Pulse characterisation techniques for multi-pulse laser plasma wakefield accelerators

Speaker: Warren Wang Position: 4th year PhD student Supervisors: Simon Hooker and Roman Walczak Institute: University of Oxford

Outline

- Introduction
 - Conventional accelerators versus laser-driven plasma wakefield accelerators
 - Why pulse trains?

• Concepts of plasma accelerators driven by laser pulse trains

- Multi-pulse laser plasma wakefield accelerators
- Plasma-modulated plasma accelerators
- Pulse train generation techniques

• Pulse characterization techniques

- Representation of short pulses and pulse trains
- Overview of characterisation techniques
- FROG and SEA-TADPOLE

• Implementation of pulse characterization techniques

- Development of FROG for MP-LWFA
- Development of FROG + SEA-TADPOLE for P-MoPA
- Conclusion

Conventional accelerators versus laser-driven plasma wakefield accelerators

Why pulse trains?

Wakefields

Laser pulse

Multi-pulse LWFA (MP-LWFA)

Simulation: 2D PIC Pulse energy: 10 mJ Pulse duration: 100 fs

80 low energy short pulses Achieve 3 GV/m!

Simon Hooker et al., J. Phys. B: At. Mol. Opt. Phys. 47 (2014).

Plasma-modulated plasma accelerators (P-MoPA)

Simulation: 2D PIC Pulse energy: 600 mJ Pulse duration: 1 ps

Achieves 6 GV/m !

Oscar. Jakobsson et al., Physical Review Letters 127, 184801 (2021).

Pulse train generation techniques

Structure of pulse trains

Time (fs)

Time domain Frequency domain 1.5 1.5 Intensity (a.u.) Intensity (a.u.) Phase (rad.) $\Delta \tau \leftrightarrow$ 20 1.0 MP-LWFA 0 0.5 0.0 0.0 -10001000 0 10 -100 Time (fs) Frequency (THz) 1.5 1.5 Intensity (a.u.) Intensity (a.u.) Phase (rad.) se (rad.) .0 P-MOPA 0 ΔI 0.5 Pha 0.0 0.0 -10001000 0 -1010

Frequency (THz)

Pulse spacing: $\Delta \tau$ Number of pulses: • **Oscillating spectrum**

Pulse contrast: ΔI Spectral phase: -Phase jumps

8

Pulse characterisation techniques

	Techniques	Measured signal	Measured phase
Time-frequency correlation	Frequency-resolved optical gating (FROG)	Self-referenced Spectrogram $I(\tau, \omega)$	$\psi(\omega) = \sum_{n=2}^{\infty} \frac{1}{n!} \frac{\partial^n \psi(\omega)}{\partial \omega^n} \omega^n$
	Cross-correlation frequency-resolved optical gating (XFROG)	Cross-referenced Spectrogram $I(\tau, \omega)$	$\psi(\omega) = \sum_{n=2}^{\infty} \frac{1}{n!} \frac{\partial^n \psi(\omega)}{\partial \omega^n} \omega^n$
Spectral intereferometry	Spatial Encoded Arrangement for Temporal Analysis by Dispersing a Pair of Light E-fields (SEA-TADPOLE)	Cross-referenced Interferogram $I(\omega, x)$	$\Delta \psi(\omega) = \psi_t(\omega) - \psi_r(\omega)$
	Spectral phase interferometry for direct electric-field reconstruction (SPIDER)	Self-referenced Interferogram $I(\omega)$	$\frac{\frac{\partial \psi}{\partial \omega}}{\frac{\partial \omega}{\partial \omega}} = \frac{\psi(\omega - \Omega) - \psi(\omega)}{\Omega}$

FROG and SEA-TADPOLE

Rick Trebino et al., J. Opt. Soc. Am. A, Vol. 10, No. 5 (1993). Spangenberg et al., Physical Review A 91, 021803(R) (2015).

Pamela Bowlan et al., Optics Express, Vol. 14, No. 24 (2006).

Pulse characterization technique for MP-LWFA

Experimental pulse retrieval results

FROG Trace

Pulse structure

- Number of pulses: ~ 11
- Time bandwidth product: ~ 13
- Avg. pulse spacing: ~200 fs
- Non-uniformity detected.

Pulse characterisation technique for P-MoPA

Pulse retrieval simulation

Retrieved Intensity

- Input intensity
 - Input phase

Retrieved phase

Simulation conditions

- Plasma density $n: 2.5e17 \text{ cm}^{-3}$
- Plasma modulation $\delta n/n$: 2%
- Channel length L_c : 5 cm
- Glass length L_g : 8 cm
- Centre wavelength of pulse λ_0 : 790 nm
- Seed pulse duration: 50 fs
- Drive pulse duration: 1.4 ps
- Spectral SNR : 20 dB (white noise)
- Sensor SNR: 43 dB (Gaussian noise)
- Uncertainty of gas density: 5 %
- RMS Timing jitter: 200 fs

Conclusion

- LWFA driven by pulse trains allows use of new laser technology with high rep. rates (kHz) and high wall-plug efficiency (>16%).
- Pulse characterisation is crucial for pulse train optimisation in MP-LWFA/P-MoPA.
- Multi-pulse trains can be diagnosed by FROG. Entire temporal structure of pulse trains can be retrieved.
- Characterisation of plasma modulated pulse trains require FROG and spectral interferometry (SEA-TADPOLE). Complete intensity and phase can be retrieved with smooth reference phase.

Back-up slides

Representation of ultra-short pulses

