $m_S^2 \neq 0$

We do have observable GW signals!

GW signals with $m_S^2 \neq 0$

But discriminating features are washed out by the strong dependence on mS^2

Abhishek Chikkaballi

19/21

- Asymptotically safe gravity could induce IR-attractive Gaussian fixed point in y_{ν} \implies dynamical mechanism to generate arbitrarily small Dirac mass for neutrinos
- Existing FRG estimates implies that small Dirac mass arises more naturally in gauged B L compared to SMRHN
- Observable gravitational wave signal in new-generation interferometers. But discriminating features are obscured due to strong dependence on the mass parameter

Thank you for your attention!