

Development of beamlines for CERN's future fixedtarget experiments

JAI Fest 2023

Florian Stummer

04/12/2023

CERN's North Area

K⁺ mode:

CERN's North Area

CERN

Muon background mitigation for SHADOWS

Calibrating the simulation with measurement data

- NA62 already validated the BDSIM model on-axis
- For SHADOWS we had to do the same off-axis
- This led to the Muon Flux Measurement in ECN3 in June 2023
- → Calibration was successful
- → The muon background off-axis behaves the same as on-axis comparing measurement and simulation
- → The BDSIM simulations can be trusted off-axis as well

Conceptual Design of the Muon Sweeping System for SHADOWS

y [m]

0

- Main background at SHADOWS detector location consists of muons
- Dedicated muon sweeping system consisting of magnetized iron blocks (MIBs) is designed to reduce the background

 10^{-8}

MIB Optimisation Process - Workflow

Conceptual Design of the Muon Sweeping System for SHADOWS

y [m]

0

- Main background at SHADOWS detector location consists of muons
- Dedicated muon sweeping system consisting of magnetized iron blocks (MIBs) is designed to reduce the background

 10^{-8}

Finding the main handles for the muon background

Magnetize the detector cover as well

- Detector cover \rightarrow Stage 3
- Allows us to shrink it in size and pull SHADOWS closer to the Beam Dump
- The width of Stage 2 is key
 - Altering the width of stage two allows us to choose the Muon Reduction Rate between 0 and ~150
 - Moving SHADOWS closer to the beamline improves its signal
 - Now the experiment can choose its signal vs background ratio \rightarrow 40 cm Stage 2 width was chosen

SHADOWS Integration Study: Impact on the MIB Design

- Limits to be considered in MIB design:
 - Height limit from the experimental hall (floor → max height ~2.4m)
 - Current density in the coils (no water-cooling)
 - Max. current from the power supplies (250A)
 - Envelopes of the beam line elements
 - Accessibility of the beamline elements
 - Weight limits from the crane

- Conclusions:
 - Split up Stage 2 in three parts
 - Fill the gaps with crane-liftable iron/concrete blocks as passive shielding
- Simulations with Stage 2 of 40cm width:

	$\mu^+ + \mu^-$	μ^+	μ^-
rate without MIB	$147 \mathrm{~MHz}$	$81 \mathrm{~MHz}$	$66 \mathrm{~MHz}$
MIB reduction factor	~ 70	~ 58	~ 94
rate with MIB	$2.1 \ \mathrm{MHz}$	$1.4 \mathrm{~MHz}$	$0.7~\mathrm{MHz}$

The optimised SHADOWS setup

Muon evolution (BDSIM/Geant4)

Outlook

• Will we see this experiment being installed?

- There are two proposals for ECN3 after Run 3
 - HIKE + SHADOWS
 - SHiP
- Decision is due end of this year

Next steps in this study

- Investigate background mitigation concepts for the neutrino detector NaNu
- Continue the studies heading towards the final system for the TDR if the proposal is accepted

Questions