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Life at the JAI



About Me
• Was a DPhil student from 2016-2020.


• Supervised by Phil Burrows (JAI) and 
Daniel Schulte (CERN).


• Worked on:


• Surveying magnetic fields at 
accelerator facilities.


• Simulating the impact of stray 
magnetic fields on beam dynamics.
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CLIC’s Sensitivity to nT Magnetic Fields
• CLIC target’s nm beam sizes at collision.


• Imperfections misalign the beam and 
cause emittance growth.


• Simulations show nT magnetic fields can 
significantly impact luminosity.

Different energy particles take different trajectories.
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Stray Magnetic Fields in Accelerators
• What is the magnetic field environment in an accelerator?

11.2 The LHC 182

of coherence scattered along the beamline. Outside of the range 10-100 Hz the magnetic field

is completely incoherent.

Impact of Mitigation

Figure 11.17 shows the e↵ect of di↵erent mitigation techniques on the average total PSD of

the magnetic field in the LHC tunnel. The average total PSD was calculated with Equa-

tion (11.1). Table 11.3 summarises the standard deviation of the magnetic field with each

mitigation technique.
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Figure 11.17: Average total PSD and standard deviation of the magnetic field vs frequency
measured in the LHC tunnel: without mitigation (blue); including a beam trajectory feed-
back system with a gain of m = 2.5 (orange); including a 1 mm mu-metal shield (green) and
with the feedback system and mu-metal shield combined (red).

Mitigation Standard Deviation, �B,M [nT]

None 54
Feedback System 3.0
Mu-Metal Shield 4.6 ⇥ 10�3

Feedback System
0.6 ⇥ 10�3

+ Mu-Metal Shield

Table 11.3: Standard deviation of the magnetic field in the LHC tunnel with di↵erent miti-
gation techniques.

Without mitigation there is a standard deviation of 54 nT. The beam trajectory feedback

system reduces the SF to a standard deviation of 3 nT. The feedback system alone is not

enough to mitigate the SF. The mu-metal shield is an extremely e↵ective mitigation tech-

Shielding the beam line is an 
effective mitigation technique
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What did I learn?
• Experimental design.


• Data analysis:


• Computational modelling (simulation, coding); machine learning.


• Transferable skills:


• Working independently; time management; organisation; 
communication; problem solving.
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Life after the JAI



Postdoctoral Researcher in 
Machine Learning and Brain Imaging

• Now I’m a postdoc in the 
Psychiatry Department at Oxford.


• Been here for 3 (!) years.


• I apply modern machine learning 
techniques to brain data.


• Want to understand healthy 
and abnormal brain activity.

8



Measuring Brain Activity
• Multiple ‘types’ of brain activity can 

be measured.


• Data is recorded when performing a 
task or at rest.


• My work focuses on MEG 
(magnetoencephalography).


• Gives access to very fast 
processes.

EEG

MEG

fMRI

Intracranial 
recordings

HMM

EEG

MEG

fMRI

Intracranial 
recordings

HMM

EEG

MEG

fMRI

Intracranial 
recordings

HMM
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Measuring Brain Activity

MEG - Magnetoencephalography

SQUIDs
(Super-conducting Quantum Interference Devices)

MEG = measurement of magnetic fields (reflecting brain activity) over time. 

Hunt, …, Behrens; Nature Neuroscience, 2012. 

How do we estimate networks?

• Identify a time-series associated with each node

• Estimate the “functional connectivity” between the nodes

• e.g. correlation
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Discretise the brain into a grid.

Note: the grid points are near the surface.

Estimate a time series for each grid point.

Record the magnetic field around the head
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• The MEG signal is from populations of neurons:

Brain Activity
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Brain Activity
• Oscillations emerge from neuronal populations:

Frequency (Hz)

Average PSD for a 
large healthy population
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Brain Activity
• How do different regions communicate?


• Popular theory: via the synchronisation of oscillations.

the grand average. The power maps and phase-coupling con-
nectivity of each state tend to be (although not exclusively)
bilateral, with strong increases in power tending to (although not
exclusively) accompany increases in phase-locking. We refer to
two of the states (left) as being “higher-order cognitive”, in
accordance with the brain areas they incorporate and previous
literature13,26–28. The other two states (right) correspond well to
visual and motor systems. The two higher-order cognitive net-
works involve regions that together form the DMN; see below.
This affords the interpretation that the DMN, when analysed at
the finer timescales, can be decoupled into two separate compo-
nents. The anterior higher-order cognitive state includes the
temporal poles (often associated with semantic integration29) and
the ventromedial prefrontal cortex (typically implicated in emo-
tion regulation and decision making30), exhibiting a strong
connectivity with the posterior cingulate cortex (PCC), which is
a key region of the DMN31,32. The posterior higher-order cog-
nitive network encompasses the PCC/precuneus, bilateral super-
ior and inferior parietal lobules; bilateral intraparietal sulci;
bilateral angular and supramarginal gyri and bilateral temporal
cortex. These regions are classically associated with integration of
sensory information, perceptual-motor coordination and visual
attention, as well as processing of sounds, biological motion and
theory of mind33.

Spectral features of the higher-order cognitive states. Previous
work looking at the global (temporally averaged) estimates of
large-scale functional connectivity has demonstrated that differ-
ent brain networks show correlation of power in different fre-
quency bands34. Leveraging the fact that our model is spectrally
resolved, we sought to investigate how power and phase-coupling
varies with frequency in the different brain states.

For the four states shown in Fig. 2, Fig. 3a shows power versus
coherence, with dots representing each brain region. These results
are shown wideband (1–45 Hz) and for three different frequency
modes. The frequency modes were estimated following a data-
driven approach (non-negative matrix factorisation, see Meth-
ods), which identified frequency modes that approximately
correspond to classical frequency bands (although overlap one
another to a certain extent, bringing some data-driven flexibility).
For convenience, we labelled the data-driven modes using the
closest corresponding classical frequency bands, resulting in
“delta/theta” (0.5–10 Hz), “alpha” (5–15 Hz), “beta” (15–30 Hz)
and “low gamma bands” (30–45 Hz). It should, however, be kept
in mind that the frequency modes are derived from the data and
so are not exactly the same as the classical frequency bands
normally used. Possibly owing to the relatively low signal-to-noise
ratio in higher frequency bands, strong state-specific differences
in the gamma band could not be observed with this approach,
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Fig. 2 Brain states identified using Hidden Markov Modelling represent networks of spectral coherence. Wideband (1–30 Hz) thresholded power maps and
phase-coupling are displayed for the two higher-order cognitive (anterior and posterior) states and the visual and motor states. The two higher-order
cognitive networks contain regions that suggest a subdivision of the default mode network. Power maps are relative to the temporal average, i.e. they are
globally centred such that blue colours reflect power that is lower than the average over states and red/yellow colours reflect power that is higher than the
average over states. The coherence networks only show high-valued connections (see Methods). In the circular phase-coupling plots, each numbered dot
represents one brain region. Supplementary Fig. 1 shows the same information for the other eight states

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05316-z ARTICLE

NATURE COMMUNICATIONS | �(2018)�9:2987� | DOI: 10.1038/s41467-018-05316-z | www.nature.com/naturecommunications 3
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Brain Networks
• Widely believed that the brain 

performs cognition via distributed 
brain networks.


• Historically, analysis has focused 
on single regions.


• I work on developing novel methods 
for identifying dynamic brain 
networks.


• Unsupervised learning.
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Brain Networks
• How do you model brain networks?

MEG Sensors Estimated 
Brain Activity

Calculate 
covariance

Figure 2: Generative model for MAGE. The proposed model generates data by first generating instantaneous means and
the instantaneous correlation matrices (i.e., functional connectivity). MAGE also models instantaneous variances, whose
dynamics are tied to be the same as the mean (not shown here). The instantaneous mean is modelled using an underlying set
of states, for which the state time courses are generated using a long short-term memory (LSTM) model. The instantaneous
correlation is also modelled using an underlying set of states, whose state time courses are generated using a completely
di↵erent LSTM, making the approach multi-dynamic. The generative model for SAGE is illustrated in FigureS1.

adversarial loss from GANs to achieve the prior regularization - by forcing the posterior means underlying
the state time courses, [✓m, ✓c], to be close to the specified prior means (i.e., Equations (8, 9)). To
do this, we train a discriminator, separately from the training that corresponds to the generative model
parameter inference, to be able to distinguish between the prior and posterior versions of the [✓m, ✓c].
The trained discriminator is then used to enforce closeness between the posterior and prior (alongside the
reconstruction likelihood) when performing the model parameter inference.

Encoder Model. The encoder model maps from the fMRI data to the posterior estimates of the latent,
time-varying parameters [✓m, ✓c]. This can also be referred to as the inference network or inference model
and corresponds to the idea of amortized inference in VAEs, whereby the encoder allows an e�cient
means to “look-up” the posterior estimates given the data [Kingma and Welling (2013)]. The authors
who proposed AAEs [Makhzani et al. (2015)] explored the benefits of being fully Bayesian on the latent
variables, by assuming that the posterior is a Gaussian distribution (with the mean and variance predicted
by the encoder, in a similar manner to the VAE); but after an extensive hyper-parameter search, they did
not find any additional advantages, and only reported results using a deterministic version of the posterior.
As such, we learned a single nonlinear mapping that is used to map from the data, Yt, to the posterior
means at any time point:
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Brain Networks Dynamics
• How do you model dynamic brain networks?

State 1 State 4State 3State 2

Brain Network Dynamics

Identify transient brain states using hidden markov modelling 
(unsupervised learning)

brain area

br
ai

n 
ar

ea

Observed Time Series and Inferred States

Each state represents a transient brain network

• Hidden Markov Model: 

• 


• 


• Finds repeated patterns of 
covariances.

xt ∼ 𝒩(0,Ct)

Ct = Ck, k ∈ {1,..,K}
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Brain Networks Dynamics
• These are very fast networks (~100 ms):

p-value < 0.05

III) Summary Statistics

II) State Probability Time Course

A) First-Level Dynamic Network Analysis

B) Group-Level Analysis

CTF Rest MEG Dataset: Multi-Region TDE-HMM

I) Group-Average Networks
State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

I) Summary Statistics Group Difference
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Brain Networks Dynamics
• What can you do with a dynamic brain network perspective?


• Characterise individuals. E.g.

p-value < 0.05

III) Summary Statistics

II) State Probability Time Course

A) First-Level Dynamic Network Analysis

B) Group-Level Analysis

CTF Rest MEG Dataset: Multi-Region TDE-HMM

I) Group-Average Networks
State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

I) Summary Statistics Group Difference

p-value < 0.05

III) Summary Statistics

II) State Probability Time Course

A) First-Level Dynamic Network Analysis

B) Group-Level Analysis

CTF Rest MEG Dataset: Multi-Region TDE-HMM

I) Group-Average Networks
State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

I) Summary Statistics Group DifferenceStatistics Summarising Dynamics
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Brain Networks Dynamics
• What can you do with a dynamic brain network perspective?


• See what’s happening in response to a task:
State Probability Time Course

Famous Unfamiliar ScrambledFamous

Visual Stimulus

State 2 State 3 State 4 State 5 State 6
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Conclusions
• The skills I developed during my DPhil were very transferable.


• I found the transition to a new field to actually be a lot of fun.


• My day to day isn’t actually that different:


• Coding scripts to analyse time series data.


• (I’d encourage anyone nearing the end of their DPhil to have a look around.)
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