Theoretical High Energy Physics

Johan Rathsman, Physics department, Lund university

Wide range of research

- Formal theory trying to understand fundamental properties of theories: Chalmers U, Nordita*, Stockholm U, Uppsala U also Karlstad U and Örebro U
- Particle physics phenomenology making detailed predictions and testing them: Lund U, KTH (Royal Inst. of Tech.), Uppsala U
- Theoretical astroparticle physics including neutrinos and dark matter: see presentation by Riccardo Catena

*Nordita: Nordic institute for theoretical physics in Stockholm

- - Primary Cosmic Hays

2

Event generators and QCD pheno

Astronomical clock Lund Cathedral

PYTHIA generated pp-event

Event generators: Christian Bierlich (LU), Leif Lönnblad (LU)

- essential for experiments both design and data analysis
- PYTHIA for pp collisions ongoing since 1980's (<u>pythia.org</u>)
- ANGANTYR for heavy ion collisions based on Lund string model
- comparisons to data continuous development of RIVET

Kinetic theory for heavy ion collisions: Korinna Zapp (LU)

- jet quenching as probes of QCD plasmas
- event generators for effective theory with thermal effects

Precision calculations & Madgraph_aMC@NLO: Rikkert Frederix (LU)

- heavy quark and vector boson production
- development of perturbation theory methods

- G Gustafson (LU, emeritus), T Sjöstrand (LU, emeritus)

Colour and helicity flow: Malin Sjödahl (LU)

- helicity flow for more efficent calculation of multiparticle amplitudes $[23]\langle 41\rangle$
- calculating and observing subleading colur effects
- **QCD phenomenology**: Stefano Moretti (**UU**), Stefan Leupold (**UU**), G Ingelman (**UU**, emiritus)
 - capturing subleading colour effects in ISR, hard ME, FSR
 - proton spin problem
 - machine learning for jet physics

Low-energy particle physics: Johan Bijnens (LU)

- chiral perturbation theory and finite volume effects in Lattice Calc

• precision calculations in flavour physics such as $(g - 2)_{\mu}$ (4.2 σ deviation)

Physics Beyond the SM

LU: Roman Pasechnik, Johan Rathsman

- Collider phenomenology: e.g. distinguishing supersymmetry, compositeness and other theories, constraining new models for BSM physics, etc. - often in close collaboration with experiments
- Model building: simplified models and bottom-up approach, 2HDMC program
- (Grand) Unification and RGE running: top-down approach
- Phase transitions in SMEFT and beyond: models with strong first order
- Tools for thermal field theory: DRalgo, BubbleDet, Interface to CosmoTrans.
- Gravitational waves: collider constraints and input for searches at colliders

- **UU:** Rikard Enberg, Stefano Moretti
- **CU:** Gabriele Ferretti **KTH:** Mattias Blennow, Tommy Ohlsson **KU:** Marcus Berg

Formal (string) theory UU: J Minahan, A Bissi, D Volin, H Johansson, O Schlotterer, M Zabzine, U Lindström (emiritus), J Qiu, G Festuccia, M Larfors, M del Zotto,

P Longhi, U Danielsson, L Freyhult

Nordita: K Zarembo, P di Vecchia (emiritus)

CU: M Cederwall, G Ferretti, U Gran

OU: J Palmkvist

(effectively two clusters: east and west coast)

- AdS/CFT and Integrability
- Supersymmetry on curved space times
- Kac-Moody and Lie superalgebras

SU: B Sundborg

KU: M Berg, J Fuchs

Scattering amplitudes

- String cosmology
- Holography

Participation in international commissions

IUCAP - C11 (Particles and Fields): Roman Pasechnik (LU)

Structural problems with funding

- typically 50% university funding of permanent positions for research
- limited university funding for PhD students, postdocs and travel
- external funding almost only for specific projects and not running costs
- lack of research group grants for furthering existing collaborations
- large fluctuations in funding due to low success rate for funding from Swedish and European research councils as well as KAW foundation
- event generators (Рутны) used by world wide experimental community need to be treated as an infrastructure for experiments

Summary Main research areas in theoretical high energy physics (not including

astroparticle physics)

- event generators and QCD phenomenology (mainly Lund U) ~ 10 PIs
- phenomenology of BSM physics (mainly Lund and Uppsala U) \sim 5-10 PIs
- formal theory (mainly Uppsala U/Nordita) ~ 25 PIs

Funding by Swedish and European Research Councils as well as KAW crucial for building and maintaining research groups but very uncertain

Thank you!