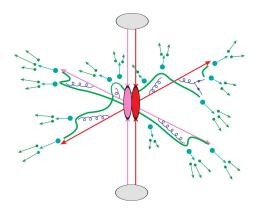
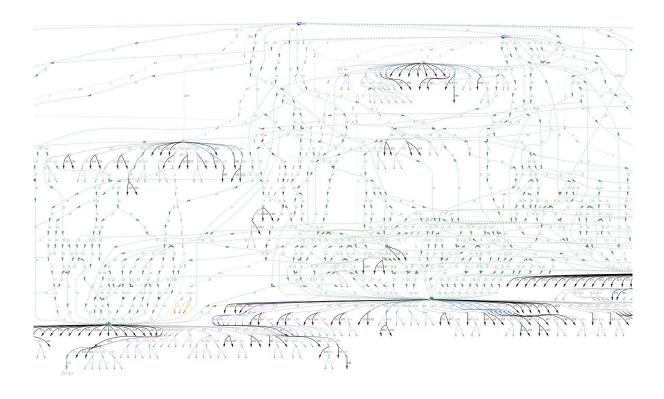
Accelerating impact with Rivet

Analysis prototyping, preservation & re-interpretation

Andy Buckley, University of Glasgow


COMAP V — Best Practices in Model Preservation 14 December 2023


What is Rivet?

- The "LHC standard" MC analysis toolkit
- More broadly a project to preserve the logic of data analyses and encourage expt-pheno collaboration
- Code-wise, a C++ core and Python tools
 - Fiducial / generator-independence emphasis
 - Integration with HepData
 - Transparent HepMC weight-stream handling
 - ➤ 1500+ analyses!
- Central to a community of analysis reinterpretation tools, linking experiment to theory. Collider, some cosmic-ray
- But why? Event loops are trivial...

Because of this:

We want to avoid physicists all needing to rediscover graph algorithms, conventions, pitfalls, physical/debug distinctions, ...

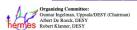
Future Physics at HERA

Workshop, DESY Hamburg, Sept. 95 to Sept. 96

From HZTool to Rivet

- The idea of preserving experimental analyses for MC validation was born out of HZTOOL
 - HERA (H1 and ZEUS) DIS and photoproduction
 - Probing low-x, semi-perturbative physics: DIS with $Q^2 \sim 4 \text{ GeV}^2$; jet $p_{\tau} \sim 5 \text{ GeV}$; diffraction
 - Many "state of the art" models only in MCs
 - Much confusion about comparing like-with-like between generators, experiments, and analyses
 - > HZTool (Fortran) for cross-experiment comparisons of similar measurements modulo cut differences
- Direct line to Rivet, 10 years later: "HZ mark two"
 - UK e-science funding; adopted by EU MCnet network

Aim: Study of future physics potentials at HERA in collider and fixed target modes, including high luminosity, polarized beams and nuclei.


Proceedings of the Workshop

Old home page and workshop meetings

Working Groups

- Structure
- Electroweak Physics
- Heavy Quark Production and De
 Jets and High E_T Phenomena
- Diffractive Hard Scattering
 Polarized Protons and Electrons
 Light and Heavy Nuclei in HERA

Secretary: Mr. H. Haertel DESY-FH1K Notkestrasse 85 D-22603 Hamburg Phone: +49-40-8998-3105 Fay: +49-40-8998-3093

Email: heraws96@mail.desy.de

Advisory Committee:
W.Buchmüller J. Felteree A. Lany

W.Buchmüller, J.Feltesse, A.Levy, H.Schröder, J.van den Brand, A.Wagner

If you are using mosaic, click here

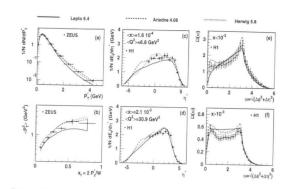
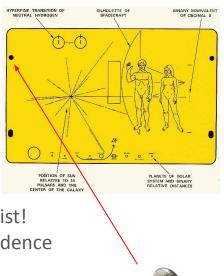
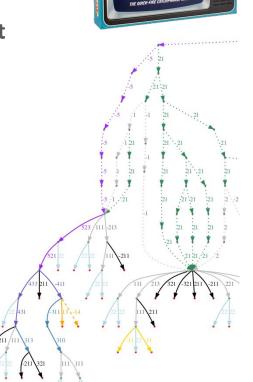



Figure 1: The transverse momenta dN/dp_T (a) and the 'seagull' plot $(P_T^2) \times x_F$ (b) of single particles in the positive hemisphere of the hadronic center of mass. The transverse energy flow dE_T/dp in a low (c) and high (d) x and Q^2 bin. The transverse energy-energy correlations for $x > 10^{-3}$ (e) and $x < 10^{-2}$ (f).

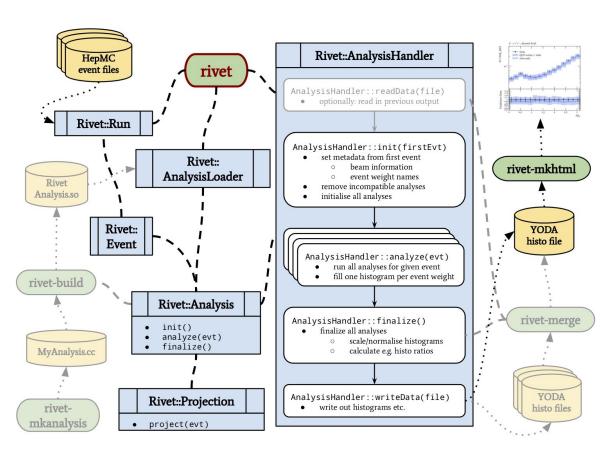
Lessons learned

- A simple/obvious idea, with surprising impact:
 - Reproducing a key plot (or not) is powerful
 - ⇒ understand physics, communicate issues, improve MCs
 - > A common language for phenomenology and experiment
- ❖ But...
 - "Obvious" to use partons, bosons, etc. direct from the event graph
 - Frequently unphysical, depend on approximations. May not even exist!
 - > Scalability of many analyses to new MCs means avoiding gen-dependence
 - **⇒** predict "real" observables, from well-defined final states
- Standardisation: boring but important
 - (physical) event format conventions, statuses, PDG particle numbering, weights...
- Scalability
 - Lots of expensive operations are repeated: sharing calculations is essential



Physically safe analysis methods

Avoiding unstandardised event-graph features was pragmatic, but led to some genuine physical insights:


* refining the "fiducial" idea, defining unfolding targets

- * Hadronisation as a "decoherence barrier"
 use the natural dividing line between the quantum-interfering hard
 process & semi-classical decays: ~ no tempting partons!
- ♣ Bringing truth tagging closer to reco first releases used b-ancestry of jet constituents to set HF labels: too inclusive! ⇒ associate the hard-fragmenting, weakly-decaying B
- Promptness/directness tests don't identify a particle "from the hard process"; do it backward. Label as indirect via recursive checks for hadron parentage
- Dressed leptons
 we now primarily *dress* truth leptons with their photon halo

The result

- Rivet v3 structure arXiv:1912.05451
- Streamlined set of tools from analysis coding to event processing to plotting (and other applications)
- And a key gateway to connect data analysis to theory (and back again)

The state we're in

❖ Version 3.1.9 (Nov 2023) → 1500+ analyses!

1200

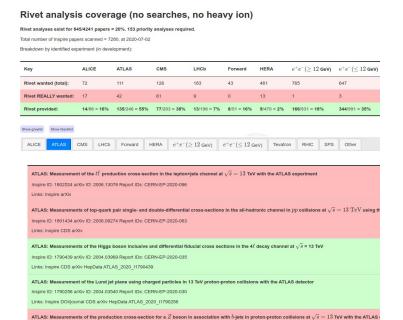
1000

600

200

2016

2018 2020


A steady 50/yr flow of analysis submissions, plus occasional deluges from MC gen teams

⇒ Major v3.2.0 imminent

Official support from 2008 2010 2012 2014 the (LHC) experiments is crucial

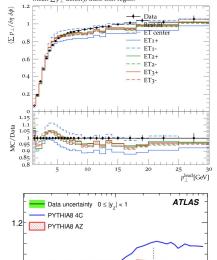
preservation = standard part of "how we do science", but still imperfect! We <u>monitor paper coverage</u> ⇒ (<u>including COMPASS</u>... but not yet in detail!)

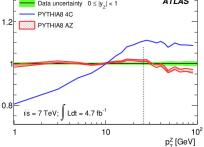
* "New" features since the v1 vision:
systematics multiweights, "perfect merging", heavy
ions, detector smearing functions, analysis options

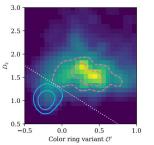
Inspire ID: 1788444 arXiv ID: 2003.11960 Report IDs: CERN-EP-2020-022

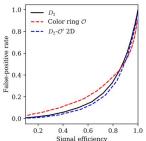
Inspire ID: 1772071 arXiv ID: 1912.09866 Report IDs: CERN-EP-2019-210

inks: Inspire CDS arXiv

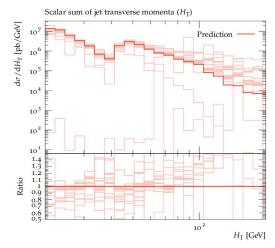

ATLAS: Measurement of isolated-photon plus two-let production in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

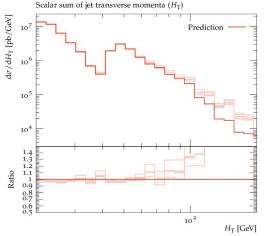

ATLAS: A measurement of soft-drop jet observables in pp collisions with the ATLAS detector at $\sqrt{s}=13$ TeV


Applications: from tuning to...

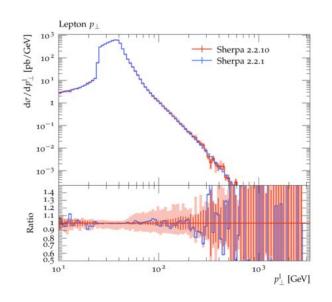

First "killer app": huge pre-LHC soft-QCD uncertainties:

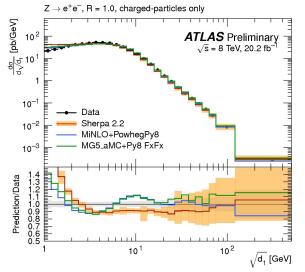
- Tuning required Rivet analyses from expt
- Feed in to underlying event, pile-up, etc. modelling
 - ➤ Better tunes ⇒ better analysis, better results
 - Impact: LEP and Tevatron analyses published for ~10 years suddenly got used! And cited...
 - ⇒ ATLAS tunes, CMS tunes, eigentunes...
 - ⇒ Rapid responses to preliminary data
 - Model development: matching & merging, addition of energy evolution & colour-reconnection to Herwig, ...
- Recently, also use of Rivet's large analysis collection for *BSM* (see Contur) & Higgs
 - Uptake still growing, e.g. in CMS

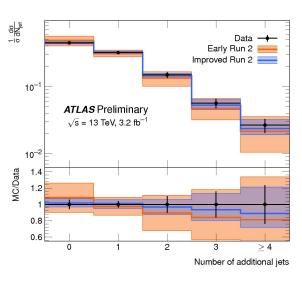




Multiweights and re-entry

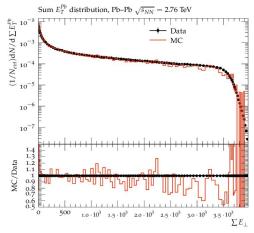

- ❖ MC weight vectors allow expression of increasingly complex theory uncertainties. But a burden for analysis chains: have to propagate and correctly combine O(200) weight streams!
- ❖ Rivet 3: complex automatic handling of weights ~invisible to users: data objects *look* like histograms etc. but are secretly multiplexed
- Can now re-call finalisation to combine runs:
 RAW histogram stage preserves pre-finalize objects
 ⇒ "re-entrant" perfect rivet-merge-ing
 Key for e.g. pA/pp or W/Z ratios, + BSM recasting
- ❖ Data types are important: glimpses of a fully coherent separation of semantics from presentation

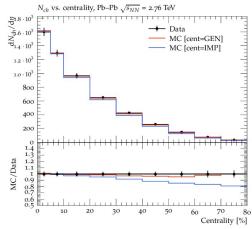




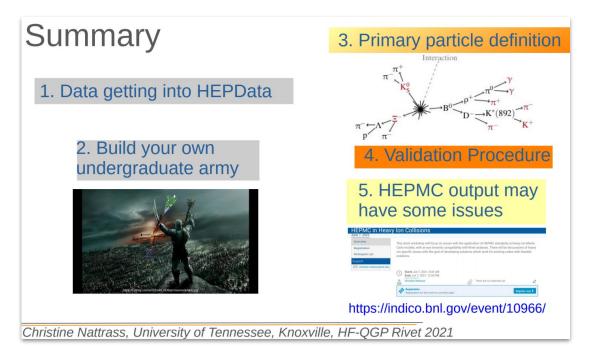
MC systematics bands via multiweights

ATLAS MC studies have been a significant driver of this feature (thanks to Chris Gutschow)



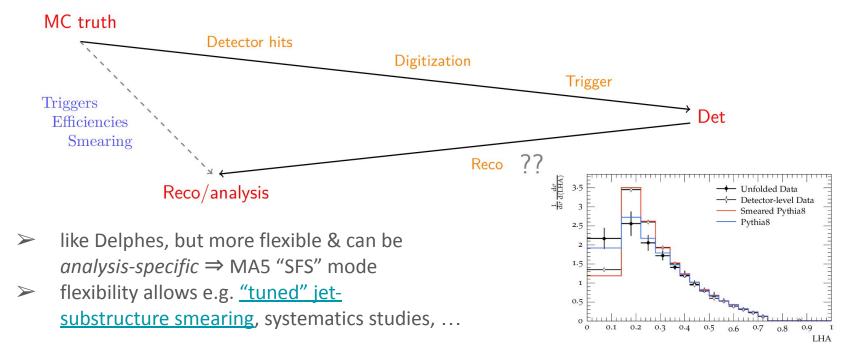


Heavy-ion physics preservation


- "Adding heavy-ion support" sounds trivial!
- Actually nuanced ⇒ lots of structural impacts
 - HI observables often require centrality-fraction calibration curves: we need a 2-pass run.
 - Flow observables, event/event correlations... all centrality-binned!
 - Swappable definitions: few HI generators are general-purpose enough to do "everything"
- All supported "out of the box" since v3
 - Paper: https://arxiv.org/abs/2001.10737
 - Core development tool for Pythia/Angantyr: authors and ALICE (etc.) collaborators providing analyses
- Maybe some similar features are useful or needed?

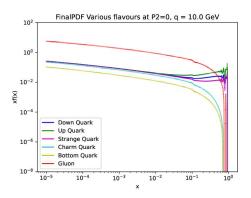
HI community engagement

Great "spontaneous" engagement from within HI. Several productive workshops



- ❖ HepData, Rivet
- Better ex/ph communication
- Faster model/data comparisons
- Addressing issues with formats and incomplete models
- Undergrad army!

Detector emulation (but unfold by preference!)


❖ Detector smearing built on Rivet's projection system — for reco-level analyses

developed based on GAMBIT ColliderBit experience: no need for "full fast-sim"

The future of Rivet

- **❖** Vision: Rivet as a standard for "truth-level" observables
- Eyes on future colliders, including EIC, cosmic-ray air showers ... and nuclear physics, COMPASS? Happy to try!
- Not just standalone, but as a library in pheno & experiment frameworks, too: leverage analysis collection, standardise MC-observable definitions, seamless systematics handling, etc.
- Version 2 features include <u>high-dimensional (and consistent)</u> <u>histogramming</u>, HDF5 aux data, and ONNX machine-learning.
- At its core: a physics-oriented system for physicists to compare MC predictions to one another and to data, on many simultaneous observables, in myriad ways

We don't *know* all the use-cases yet.

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

Imitation the highest form of flattery ⇒ copy an existing analysis!

File Edit View Terminal Tabs Help andy@unity:~/tmp/docker\$ docker pull hepstore/rivet-pythia Using default tag: latest latest: Pulling from hepstore/rivet-pythia Digest: sha256:69deda0ad101395b80acf5ad2c5108647cc393a0156d52f903cd7f09e6b53e08 Status: Image is up to date for hepstore/rivet-pythia:latest docker.io/hepstore/rivet-pythia:latest andy@unity:~/tmp/docker\$

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

Imitation the highest form of flattery ⇒ copy an existing analysis!

File Edit View Terminal Tabs Help andy@unity:~/tmp/docker\$ docker pull hepstore/rivet-pvthia Using default tag: latest latest: Pulling from hepstore/rivet-pythia Digest: sha256:69deda0ad101395b80acf5ad2c5108647cc393a0156d52f903cd7f09e6b53e08 Status: Image is up to date for hepstore/rivet-pythia:latest docker.io/hepstore/rivet-pythia:latest andy@unity:~/tmp/docker\$ docker run -it --rm -v \$PWD:/out hepstore/rivet-pythia root@fd5bf204ef9e:/work#

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

Imitation the highest form of flattery ⇒ copy an existing analysis!

File Edit View Terminal Tabs Help

root@d8c06acf8f66:/work# cp /usr/local/share/Pythia8/examples/main93.cmnd py.cmnd

root@d8c06acf8f66:/work# nano py.cmnd

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

Imitation the highest form of flattery ⇒ copy an existing analysis!

File Edit View Terminal Tabs Help Command file for testing different functionalities of main 93 Note that for the various output functionalities to work. ! HepMC, YODA, RIVET and ROOT respectively needs to either ! be installed to system path, or appended before compiling. ! 1) Settings related to the physics processes generated. Here ! a simple pp soft QCD run at 7 TeV. Beams: idA = 2212! first beam p = 2212Beams: idB = 2212! second beam p = 2212Beams: eCM = 7000. ! CM energy of collision ! All soft QCD processes are on, SoftOCD:all = on! 3) Settings related to output Main:runRivet = on ! Run Rivet (specify analyses below) Main:analyses = ATLAS 2010 S8817804, ALICE 2010 S8625980, CMS 2011 S8957746 ! Names of Rivet analyses to be run, as a comma-separated list ! Write .hepmc events to a file. Main:writeHepMC = off Main:writeRoot = off ! Write particle level output to a root file Main:outputLog = on ! Put all printed output to a log file.

^G Get Help ^X Exit ^O Write Out ^R Read File

Where Is Replace Cut Text Paste Text ^J Justify ^T To Spell Cur Pos Go To Line

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

Imitation the highest form of flattery ⇒ copy an existing analysis!

File Edit View Terminal Tabs Help

root@d8c06acf8f66:/work# cp /usr/local/share/Pythia8/examples/main93.cmnd py.cmnd root@d8c06acf8f66:/work# nano py.cmnd root@d8c06acf8f66:/work# pythia8-main93 -c py.cmnd -n 10000

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

Imitation the highest form of flattery ⇒ copy an existing analysis!

File Edit View Terminal Tabs Help

root@d8c06acf8f66:/work# cp /usr/local/share/Pythia8/examples/main93.cmnd py.cmnd

root@d8c06acf8f66:/work# nano py.cmnd

root@d8c06acf8f66:/work# pythia8-main93 -c py.cmnd -n 10000

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

```
File Edit View Terminal Tabs Help
root@d8c06acf8f66:/work# cp /usr/local/share/Pythia8/examples/main93.cmnd pv.cmnd
root@d8c06acf8f66:/work# nano py.cmnd
root@d8c06acf8f66:/work# pvthia8-main93 -c pv.cmnd -n 10000
The MCnet usage quidelines apply to Rivet: see http://www.montecarlonet.org/GUIDELINES
Please acknowledge Rivet in results made using it, and cite https://arxiv.org/abs/1912.05451
root@d8c06acf8f66:/work# ls
Rivet.yoda ex.cmnd py.cmnd pythia.log
root@d8c06acf8f66:/work#
```

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

```
File Edit View Terminal Tabs Help
root@d8c06acf8f66:/work# cp /usr/local/share/Pythia8/examples/main93.cmnd pv.cmnd
root@d8c06acf8f66:/work# nano py.cmnd
root@d8c06acf8f66:/work# pvthia8-main93 -c pv.cmnd -n 10000
The MCnet usage guidelines apply to Rivet: see http://www.montecarlonet.org/GUIDELINES
Please acknowledge Rivet in results made using it, and cite https://arxiv.org/abs/1912.05451
root@d8c06acf8f66:/work# ls
Rivet.yoda ex.cmnd py.cmnd pythia.log
root@d8c06acf8f66:/work# rivet-mkhtml Rivet.yoda
```

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

```
File Edit View Terminal Tabs Help
root@d8c06acf8f66:/work# cp /usr/local/share/Pythia8/examples/main93.cmnd pv.cmnd
root@d8c06acf8f66:/work# nano py.cmnd
root@d8c06acf8f66:/work# pvthia8-main93 -c pv.cmnd -n 10000
The MCnet usage guidelines apply to Rivet: see http://www.montecarlonet.org/GUIDELINES
Please acknowledge Rivet in results made using it, and cite https://arxiv.org/abs/1912.05451
root@d8c06acf8f66:/work# ls
Rivet.yoda ex.cmnd py.cmnd pythia.log
root@d8c06acf8f66:/work# rivet-mkhtml Rivet.yoda
Making 35 plots
Plotting ./rivet-plots/ALICE 2010 S8625980/Nevt after cuts.dat (35/35 remaining)
Plotting ./rivet-plots/ALICE 2010 S8625980/d03-x01-y01.dat (34/35 remaining)
Plotting ./rivet-plots/ALICE 2010 S8625980/d06-x01-y01.dat (33/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d01-x01-y01.dat (32/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d02-x01-y01.dat (31/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d03-x01-y01.dat (30/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d04-x01-y01.dat (29/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d05-x01-y01.dat (28/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d06-x01-y01.dat (27/35 remaining)
```

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

```
File Edit View Terminal Tabs Help
root@d8c06acf8f66:/work# cp /usr/local/share/Pythia8/examples/main93.cmnd py.cmnd
root@d8c06acf8f66:/work# nano py.cmnd
root@d8c06acf8f66:/work# pvthia8-main93 -c pv.cmnd -n 10000
The MCnet usage guidelines apply to Rivet: see http://www.montecarlonet.org/GUIDELINES
Please acknowledge Rivet in results made using it, and cite https://arxiv.org/abs/1912.05451
root@d8c06acf8f66:/work# ls
Rivet.yoda ex.cmnd py.cmnd pythia.log
root@d8c06acf8f66:/work# rivet-mkhtml Rivet.yoda
Making 35 plots
Plotting ./rivet-plots/ALICE 2010 S8625980/Nevt after cuts.dat (35/35 remaining)
Plotting ./rivet-plots/ALICE 2010 S8625980/d03-x01-y01.dat (34/35 remaining)
Plotting ./rivet-plots/ALICE 2010 S8625980/d06-x01-y01.dat (33/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d01-x01-y01.dat (32/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d02-x01-y01.dat (31/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d03-x01-y01.dat (30/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d04-x01-y01.dat (29/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d05-x01-y01.dat (28/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d06-x01-y01.dat (27/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d07-x01-y01.dat (26/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d08-x01-v01.dat (25/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d09-x01-y01.dat (24/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d10-x01-y01.dat (23/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d11-x01-y01.dat (22/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d12-x01-v01.dat (21/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d13-x01-y01.dat (20/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d14-x01-y01.dat (19/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d15-x01-y01.dat (18/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d16-x01-v01.dat (17/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d17-x01-y01.dat (16/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d18-x01-v01.dat (15/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d19-x01-y01.dat (14/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d20-x01-y01.dat (13/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d21-x01-y01.dat (12/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d22-x01-v01.dat (11/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d23-x01-y01.dat (10/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d24-x01-y01.dat (9/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d25-x01-y01.dat (8/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d26-x01-y01.dat (7/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d01-x01-y01.dat (6/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d02-x01-y01.dat (5/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d03-x01-y01.dat (4/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d04-x01-y01.dat (3/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d05-x01-y01.dat (2/35 remaining)
Plotting ./rivet-plots/CMS_2011_S8957746/d06-x01-y01.dat (1/35 remaining)
root@d8c06acf8f66:/work#
```

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper


```
File Edit View Terminal Tabs Help
root@d8c06acf8f66:/work# cp /usr/local/share/Pythia8/examples/main93.cmnd py.cmnd
root@d8c06acf8f66:/work# nano py.cmnd
root@d8c06acf8f66:/work# pvthia8-main93 -c pv.cmnd -n 10000
The MCnet usage guidelines apply to Rivet: see http://www.montecarlonet.org/GUIDELINES
Please acknowledge Rivet in results made using it, and cite https://arxiv.org/abs/1912.05451
root@d8c06acf8f66:/work# ls
Rivet.yoda ex.cmnd py.cmnd pythia.log
root@d8c06acf8f66:/work# rivet-mkhtml Rivet.yoda
Making 35 plots
Plotting ./rivet-plots/ALICE 2010 S8625980/Nevt after cuts.dat (35/35 remaining)
Plotting ./rivet-plots/ALICE 2010 S8625980/d03-x01-y01.dat (34/35 remaining)
Plotting ./rivet-plots/ALICE 2010 S8625980/d06-x01-y01.dat (33/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d01-x01-y01.dat (32/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d02-x01-y01.dat (31/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d03-x01-y01.dat (30/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d04-x01-y01.dat (29/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d05-x01-y01.dat (28/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d06-x01-y01.dat (27/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d07-x01-y01.dat (26/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d08-x01-v01.dat (25/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d09-x01-y01.dat (24/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d10-x01-y01.dat (23/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d11-x01-y01.dat (22/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d12-x01-v01.dat (21/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d13-x01-y01.dat (20/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d14-x01-y01.dat (19/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d15-x01-y01.dat (18/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d16-x01-v01.dat (17/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d17-x01-y01.dat (16/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d18-x01-v01.dat (15/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d19-x01-y01.dat (14/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d20-x01-y01.dat (13/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d21-x01-y01.dat (12/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d22-x01-v01.dat (11/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d23-x01-y01.dat (10/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d24-x01-y01.dat (9/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d25-x01-y01.dat (8/35 remaining)
Plotting ./rivet-plots/ATLAS 2010 S8817804/d26-x01-y01.dat (7/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d01-x01-y01.dat (6/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d02-x01-y01.dat (5/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d03-x01-y01.dat (4/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d04-x01-y01.dat (3/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d05-x01-y01.dat (2/35 remaining)
Plotting ./rivet-plots/CMS 2011 S8957746/d06-x01-y01.dat (1/35 remaining)
root@d8c06acf8f66:/work# cp -r rivet-plots/ /out/
root@d8c06acf8f66:/work#
```

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

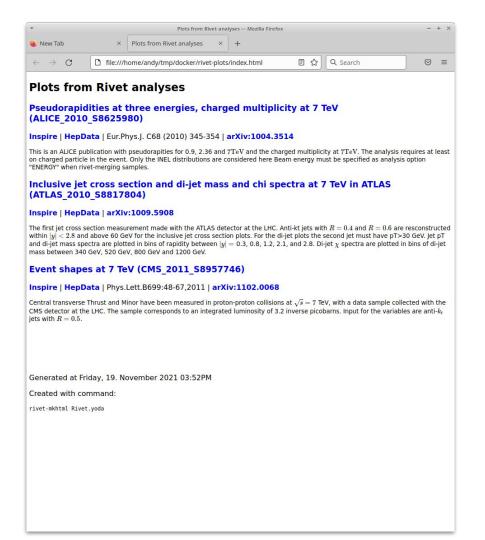
Tutorials available from the Rivet website, a walkthrough in the R3 paper

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

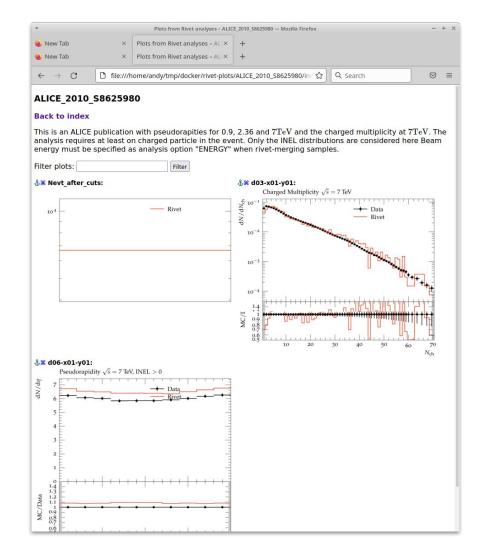

```
File Edit View Terminal Tabs Help
andy@unity:~/tmp/docker$ ls
rivet-plots
andy@unity:~/tmp/docker$ firefox rivet-plots/index.html
andy@unity:~/tmp/docker$
```

Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper



Lightweight analysis preservation is valuable... and easy to start

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Ideal for student projects!

Tutorials available from the Rivet website, a walkthrough in the R3 paper

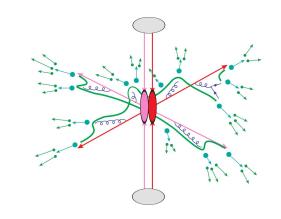
Summary / thoughts on engagement

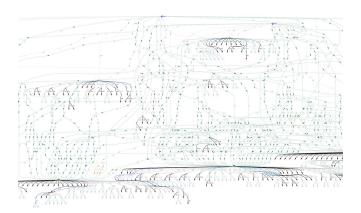
- Rivet arose from HERA experiment/theory collabs.
 Code is a powerful conduit for constructive discussion.
- Preservation matters!
- **Uptake by the LHC experiments: as "standard" as it gets**
 - But absolutely not tied to LHC!
- An accelerator for analysis impact: many exp/theory studies using Rivet as their common language. Impact on standards, e.g. event records, HepMC, weights...
- Thoughts:
 - Get junior scientists enthused, build vision/culture bottom-up
 - Build a rewarding expt-theory connection through MC analysis
 - Connect good community/science behaviour to career rewards via extra collaborative papers, studies, exposure

Backup slides

MC generation

MC generation is where theory meets experiment


The fundamental pp, pA, AA collision, sans detector


Components of an "exclusive" event-generator chain:

- QFT matrix element sampling at fixed-order in QCD
- Dressed with approximate collinear splitting functions, iterated in factorised Markov-chain "parton showers"
- FS parton evolution terminated at Q ~ 1 GeV: phenomenological hadronisation modelling
- Mixed with multiple partonic interaction modelling
- > Finally particle decays, and other niceties

Modern HEP is hostage to shower MCs!

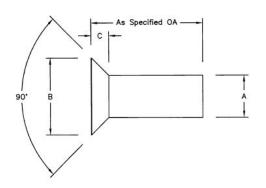
- ➤ The main mechanism for translating theory to experimental signatures, from QCD to BSM
- Generally very complex modelling and output

Designing Rivet

Ease of use

- Big emphasis on "more physics, less noise"!
- Minimal boilerplate analysis code, HepData sync
- Event loop and histogramming basically familiar
- Tools to avoid having to touch the raw event graph

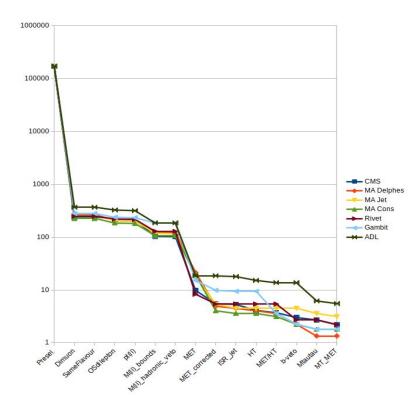
Embeddable


- OO C++ library, Python wrapper, sane user scripts
- Generator independence: communication via HepMC
 - Note HepMC3 HI-support efforts
- Analysis routines factorised: loaded as "plugins"

Efficient

Avoid recomputations via "projection" caching system

Physical


Measurements primarily from final-state particles only

Rivet and BSM-search recasting

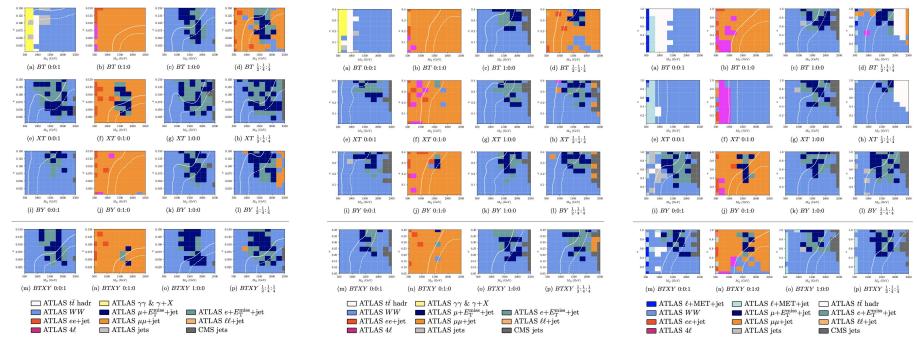
- Rivet's main emphasis isn't BSM direct searches, but there's no reason not to
 - lots of experiment experience and support
 - efficient scaling-up to hundreds of analyses, with distinct phase-space specific detector/efficiency functions
- Extra capabilities can lead to novel studies
 - new areas, collaborations, interested users...

BSM from "Standard Model"

- **❖** Not being focused on *direct* searches doesn't mean no interest in BSM!
- Particle-level measurements can achieve high model-independence
 - Careful definition of fiducial cross-section
 - > Control distributions of "hidden variables" which are cut on
 - Reduce model sensitivity in unfolding

Rivet used directly in e.g.

- TopFitter top quark EFT fits;
- > at core of ATLAS VH EFT fits;
- being integrated into Gambit global fits; and...

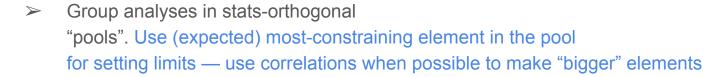

Contur is getting particular uptake

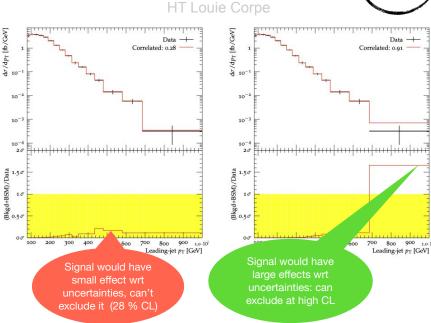
- ➤ Inject signal to "SM" measurements: if it'd be statistically distinct, the model is eliminated
- Rivet gives huge coverage from "many angles": views on not all, but most BSM signatures a new result with Rivet code can be in Contur (or other) BSM fits within hours

Try doing this with full-sim recast in finite time...

Contur VLQ review requested a scan of realistic multiplets:

7 multiplets, each with 3 generational couplings, each with 4 W/H/Z-couplings, 300 points per scan, x 30,000 events \Rightarrow 750M events!




Contur

Contur is "just" a wrapper on Rivet

- Ok, not just! You need to know which analyses are "safe". Another reason for emphasis on final-states and no cheating
- In absence of unambiguous BSM, make zeroth-order assumption that data = SM
- Can be improved with high-precision SM theory predictions & uncertainties
- ➤ Signal-injection ⇒ care with e.g. ratios & profiles... cf. Rivet "perfect merging"

