

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

WP4 Managing Innovation Status of Tasks 4.3 and 4.4

IFAST Steering Meeting 14th December 2023

F. Carra (CERN) On behalf of IFAST WP4 members **iFAST**

WP4.3 – Innovative beam windows for high-power accelerator applications

- Two technical solutions investigated
 - Metallic windows (tantalum, T91 steel, aluminium alloys)
 - Graphenic windows (thin graphene membranes)
- What's next: **Deliverable D4.3**
 - Manufacture and test of 2 beam-windows prototypes, due date December 2023 -> June 2024
 - Postponed by 6 months due to beam unavailability in 2023
 - Alternative solution chosen → irradiation at CERN IRRAD in S2 2023

WP4.3 – Metallic windows

- Facility: IRRAD (PS proton beam, T8 beam-line at the CERN PS East Hall building 157)
- Beam: protons @24 GeV

FAST

- Samples: thin foils brazed to metallic flange produced by RHP
 - Sample Holder 1 (Irradiation period 6 September 11 October 2023, fluence: 1-2E16 p/cm2 20x20 / 10x10 mm², 3-5 MGy Si)
 - Sample #7 → Tantalum, diameter 20mm, thickness 0.3mm
 - Sample #15 → Tantalum, diameter 20mm, thickness 0.4mm
 - Sample #13 \rightarrow T91, diameter 20mm, thickness 0.4mm
 - Sample #10 → T91, diameter 20mm, thickness 0.6mm
 - Sample Holder 2 (Irradiation period April June 2024)
 - Sample #8 → Tantalum, diameter 20mm, thickness 0.6mm
 - Sample #9 → T91, diameter 20mm, thickness 0.4mm
 - Sample #11 → T91, diameter 20mm, thickness 0.6mm
 - Sample #10 → Graphene, 10x10 mm, thickness 1 um

D4.3 due by June 2024, so to be ready somewhere in April 2024 →
only Sample Holder 1 will be in its scope

WP4.3 – Metallic windows

Post-Irradiation Examination (PIE)

- Samples still at some mSv/h at contact → cooldown until January 2024
- January April 2024: thermophysical properties testing of irradiated vs unirradiated samples at CERN (MME Mech Lab and MME-MM)
- Deliverable will include also additional tests done at RHP during production (i.e. dye penetrant testing)
- We aim at calculating also DPA allowing to compare irradiation conditions to operational beam windows in applicative cases, e.g. ADS, muon collider, etc. → CERN FLUKA section contacted
- Aiming at completing deliverable document by the end of April 2024 for review by project management
- Extensive scientific production: 3 papers prepared (1 of which already accepted for publication at PRAB) + 1 Master Thesis + 1 paper planned by the end of the project

WP4.3 – Graphenic windows

Irradiation of GC at UNILAC, GSI 4.8 MeV/u ¹⁹⁷Au

FAST

Set up for pressure and leak test of irradiated GC

Federico Carra – I.FAST Steering Meeting, 14 December 2023

WP4.4 – Carbide-Carbon Materials for Multipurpose Applications

Milestone/Deliv erable Number	Title	Lead beneficiary	Туре	Dissemination level	Due Date (in months)
MS14	Evaluation of a CCM alternative to Molybdenum- Graphite	CERN	Report	Public	16
D4.4	Production of large-size CCM plates	CERN	Demonstrator	Public	24

- Milestone MS14 due date August 2022, achieved in June 2022
 - Alternative to MoGr proposed and validated → Chromium-Graphite (CrGr)
- **Deliverable D4.4** completed in **April 2023**
 - Produce two large CCM plates (cross section >400 cm²) in a single sintering cycle
 - This means: moving from the sintering of Ø170 mm to Ø230 mm plates → doubling the cross-section (and: 2 plates per cycle!). CrGr selected as CCM material for the deliverable.
 - Sintering run successfully completed in March 2023

WP4.4 – Carbide-Carbon Materials for Multipurpose Applications

More in F. Carra's talk at 2nd IFAST Annual Meeting

WP4.4 – Carbide-Carbon Materials for Multipurpose Applications

- All milestones and deliverables of I.FAST task 4.4 have been reached in the first two years of the project
- However, in the scope of the task objective (reduction of cost of carbon-carbide materials), several actions are still foreseen in the last two years of I.FAST:
 - Complete the in-lab characterization of the CrGr produced in the scope of deliverable D4.4, and publish the results on an international journal (record achieved in CrGr thermophysical properties and record in a CCM size sintering)
 - Optimize and, if possible, remove production steps related to material **pre-dwell and annealing**
 - Study the machine insulation system to understand if further improvements are needed to reduce power losses
 - Further increase the material volume produced per cycle: increase the plate thickness (up to 5 cm?) and/or increase the number of plates (up to 4?)
 - Optimize the material composition to reduce spilling of molten metal

IFAST

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Motivation

- Increasing worldwide request for thermal management materials (high thermal diffusivity and specific heat, low density)
- **Cost still high**: CCM are limited to high-end applications (nuclear energy, particle physics, aerospace, ...)
- Decrease of energy consumption, improvement of production cycle efficiency and sustainability are also a must
- In particle physics: very interesting for beam-intercepting devices and beam instrumentation, beam windows, etc.

Targets

Beam wire scanners

Collimators

Federico Carra – I.FAST 2nd Annual Meeting, 20 April 2023

Year 1 activities – Technical Specification

FAST

 Definition of the minimum thermophysical properties for a use in HEP beamintercepting devices and in thermal-management applications

	Specification		
Property	II *	F	Unit
Density at 20⁰C	2.40 - 2.60		[g/cm³]
Specific heat at 20°C	> 0.6		[J/(g·K)]
Electrical conductivity at 20°C	> 0.75		[MS/m]
Thermal Diffusivity 20ºC /at 300ºC	> 350/100	> 20/6	[mm^2/s]
Thermal conductivity at 20°C /at 300°C	> 500/280	> 35/20	[W/(m·K)]
Volumetric CTE 20-1000°C	< 7		[10 ⁻⁶ K ⁻¹]
Coefficient of thermal expansion 20-1000°C	< 2.9	< 15	[10 ⁻⁶ K ⁻¹]
Young's Modulus at 20°C	35 < E < 75	5 <e<8< td=""><td>[GPa]</td></e<8<>	[GPa]
Flexural strength at 20°C	> 60	> 10	[MPa]
Flexural strain to rupture at 20°C	> 2500	> 4000	[µm/m]
Dimensional stability*	< 0.05	< 0.25	%

*The dimensional stability shall be ensured after the following thermal cycle: heating of the specimen up to 1950^oC with a ramp of 5^oC/min. Cooling of the specimen down to room temperature with the same ramp.

Federico Carra – I.FAST 2nd Annual Meeting, 20 April 2023

Year 1 – Increase of volume per cycle

Molybdenum-Graphite (sintered at 2640°C)

2 plates produced with 230 mm Diameter (2x bigger section than before IFAST)

Disk (230 mm diameter)	Density (g/cm³)	Electrical Conductivity (Mean values on each side) (MS/m)
Plate #1 (p=26 MPa)	2,53	0,6 - 0,63
Plate #2 (p=40 MPa)	2,60	0,65 – 0,68
Specification	2,3 ÷2,6	>0,8

Lower electrical conductivity values than in the 170 mm diameter disks

Pre-compaction of the green powder:

Maximum Applied Force Uniaxial Hydraulic Press ~ 900 kN

- 170 mm Ø → 40 MPa → 2,00 g/cm³
- 230 mm Ø → 21 MPa → 1,65 g/cm³

Next: <u>increase the metal content</u>, together with the higher sintering pressure

Federico Carra – I.FAST 2nd Annual Meeting, 20 April 2023

Year 1 – Decrease of sintering Temperature

- **Chromium-Graphite** (sintered at 2000°C 1.3x lower T)
- Concept proposed by Jorge Guardia within ARIES WP14 & WP17, technically was not demonstrated yet (very poor mechanical properties)

3 plates produced with 170 mm Diameter

Disk (170 mm diameter)	Density (g/cm³)	Electrical Conductivity (MS/m)
Plate #1	2,30	1,00 – 1,07
Plates #2 & #3	2,30	0.75/0.81
Specification	2,3 ÷2,6	>0,8

Reusable Mold and Parts → Important Cost Reduction

- Plate #1 produced in a single plate per cycle, very promising properties, decision for full characterization at CERN
- Plates #2 and #3 double-plate per cycle, losing a bit in conductivity → composition and cycle to be optimized
 FAST

Year 1 – CrGr Characterization

