Interacting dark sectors from neutrino mixing, H0 tension and LSS

Martin Schmaltz BU Hamburg, 20.12. 2023

Daniel Aloni Harvard postdoc

Cara Giovanetti NYU - PhD student

51552658909 (JPE THE BOS FOR WAT Sivarajar // Hedia.licdn.com/dms/image/C4E03AQFn1rBfAxd.Com/file-display log.shipk_8... **BU - PhD student**

Neal Weiner NYU

Asher Berlin

Melissa Joseph Utah postdoc

Outline

the ΛCDM "desert"

populating a dark sector from the neutrinos after BBN

applications, summary, outlook

What is in the eV-MeV desert?

What is in the eV-MeV desert?

data!

data in the eV-MeV desert

CMB

data in the eV-MeV desert

data in the eV-MeV desert?

BBN

This is the era of the experimental exploration of the desert

today: WMAP, SDSS, Planck, BOSS, ACT, SPT,...

This is the era of the experimental exploration of the desert

today: WMAP, SDSS, Planck, BOSS, ACT, SPT,...

future: Rubin, EUCLID, Roman, Simon's O, CMB-S4, ...

What else is in the eV-MeV desert?

data - anomalies

What else is in the eV-MeV desert?

data - anomalies

H₀ Hubble TensionS8,Lyα LSS Tensions

D/H Deuterium abundance

- The desert provides a great opportunity to probe and discover new physics thresholds between eV-MeV scales
- What new physics might we expect to see?

The universe is radiation dominated for T > eV

Most natural expectation:

a dark sector with radiation

Neff

Neff can address the Hubble tension

Want extra radiation to have observable consequences but not ruled out (e.g. H_0 wants $\Delta N_{eff} \sim 0.6$)

- 1. How can this be natural?
- 2. Isn't $\Delta N_{eff} \sim 0.6$ ruled out by BBN?

Idea: populate a dark sector by thermalizing it from the neutrinos after BBN

A.Berlin, N.Blinov 1807.04282 D.Aloni, M.Joseph, M.Schmaltz, N.Weiner 2301.10792

BBN constraints on Neff (95%)

Yeh Shelton Olive Fields 2022

BBN constraints on Neff (95%)

Yeh Shelton Olive Fields 2022

Want extra radiation to have observable consequences but not ruled out (e.g. H_0 wants $\Delta N_{eff} \sim 0.6$)

- 1. How can this be natural?
- 2. Isn't $\Delta N_{eff} \sim 0.6$ ruled out by BBN?

Idea: populate a dark sector by thermalizing it from the neutrinos after BBN

A.Berlin, N.Blinov 1807.04282 D.Aloni, M.Joseph, M.Schmaltz, N.Weiner 2301.10792

ACDM cosmological history

Alternative cosmological history

Alternative cosmological history

A very simple model

(Aloni, Joseph, Schmaltz, Weiner 2301.10792)

 $\sim m_{\psi} \psi + m_{\pi i} v \psi + \lambda \phi \psi$ dark fernim Mass

Thermalizing through the neutrino portal

(c.f. Dodelson-Widrow with secret interactions B.Dasgupta, J.Kopp)

Thermalizing through the neutrino portal

$$\Gamma_{\nu \to \psi} = \frac{1}{4} \sin^2(2\theta_m) \Gamma_{\text{int}}$$

$$\theta_{\text{m} \text{ is suppressed}}$$

$$f_{\text{int}} \sim \alpha_d^2 T$$

$$\sin^2 2\theta_m = \frac{\sin^2 2\theta_0}{(\cos 2\theta_0 - 2E\Delta V_{\text{eff}}/\Delta m^2)^2 + \sin^2 2\theta_0}$$

$$\Gamma_{\nu \to \psi} \simeq \frac{\theta_0^2}{(1 + \alpha_d T^2 / m_s^2)^2} \, \alpha_d^2 T$$

Dark sector temperature evolution

 $\alpha_d = 1$

Initial dark temperature from Higgs decay to sterile neutrinos

Aloni, Joseph, Schmaltz, Weiner 2301.10792

Alternative cosmological history

Kecap:

 Can generically thermalize a dark radiation sector below MeV via neutrino portal

Neff (BBN) = 3

 massive particles in dark sector annihible and produce a "step" in Neff

----- Noff (CMB) = 3+ ANoff

Giovanetti, Schmaltz, Weiner, in progress

ACDM desert

Desert populated through the V-portal

This is the era of the experimental exploration of the desert

today: WMAP, SDSS, Planck, BOSS, ACT, SPT,...

future: Rubin, EUCLID, Roman, Simon's O, CMB-S4, ...

much more data is coming!

CMB: Simons Observatory (first light 4/2024) Advanced SO (5-10 years) CMB-S4 (10 years?)

LSS: DESI (first data), Euclid (final commissioning) Vera Rubin Observatory - LSST (2025)

H₀ Supernovae: JWST (observing), TRGB (ongoing)

GW: LIGO 100 NS-NS mergers + optical (2030) Einstein Telescope (2035?)

Back up!

Lyman-alpha

Neff models for H₀ confront LyAl

1D LyAlpha flux power spectrum of SDSS DR14 BOSS + eBOSS quasars

For EDE analysis see: Samuel Goldstein⁽¹⁾,^{*} J. Colin Hill⁽¹⁾,¹ Vid Iršič⁽¹⁾,² and Blake D. Sherwin^{4, 2} arxiv: 2023.00746

Neff models cannot fit both H0 and LyAI (WZDR)

.33

L

-2.3

CMB,BAO,S8 CMB,BAO,S8,SH0ES CMB,BAO,S8,LyAl

WZDR+ power spectrum suppression for varying DM-DR interaction strengths Γ

WZDR+ with DM-DR interaction fit to CMB, BAO, S8, LyAI

DM-DR interaction modes and LyAI (WZDR+)

Implications of the Non-Observation of ⁶Li in Halo Stars for the Primordial ⁷Li Problem

Brian D. Fields^{*a*} Keith A. Olive^{*b*}

Also, inferring the observed primordial

lithium abundance would now require the use of detailed stellar and cosmic-ray nucleosynthesis models. So for the near term, ⁷Li would seem unlikely to be a reliable independent probe of BBN–a situation similar to the current status of primordial ³He determinations [137]. It remains to be seen whether future observations can chart a new way to measure primordial ⁷Li unambiguously and precisely, but we remain ever optimistic.

