

Status and Outlook of WP04 "Roadmap and Pre-design of Future Irradiation Facilities"

R. Versaci (ELI BEAMLINES), P. Pelissou (CERN), F. Ravotti (CERN), S. Danzeca (CERN), I. Zymak (ELI BEAMLINES)

RADNEXT 3rd Annual Meeting 10 June 2024 https://indico.cern.ch/event/1348465/

Contact: roberto.versaci@eli-beams.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **101008126**

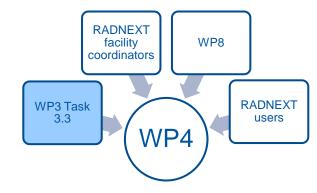
WP04 goals and tasks

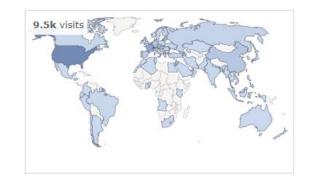
Main objective:

Define long term scientific and industrial **needs for irradiation facilities** based on key parameters, considering inputs from relevant research groups and industrial community

□ Key tasks' description:

- <u>Task 4.1</u>: WP Coordination and Communication


Task 4.2: Identify limiting factors of current irradiation facilities and propose solutions for the upgrade of existing infrastructures and the development of future ones (D4.1 and D4.2, M20)


- <u>Task 4.3</u>: Investigate innovative solutions for current irradiation facilities (D4.3, M30)
- О <u>Task 4.4</u>: Design study of new irradiation facilities (D4.4, M40)

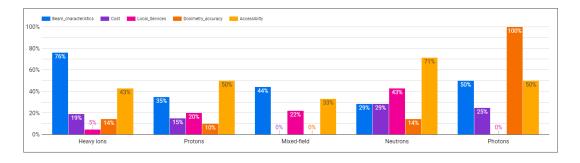
Update International Irradiation Facility Compendium

- Aims to maintain comprehensive, up-to-date, global irradiation facilities list
- Strong synergies with WP3 to retrieve facilities info and feedback
- Focus: Facilities + parameters (fundamental for KPI analysis)
- Update Process:
 - Thorough review & update of existing facility info
 - DB expanded to include facilities new and outside Europe
 - Improved DB portal backend and frontend for better user experience

Irradiation Facility Compendium and database

- Future Directions:
 - Constant updates and maintenance to ensure data accuracy (233 entries as of Friday)
 - Promoting the database to increase its use by the radiation effects community.
 - Ensuring long-term reliability and relevance of the database information

A unified entry point for **worldwide irradiation facilities** with an essential collection of information <u>https://www.cern.ch/irradiation-facilities/</u>



RADNEXT 3rd Annual Meeting

Key Performance Indicators for Current and New Facilities

Assessing RADNEXT facilities through KPIs Objectives

- Collect user needs for radiation testing
- Evaluate RADNEXT facilities based on KPIs
- Identify limitations and propose improvements

See P. Pelissou's presentation on Wednesday

4 use cases

- Sensors and Detectors
- Electronics components
- Electronic System and Tests
- Materials

5 radiation field types

- Heavy lons
- Protons
- Neutrons
- Photons
- Mixed fields

Key Performance Indicators Evaluation

KPI used:

- High dose rate/flux capability
- Large volume/surface area testing
- High Energy/mixed energy fields
- High availability
- Services & environmental control
- Penetration in matter
- · Low cost per irradiation unit
- Post-irradiation services

Limitations identifies:

- Facility availability Gap between beam-time access and user needs
- Beam parameters

Need for better beam stability, intensity, and penetrations depth

Services

Demand for improved facility services and remote access options

RADNEXT 3rd Annual Meeting

Future Solutions for Current Irradiation Facilities

- Focus on enhancing current irradiation facilities to meet user needs
- Future needs
 - Development of the space market (New Space)
 - Emergence of new components with higher sensitivity and complexity
- Possible solutions?

Issues and Solutions for Current facilities

Facility availability

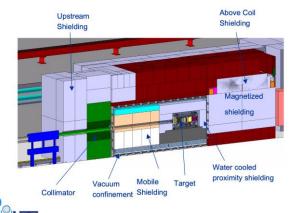
- **Issue**: Gap between beam-time access and user needs
- Solution: Improve communication channels to users, enhance coordination between existing facilities, explore alternative facilities (e.g. LPA, see R. Versaci's presentation on Thursday)

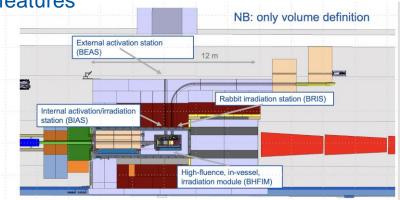
Enhancement of beam parameters

- Issue: Need for better beam stability, intensity, and penetration depth
- **Solution**: Implement KPIs for beam monitoring and feedback to users, deploy more monitors, develop new monitors

Issues and Solutions for Current facilities

- Services provided by facilities
 - **Issue**: Need for better logistical support and remote facility access
 - Solution: Simplify access to information about beam parameters (e.g. beam logs), standardization of methodologies (e.g. NIEL sensors, dosimetry); standardization of devices, enlarge irradiation areas (e.g. larger samples); develop remote access systems for digital platforms and virtual visits (see A. Scialdone's presentation on Wednesday)




Design study of new irradiation facilities

- **IFMIF-DONES** (see W. Krolas' presentation on Wednesday)
- LPA (see R. Versaci's presentation on Thursday)
- CERN BDF

KPIs identified in D4.2 used to:

- Assess and evaluate tests positions
- Highlight and analysis constraints and features

RADNEXT 3rd Annual Meeting

Deliverables

Status	ID	Title	Deadline	Responsible (s)
Completed	D4.1	Report on key performance parameters and limiting factors for current facilities	30/01/2023	P.Pelissou
Completed	D4.2	Updated international irradiation facility compendium	30/01/2023	P.Pelissou
Completed	D4.3.	Report on the solutions to overcome the technological and accessibility limits for present facilities, including analysis on virtual and remote irradiation access	30/11/2023	P.Pelissou
In work	D4.4	Design report on advanced technologies to be implemented in future beam and mixed-field irradiation facilities.	30/11/2024	-

Status	ID	Title	Deadline	Responsible (s)
In Work	M4.1	Prototype of remote access to FPGA platform for mixed- field irradiation in CHARM	31/05/2024	S. Danzeca

