

Study of Total Non-Ionizing Dose

Alexandre Le Roch – ISAE-SUPAERO Vincent Goiffon – ISAE-SUAPERO

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **101008126**

Overview of the Study

Main Goal

 Development of a Total Non-Ionizing Dose (TNID) testing methodology adapted to the different fields of application encountered in the RADNEXT project.

Main approach

- Compare and model the radiation induced leakage/dark current of two reference device types over various TNID irradiation conditions.
- Two devices will be studied simultaneously:
 - Sub-Task 7.3.1: Silicon PN junction
 - → Gives the average response of silicon over a large silicon volume
 - Sub-Task 7.3.2 : Silicon detector/image sensor Pixel Array
 - → Gives the statistical distribution of the response of silicon microvolumes

Devices Under Test - Photodiode

Photodiode Requirements

- Weak TID sensitivity (lowest possible)
- Large enough to ignore edge effects
- Weak electric field enhancement (lowest possible)
- Measurable dark current
- Info available in the literature to estimate the depletion volume
- Affordable

PIN photodiode 1223 series from Hamamatsu

- Pros
 - Matches all the requirements
- Cons
 - Low reverse current (i.e., pA)

Credit: Hamamatsu / Cross section of a photodiode

Devices Under Test – CMOS Image Sensor (CIS)

Silicon Pixel Array Requirements

- Weak TID sensitivity (lowest possible)
- Negligible edge effects
- Weak electric field enhancement (lowest possible)
- Very small microvolume (lowest possible)
- Measurable dark current
- Affordable
- Limited test bench development effort
- Info available in the literature to estimate the depletion volume

SONY IMX219PQ

- Pros:
 - Matches the requirements
 - Already tested to TNID in the literature.
- Cons:
 - Dark current clamping prevent direct access to the absolute dark current value

Credit: Sony / Cross section of the IMX219PQ CMOS Image Sensor (CIS)

Starting Hypothesis – Mean Dark Current Increase

For neutrons/protons with E ∈ [1-200 MeV], the TNID induced dark current increase in silicon microvolume is proportional to the total Displacement Damage Dose (Ddd) (Srour & Lo UDF*):

*J.R. Srour and D. H. Lo, IEEE TNS, Dec. 2000.

C. Virmontois et al., IEEE TNS Aug. 2012

Starting Hypothesis – Dark Current Distribution

Starting Hypothesis – Dark Current Distribution

 In a pixel array, the hot pixel tail of the dark current increase distribution is given by the following exponential distribution which solely depends on Ddd:

Purpose of the TNID test campaign

- Validate further (or not) these hypothesis
- Explore the possibility to use photodiodes (PDs) and/or CMOS Image Sensor as Ddd dosimeters to compare facilities
- Explore the limit of these hypotheses
 - By using particles/energies that change the dominant defect structure (point defect vs clusters)
 - By using a rich mixed environment (CHARM)
 - By following closely, the annealing behavior
 - By comparing the behavior of grounded and biased devices

Targeted Irradiation Parameters

- Constraints:
 - High enough to ensure a measurable signal and enough statistics (e.g.,CIS)
 - Low enough to limit activation and to reduce the beam time
- Proposed target: 400 TeV/g \Leftrightarrow 1x10¹¹ 1-MeV-n_{equ}/cm² \Leftrightarrow \approx 1.2 x10¹¹ 60-MeV-H/cm²

	Proton	Neutron	Flux	Fluence	Date	Conditions	Dose (TeV/g)
TRIUMPH	480 MeV		N/A	1.27E11	17-juil	GND @RT	400
	355 MeV			1.06E11			
UCL		23 MeV	1.00E+07	1.00E+10	14-sept	GND & Biased @ RT	40-800
				1.50E+10			
				2.50E+10			
				5.00E+10			
				1.00E+11			
NPI CAS		3MeV - 33MeV	1.00E+09		22-janv	GND & Biased @ RT	150-20000

Custom test board

- IV measurement [pA]
- 12 PIN PDs with different biased

A 4-layer PCB is used:

- 1. Signal guard plane
- 2. Signal layer
 - signal tracks
 - signal guard plane
- 3. Signal guard plane
- 4. GND signal layer

RAD

- GND signal tracks
- GND guard plane

JEST

Schematic of the test board showing the 4 layers

Custom test board

- IV measurement [pA]
- 1 PIN PDs with different biased

A 4-layer PCB is used:

- 1. Signal guard plane
- 2. Signal layer
 - signal tracks
 - signal guard plane
- 3. Signal guard plane
- 4. GND signal layer
 - GND signal tracks
 - GND guard plane

Schematic of the cross section of the test board showing the 4 layers

Working principle:

 Guarded planes prevents leakage current by canceling the potential difference between the signal tracks and the planes

Custom test board

- IV measurement [pA]
- 12 PIN PD with different biased

A 4-layer PCB is used:

- 1. Signal guard plane
- 2. Signal layer
 - signal tracks
 - signal guard plane
- 3. Signal guard plane
- 4. GND signal layer
 - GND signal tracks
 - GND guard plane

Top view of the test board showing the 12 + 1 slots

Separating the 3 channels

- Signal
- Guard
- GND

from the triaxe Keithley 6430

Custom test board

- 1 for irradiation + 1 for measurement
- Circular design to accommodate beam uniformity
- 12 PIN PD slots
- 6 different bias conditions

Flexible IV measurement setup

- Optically black environment
- Temperature probe
- pA sensitivity
- Dedicated software
- Allows annealing decay measurements

Next steps

- Data analysis and modeling on the data gather during the irradiations at TRIUMPH, UCL, NPI-CAS
- Electrons irradiations ?
 - ~ a few MeV
 - Beyond the point defect/cluster threshold
 - Above the point defect/cluster threshold
 - Facilities ?
 - RADNEXT offer: CSL Beta source
 - 0-3.5 MeV mono-energetic
- Gamma-rays relevant for point defect displacement damage?

Dark current distribution after proton irradiation

Schematic showing microvolume sampling of radiationinduced defects by a pixel array

THANKS FOR YOUR ATTENTION

ALEXANDRE LE ROCH Associate Professor – ISAE-SUPAERO Image Sensor Research Group alexandre.le-roch@isae-supaero.fr

