WP6, Investigation of Single-Event Effects for Space Applications: Instrumentation for In-Depth System Monitoring

André M. P. Mattos (University of Montpellier) RADNEXT 3rd Annual Meeting – 10-11 June 2024 https://indico.cern.ch/e/radnext-2024

Outline

Third year achievements and ongoing activities

Summary of test campaigns and publications

Investigation of Single-Event Effects for Space Applications: Instrumentation for In-Depth System Monitoring

- Background
- Experimental instrumentation for complex systems
 - Objectives/Challenges
 - Proposed approach

Conclusion

Third year achievements and ongoing activities

	Source	Facility	Date	Experiments
1 st year	High-Energy Protons	PSI	12/21*	SDRAM / HyperRAM
	Heavy Ions	RADEF	02/22	SRAM
	Atmospheric Neutrons	ChipIr	05/22*	RISC-V / SoC / NoC
	High-Energy Protons	PARTREC	06/22*	RISC-V / SoC
2 nd year	Mixed-Field	CHARM	10/22	RISC-V / SoC
	Atmospheric Neutrons	ChipIr	11/22*	RISC-V / SoC
	High-Energy Protons	PSI	12/22	SRAM
	Pulsed Laser	ESTEC	05/23	SRAM
3 rd year	Atmospheric Neutrons	ChipIr	05/24 09/24	ARM / RISC-V / Al accelerator
	High-Energy Heavy Ions	GSI	06/24*	RISC-V SoM
	High-Energy Protons	PSI	09/24*	RISC-V SoM

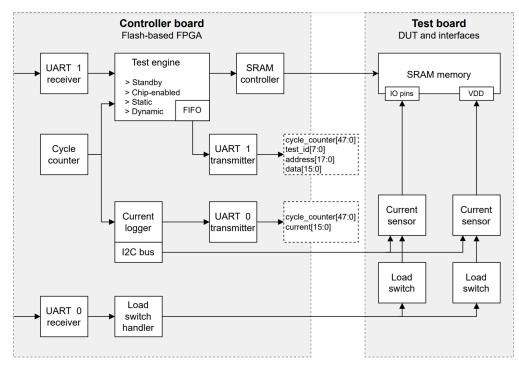
Third year achievements and ongoing activities

Journal publications:

[1] André M. P. Mattos, Douglas A. Santos, et. al., "Investigation on Radiation-Induced Single-Event Latch-up in SRAM Memories on-Board PROBA-V", TNS, 2024.

[2] André M. P. Mattos, Douglas A. Santos, et. al., "Investigation of Single-Event Effects for Space Applications: Instrumentation for In-Depth System Monitoring", Electronics, 2024.

[3] D. A. Santos, P.M. Aviles, A.M.P. Mattos, M. Garcia-Valderas, L. Entrena, A. Lindoso, L. DiLillo, "Hybrid Hardening Approach for a Fault-Tolerant RISC-V System-on-Chip", TNS, 2024.

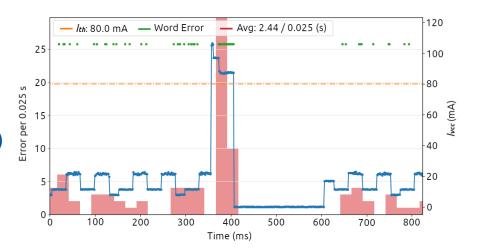

Background

Investigation of SEL in COTS SRAM memories onboard PROBA-V:

- Understanding the flight behavior and observed error rates
- Experiments: RADEF, PSI, ESTEC

Enhanced experimental setup:

- Precise timing and current measurements
- Coherent monitoring between memory errors and current measurements
- Many test modes with realistic stimuli
- Robust and flexible test setup



Background

Outcomes (test setup):

- Analysis of various SEE with enhanced synchronization
- Superposition of different parameters (e.g., current/errors)

Cross Section 1,2	LET [MeV·cm²/mg]					Weibull Fitting			
Cross Section -/-	1.5	7.2	13.3	24.5	48.5	W	S	XS_{sat}	LET_{th}
XS_{SEU} [cm ² /bit]	4.62×10^{-12}	4.15×10^{-9} 3.65×10^{-7}	1.07 / 10		1.20×10^{-8}	14.6	1.7	2.06×10^{-8}	1.5
XS_{SEL} [cm ² /device] XS_{SEFI} [cm ² /device]	$9.97 \times 10^{-8} 9.07 \times 10^{-8}$	0.00	1.61×10^{-6}	$3.46 \times 10^{-3} 3.59 \times 10^{-3}$	7.64×10^{-2} 6.87×10^{-2}	25.5 -	-	1.03×10^{-1}	7.2 -

¹ Only cross sections for perpendicular incidence in one DUT (same as flight lot) are shown; ² All tested modes included for SEL cross section and only static/dynamic for SEU and SEFI cross sections.

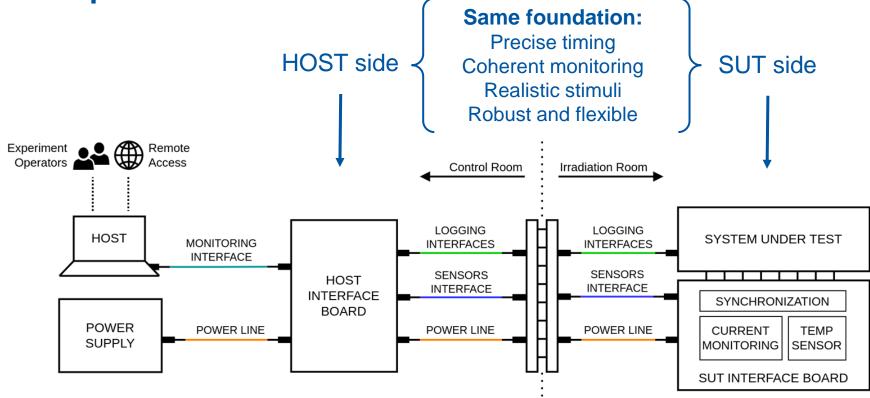
Experimental instrumentation for complex systems > Objectives/Challenges

Objectives:

Performing tests on complex systems-on-chip

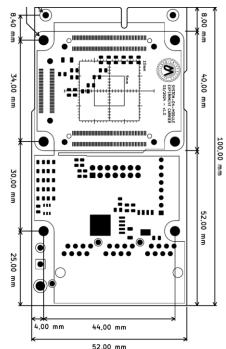
- Provide the necessary circuitry to operate these systems
- Provide the necessary circuitry for radiation testing needs
- Provide additional features to support enhanced observability

Challenges:


- Design a compact and robust solution
- Maintain costs comparable to COTS development kits
- Provide reliability to the test setup itself (secondary particles, industrial environment)

Experimental instrumentation for complex systems

> Proposed solution

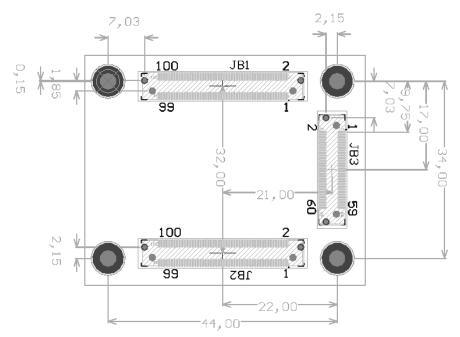


Experimental instrumentation for complex systemsProposed solution: SUT Side

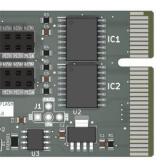
Functions supporting in-depth testing:

- SUT logging interfaces (>100 meters)
- Setup interface (>100 meters)
 - Voltage/Current for the SUT (with protection)
 - Board temperature
 - Configurable external watchdog timer
 - User GPIOs (control on HOST side)
- JTAG programming interface (~20-50 meters)
- Onboard power regulation (>100 meters)
- DIP switch for easy hardcode configuration
- Edge extension connector (e.g., add-on DUT)
 - 48x high-speed data signals
 - Length matching / impedance control
 - Access to setup interface
- Indication LEDs (power good, boot, interface test)

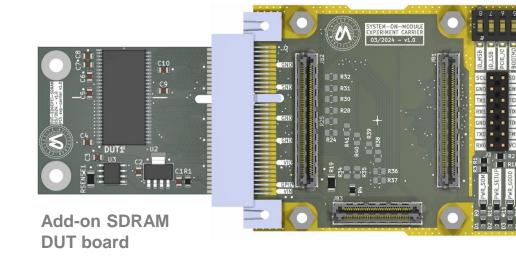
Carrier: 100x50mm SoM: 50x40mm



Experimental instrumentation for complex systems > Proposed solution: SUT Side


Many "low-cost" COTS options available in this form factor for rapid test development, but a fully custom solution can also be designed

Experimental instrumentation for complex systems > Proposed solution: SUT Side



Add-on non-volatile memory expansion

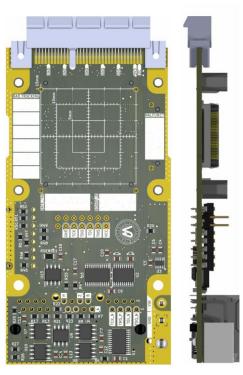
- Add-on DUTs
- Debugging boards
- Function extension
- Test fixtures

Experimental instrumentation for complex systems > Proposed solution: HOST Side

Functions supporting in-depth testing:

- Data interfaces (connected to SUT side)
- Logging, setup, and JTAG
 FPGA for handling experimental operation

 - Manage user requests (e.g., turn ON/OFF the SUT)
 Enable fast SEL monitoring/protection/reporting
 Append precise timestamp for all SUT log data and sensor measurements received (without HOST computer "jitter/desynchronization" nor overheads)
 Single USB interface with HOST computer using a
- serial converter
 - Four channels (SUT#1, SUT#2, SENSE, and CMD)
 - Even with computer jitter/desynchronization in the reception, all data was precisely timestamped beforehand in the FPGA
- Compact (easy to mount on the facility), simple to operate, and highly automated (reducing human error)



Conclusion

- Development of custom, compact, and robust test setup targeting complex devices:
 - Adequate radiation testing fixtures
 - Enhanced SUT observability
 - Synchronization / coherence
- Support to different projects:
 - Development standard hardware platform for radiation testing (KUL / UM)
 - Characterization of a high-performance multicore RISC-V SoC and a low-cost RISC-V soft-core (UM)
 - GSI (06/24) and PSI (09/24)
 - ... and potentially to other future partners interested on the developed platform

Thanks for your attention!

André M. P. Mattos
PhD at University of Montpellier
andre.martins-pio-de-mattos@umontpellier.fr

