WP 5: Spatial Profile of a Very High-Energy 208Pb Heavy Ion Beam at CHARM

Andreas Pflaum (University of Oldenburg), *Markus Lapp, Björn Poppe, Andreas Waets, Natalia Emriskova, Eliott Philippe Johnson, Rubén Garcia Alía, Hui Khee Looe, Vanessa Wyrwoll*

RADNEXT 3rd Annual Meeting – 10-11 June 2024

https://indico.cern.ch/e/radnext-2024

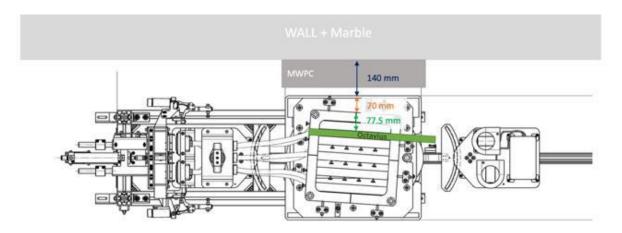
Outline

- Introduction
- Methods and materials
 - CHARM facility
 - Detector arrays
 - Experimental setup
- Results
 - Impact of flux and energy on spatial distribution of the beam
 - Comparison of detector array measurements with MWPC
- Conclusion
- Outlook

Introduction

Work Packages

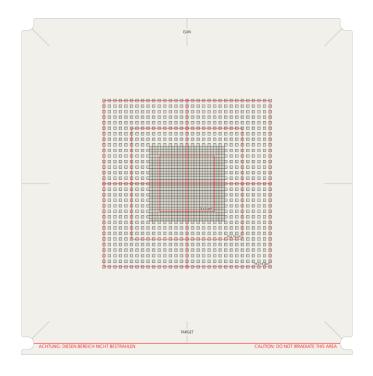
Project management WP01-MGT Joint Research Activities **Networking Activities Transnational Access** WP05-JRA1 Radiation monitors, dosimeters WP02-NA1 Communication, dissemination, and beam characterization exploitation and training WP09-TA1 WP06-JRA2 Standardization of system level WP03-NA2 Transnational access management radiation qualification methodology and harmonization WP10-TA2 Proton, heavy ion and alternative WP07-JRA3 Cumulative radiation effects on beams and irradiation WP04-NA3 Roadmap and pre-design of future electronics irradiation facilities WP08-JRA4 Complementary modelling tools



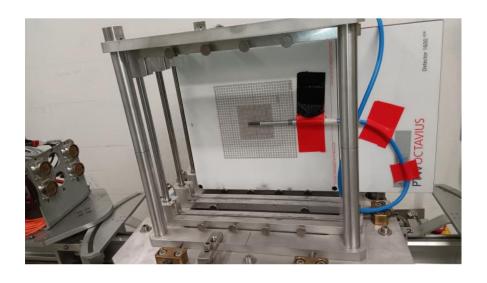
Introduction

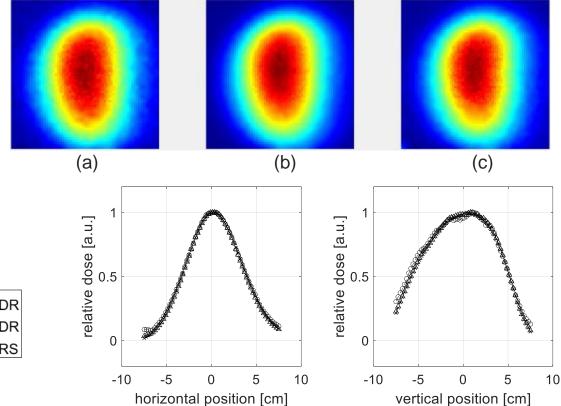
- Thorough irradiation testing of components is an important task for example in space applications or particle accelerators
- Exact knowledge of beam properties is of high importance
- Representation of two-dimensional intensity beam profile at the position of the experiment is often not available
- Detector arrays can fill this gap

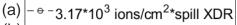
CHARM


- Beam perpendicular to the Octavius array (green)
- MWPC behind the setup at an angle
- Montrac moves setup to the test position

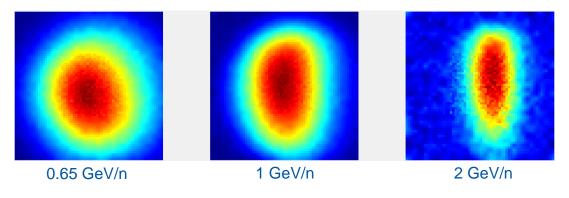
Detector Arrays


- 1600 SRS liquid filled chambers
 - 0.2 Gy/min 36 Gy/min
- 1600 XDR vented chambers
 - 0.4 Gy/min 4000 Gy/min
- Sensitive area of 15 cm x 15 cm
- Layout of both arrays is the same

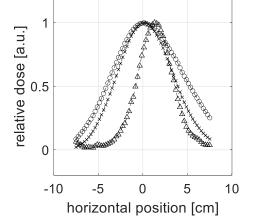

Experimental setup

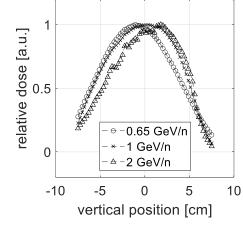

- Detector array mounted in metal frame
- Alignment of the setup according to a laser cross on a preparation table outside of the irradiation area
- Setup is taken off the preparation table and put on the Montrac
- Montrac goes along a rail to the test position

- Change of flux
- No impact on spatial distribution
- Example at 1 GeV/n

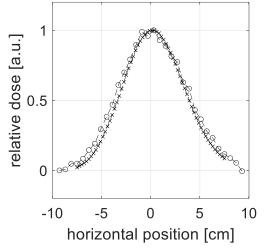


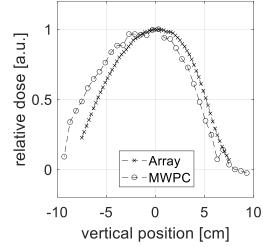
⁽b) 1.18*10⁴ ions/cm²*spill XDR

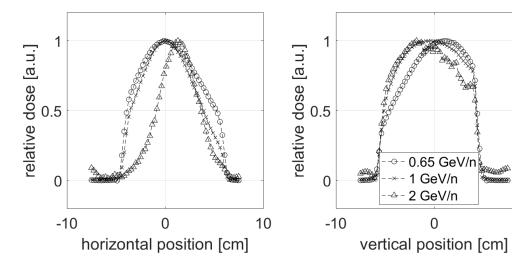



⁽c) 9.03*10³ ions/cm²*spill SRS

- Change of energy
- Significant impact on spatial distribution


FWHM	0.65 GeV/n		2 GeV/n
horizontal	9.4 cm	7.3 cm	4.5 cm
vertical	10.5 cm	11.1 cm	10.2 cm



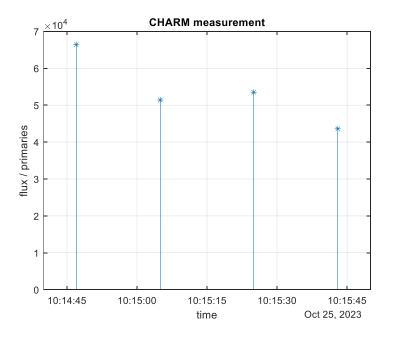

- Position of MWPC compared to array measurement
- Approximately 1 cm deviation in vertical direction
- Less than 0.5 cm in horizontal direction

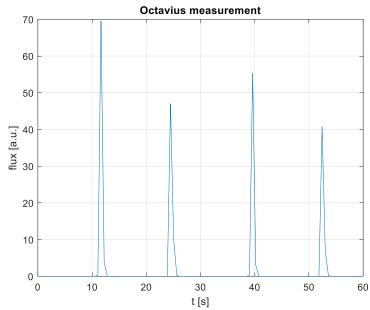
- Use of collimators of 10 cm x 10 cm
- Transmission on the edges at 2 GeV/n

10

Discussion

- Change of flux did not have an impact on the spatial distribution of the intensity profile
- Change of energy had a significant impact on the profile
- MWPC and array were misaligned in the vertical direction by (1.1 ± 0.2) cm
- MWPC misalignment in the horizontal direction (0.5 ± 0.1) cm


Conclusion


- When the energy is changed, a repositioning or readjustment of magnetic optics has to be considered
- A change of flux does not require any repositioning or change of optics
- The deviation in position between the MWPC and array measurements in vertical direction should be investigated in more detail
 - Deviation introduced by MONTRAC?
 - Alignment of MWPC does not coincide with laser positioning system?

Outlook

 Further investigations regarding absolute dose and flux, variation of magnetic optics, spill structure in progress

Thanks for your attention!

Image Source: CERN

