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Life at the JAI




About Me

* Was a DPhil student from 2016-2020.

e Supervised by Phil Burrows (JAI) and
Daniel Schulte (CERN).

e Worked on:

e Surveying magnetic fields at
accelerator facilities.

* Simulating the impact of stray
magnetic fields on beam dynamics.



CLIC’s Sensitivity to nT Magnetic Fields
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Compact Linear Collider (CLIC)

@ 380 GeV - 11.4 km (CLIC380)
- 1.5 TeV - 29.0 km (CLIC1500)
- [ 3.0TeV-50.1km(CLIC3000) = # #

CLIC target’s nm beam sizes at collision.

* |Imperfections misalign the beam and
cause emittance growth.

Simulations show nT magnetic fields can
significantly impact luminosity.
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Stray Magnetic Fields in Accelerators

 What is the magnetic field environment in an accelerator?
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Shielding the beam line is an
effective mitigation technique




What did | learn?

* EXperimental design.

 Data analysis:
 Computational modelling (simulation, coding); machine learning.
* Transferable sKills:

* Working independently; time management; organisation;
communication; problem solving,.



Life after the JAI



Postdoctoral Researcher In
Machine Learning and Brain Imaging

* Now I’'m a postdoc in the
Psychiatry Department at Oxford.

 Been here for 3 (!) years.

e | apply modern machine learning
techniques to brain data.

 \Want to understand healthy
and abnormal brain activity.




Measuring Brain Activity

* Multiple ‘types’ of brain activity can Ha. C o
be measured. e ® O

 Data is recorded when performing a
task or at rest.

My work focuses on MEG
(magnetoencephalography).

* (ives access to very fast
Processes.




Measuring Brain Activity

SQUIDs

(Super-conducting Quantum Interference Devices)

Discretise the brain into a grid.
Record the magnetic field around the head  Note: the grid points are near the surface.

Estimate a time series for each grid point.
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Brain Activity

 The MEG signal is from populations of neurons:
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Brain Activity

* Oscillations emerge from neuronal populations:

Human Brainwaves
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Brain Activity

 How do different regions communicate?

 Popular theory: via the synchronisation of oscillations.
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Brain Networks

* Widely believed that the brain
performs cognition via distributed
brain networks.

* Historically, analysis has focused
on single regions.

* | work on developing novel methods
for identifying dynamic brain
networks.

 Unsupervised learning.
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Brain Networks

 How do you model brain networks?

MEG Sensors Estimated Network
Brain Activity

g VW AN I Calculate

covariance
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Brain Networks Dynamics

 How do you model dynamic brain networks??

Observed Time Series and Inferred States

e Hidden Markov Model:
e x, ~ N(0,C)

* Ct — Ck’ k = {1,,K}

* Finds repeated patterns of
covariances.

Each state represents a transient brain network

16



Brain Networks Dynamics

These are very fast networks (~100 ms):

I) Group-Average Networks
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Brain Networks Dynamics

 What can you do with a dynamic brain network perspective?

* Characterise individuals. E.g.

Statistics Summarising Dynamics
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Brain Networks Dynamics

 What can you do with a dynamic brain network perspective?

Visual Stimulus

 See what’s happening in response to a task:
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Conclusions

The skills | developed during my DPhil were very transferable.
| found the transition to a new field to actually be a lot of fun.
My day to day isn’t actually that different:

* Coding scripts to analyse time series data.

(I'd encourage anyone nearing the end of their DPhil to have a look around.)
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