Future Circular Collider ## -Physics Case- Corfu Workshop on Future Accelerators, May 19, 2024 Christophe Grojean DESY (Hamburg) Humboldt University (Berlin) CERN (christophe.grojean@desy.de) — on behalf of the FCC team— #### Future Circular Collider - A versatile particle collider housed in a 91km underground ring - Implemented in several stages: - an e+e- "Higgs/EW/Flavour/top/QCD" factory running at 90-365 GeV followed by a high-energy pp collider reaching 100 TeV #### **Outline** - 1. Why do we need a new collider? - 2. FCC feasibility study - 3. FCC-ee: overview of physics programme - 4. FCC-ee/hh as a Higgs/electroweak factory - 5. FCC-ee as a flavour factory - 6. FCC-hh: the broadest exploration potential at high-energy - 7. FCC-ee→FCC-hh: complementarity and synergy - 8. Conclusion # 1. Why do we need a new collider? #### The LHC Legacy (so far). - ▶ Standard Model (SM) confirmed to high accuracy up to energies of several TeV (thanks to a firm control of exp. & th. syst. uncertainties, the LHC became a precision machine) - ▶ Higgs boson discovered at the mass predicted* by LEP precision EW measurements *within the Standard Model - ▶ Absence of new physics ——— Traditional New Physics models are under siege New approaches: relaxion, Nnaturalness, clockwork... CG - 4/38 #### The LHC Legacy (so far). - ▶ Standard Model (SM) confirmed to high accuracy up to energies of several TeV (thanks to a firm control of exp. & th. syst. uncertainties, the LHC became a precision machine) - ▶ Higgs boson discovered at the mass predicted* by LEP precision EW measurements *within the Standard Model TeV-scale Naturalness might not explain DM/baryogenesis Traditional New Physics models are under siege ▶ Absence of new physics ———— New approaches: relaxion, Nnaturalness, clockwork… Cosmology might settle the vacuum of the SM <-- CG - 4/38 ## The LHC Legacy (so far). - ▶ Standard Model (SM) confirmed to high accuracy up to energies of several TeV (thanks to a firm control of exp. & th. syst. uncertainties, the LHC became a precision machine) - ▶ Higgs boson discovered at the mass predicted* by LEP precision EW measurements *within the Standard Model TeV-scale Naturalness might not explain DM/baryogenesis Traditional New Physics models are under siege Absence of new physics New approaches: relaxion, Nnaturalness, clockwork... Cosmology might settle the vacuum of the SM - We need a broad, versatile and ambitious programme that - 1. sharpens our knowledge of already discovered physics - 2. pushes the frontiers of the unknown at high and low scales - together FCC-ee & FCC-hh combine these 2 aspects — more PRECISION and more ENERGY, for more SENSITIVITY to New Physics G-4/38 May 19, 2024 #### Precision as a discovery tool. #### Many historical examples - Uranus anomalous trajectory Neptune - ▶ Mercury perihelion → General Relativity - ▶ Z/W interactions to quarks and leptons → Higgs boson ▶ ... CG - 5/38 #### Precision as a discovery tool. #### Many historical examples - Uranus anomalous trajectory Neptune - ▶ Mercury perihelion → General Relativity - ▶ Z/W interactions to quarks and leptons → Higgs boson ▶ ... Sometimes, these discoveries were expected based on theoretical arguments (e.g. Rayleigh-Jeans UV catastrophe for QM, unitarity breakdown for the Higgs) but precision gave valuable additional clues. In any case, experimentalists shouldn't lean too heavily on theorist priors/prejudices (remember discovery of CP violation). At times when we don't have a precise theoretical guidance, we need powerful experimental tools to make progress. CG - 5 / 38 May 19, 2024 #### Precision as a discovery tool. #### Many historical examples - Uranus anomalous trajectory Neptune - ▶ Mercury perihelion → General Relativity - ▶ Z/W interactions to quarks and leptons → Higgs boson ▶ ... Sometimes, these discoveries were expected based on theoretical arguments (e.g. Rayleigh-Jeans UV catastrophe for QM, unitarity breakdown for the Higgs) but precision gave valuable additional clues. In any case, experimentalists shouldn't lean too heavily on theorist priors/prejudices (remember discovery of CP violation). At times when we don't have a precise theoretical guidance, we need powerful experimental tools to make progress. The FCC project offers unprecedented opportunities on many different fronts. No LHC/SSC-like **no-lose theorem** but a **promise** of making significant steps forward in our understanding of the fundamental laws of Nature. CG - 5 / 38 May 19, 2024 "The Higgs isn't everything!" CG - 6/38 "The Higgs isn't everything; it's the only thing!"* The scalar discovery in 2012 has been an important milestone for HEP. Many of us are still excited about it. Others should be too. "The Higgs isn't everything; it's the only thing!"* The scalar discovery in 2012 has been an important milestone for HEP. Many of us are still excited about it. Others should be too. Higgs = **new forces** of different nature than the interactions known so far - No underlying local symmetry. - No quantised charges. - Deeply connected to the space-time vacuum structure. "The Higgs isn't everything; it's the only thing!"* The scalar discovery in 2012 has been an important milestone for HEP. Many of us are still excited about it. Others should be too. Higgs = **new forces** of different nature than the interactions known so far - No underlying local symmetry. - No quantised charges. - Deeply connected to the space-time vacuum structure. - The discovery of the Higgs opens new deep questions — - What is the origin of the Higgs boson? - Is it elementary and isolated, or does it emerge from a deeper underlying dynamics? - Which role did the Higgs play during the big bang, and how did it influence the evolution of the Universe? - Does the Higgs boson play a role in explaining other fundamental open questions in particle physics which the SM cannot address (flavour, DM, baryogenesis, inflation...) CG - 6 / 38 "The Higgs isn't everything; it's the only thing!"* The scalar discovery in 2012 has been an important milestone for HEP. Many of us are still excited about it. Others should be too. Higgs = **new forces** of different nature than the interactions known so far - No underlying local symmetry. - No quantised charges. - Deeply connected to the space-time vacuum structure. The knowledge of the values of the **Higgs couplings** is essential to understand the deep structure of matter/Universe: CG - 6/38 "The Higgs isn't everything; it's the only thing!"* The scalar discovery in 2012 has been an important milestone for HEP. Many of us are still excited about it. Others should be too. Higgs = **new forces** of different nature than the interactions known so far - No underlying local symmetry. - No quantised charges. - Deeply connected to the space-time vacuum structure. The knowledge of the values of the **Higgs couplings** is essential to understand the deep structure of matter/Universe: ``` m_{W,} m_{Z} \leftrightarrow Higgs couplings \uparrow \qquad \qquad \downarrow lifetime of stars (why t_{Sun} \sim t_{life evolution}?) ``` CG - 6/38 "The Higgs isn't everything; it's the only thing!"* The scalar discovery in 2012 has been an important milestone for HEP. Many of us are still excited about it. Others should be too. Higgs = **new forces** of different nature than the interactions known so far - No underlying local symmetry. - No quantised charges. - Deeply connected to the space-time vacuum structure. The knowledge of the values of the **Higgs couplings** is essential to understand the deep structure of matter/Universe: ``` m_{W,} m_Z \leftrightarrow Higgs couplings \uparrow \qquad \checkmark lifetime of stars (why t_{Sun} \sim t_{life evolution}?) ``` CG - 6 / 38 "The Higgs isn't everything; it's the only thing!"* The scalar discovery in 2012 has been an important milestone for HEP. Many of us are still excited about it. Others should be too. Higgs = **new forces** of different nature than the interactions known so far - No underlying local symmetry. - No quantised charges. - Deeply connected to the space-time vacuum structure. The knowledge of the values of the **Higgs couplings** is essential to understand the deep structure of matter/Universe: ``` m_{W,} m_Z ↔ Higgs couplings † lifetime of stars (why t_{Sun}~ t_{life evolution}?) ``` ``` EWSB @ t\sim10^{-10}s \leftrightarrow \frac{\text{Higgs self-coupling(s)}}{\text{Higgs(es) potential}} ``` - 6/38 May 19, 2024 "The Higgs isn't everything; it's the only thing!"* The scalar discovery in 2012 has been an important milestone for HEP. Many of us are still excited about it. Others should be too. Higgs = **new forces** of different nature than the interactions known so far - No underlying local symmetry. - No quantised charges. - Deeply connected to the space-time vacuum structure. The knowledge of the values of the **Higgs couplings** is essential to understand the deep structure of matter/Universe: $$m_{W,} m_Z \longleftrightarrow Higgs couplings$$ $$\downarrow^{\uparrow} \qquad \downarrow^{\prime}$$ lifetime of stars $$(why \ t_{Sun} \sim t_{life \ evolution}?)$$ $$\begin{array}{c} m_{e,} m_{u,} m_{d} & \longleftrightarrow \text{Higgs couplings} \\ \text{size of atoms} & \text{nuclei stability} \end{array}$$ matter/anti-matter ↔ CPV in Higgs sector CG - 6/38 (HL)-LHC will make remarkable progress. But it won't be enough. A new collider is needed! The knowledge of the values of the **Higgs couplings** is essential to understand the deep structure of matter/Universe: ``` m_{W,} m_Z ↔ Higgs couplings † lifetime of stars (why t_{Sun}~ t_{life evolution}?) ``` ``` EWSB @ t\sim10^{-10}s \leftrightarrow \frac{\text{Higgs self-coupling(s)}}{\text{Higgs(es) potential}} ``` matter/anti-matter ↔ CPV in Higgs sector May 19, 2024 # 2. FCC feasibility study CG - 7/38 #### The launch of the feasibility study. "An **electron-positron** Higgs factory is the highest-priority next collider. For the longer term, the European particle physics
community has the ambition to operate a **proton-proton** collider at the highest achievable energy." — CERN council approved the Strategy and CERN management implemented it — FCC Feasibility Study (FS) started in 2021 and will be completed in 2025. Mid-term review in 2023. CG - 8 / 38 May 19, 2024 ## FCC feasibility mid-term report. - 703 pages: 7 chapters (cost and financial feasibility is a separate document) + refs. - Placement scenario (75 pages) - Civil engineering (50 pages) - Implementation with the host states (45 pages) - Technical infrastructure (110 pages) - FCC-ee collider design and performance (170 pages) - FCC-hh accelerator (60 pages) - (Cost and financial feasibility) - Physics and experiments (110 pages) - References (70 pages) - Executive summary: 44 pages - Reviewed by - Scientific Advisory Committee and Cost Review Panel on Oct. 16-18 - Scientific Policy Committee and Financial Committee on Nov. 21-22 - CERN Council Feb. 2 #### Future Circular Collider Midterm Report February 2024 528 authors 16 editors #### Edited by: B. Auchmann, W. Bartmann, M. Benedikt, J.P. Burnet, P. Craievich, M. Giovannozzi, C. Grojean, J. Gutleber, K. Hanke, P. Janot, M. Mangano, J. Osborne, J. Poole, T. Raubenheimer, T. Watson, F. Zimmermann This project has received funding under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754. This document has been produced by the organisations participating in the FCC feasibility study. The studies and technical concepts presented here do not represent an agreement or commitment of any of CERN's Member States or of the European Union for the construction and operation of an extension to CERN's existing research infrastructures. The midterm report of the FCC Feasibility Study reflects work in progress and should therefore not be propagated to people who do not have direct access to this document. # confidential documents (work in progress) available to CERN personnel https://doi.org/10.17181/zh1gz-52t41 CG - 9/38 #### Physics, Experiments, Detectors. FCC Feasibility Study PED deliverables for mid-term review Content of the mid-term PED chapter (60 pages were expected → 110 pages delivered) CG - 10 / 38 May 19, 2024 #### Physics, Experiments, Detectors. FCC Feasibility Study PED deliverables for mid-term review Content of the mid-term PED chapter (60 pages were expected → 110 pages delivered) | | 0 | n | 4 D | etector requirements | $\bf 54$ | |---|--|-----------|-----|---|----------| | L | Overview | 3 | 4. | 1 Introduction | 54 | | | 1.1 FCC-ee: A great Higgs factory, and so much more | 4 | 4. | 2 Machine-detector interface | | | | 1.2 FCC-hh: The energy-frontier collider with the broadest exploration | | 4. | 3 The current detector concepts | | | | potential | 13 | 4. | 4 Measurement of the tracks of charged particles | | | | | | 4. | 5 Requirements on the vertex detector | | | 2 | Specificities of the FCC physics case | 15 | 4. | 6 Requirements on charged hadron particle identification | | | | 2.1 Characterisation of the Higgs boson: role of EW measurements and of | | 4. | 7 Requirements on electromagnetic calorimetry | 78 | | | FCC-hh | 16 | 4. | 8 Requirements on the hadronic calorimeter | 88 | | | 2.2 Discovery landscape | _ | 4. | 9 Requirements on the muon detector | 93 | | | 2.3 Flavour advancement | 3/1 | 4. | 10 Precise timing measurements | 93 | | | 2.4 FCC-hh specificities compared to lepton colliders | 36 | | | | | | 2.4 FCC-III specificities compared to repton coniders | 30 | | utlook and further steps | 96 | | _ | | | 5. | 1 Software and Computing | 98 | | 3 | Theoretical calculations | 42 | 5. | 2 Physics Performance | 99 | | | 3.1 Electroweak corrections | 44 | 5. | | | | | 3.2 QCD precision calculations | 46 | 5. | 4 Centre-of-mass energy calibration, polarisation, monochromatisation | | | | 3.3 Monte Carlo event generators | 50 | | (EPOL) | 103 | | | 3.4 Organization and support of future activities to improve theoretical | | 5. | 5 Machine-Detector Interface (MDI) | 104 | | | precision | 53 | 5. | 6 Physics Programme | 105 | | | precision | 00 | 5. | 7 FCC-hh | 106 | CG - 10 / 38 May 19, 2024 ## Physics, Experiments, Detectors. • FCC Feasibility Study PED deliverables for mid-term review CG - 10 / 38 #### Feedback. Andy **Parker** (SAC chair), Norbert **Holtkamp** (CRP chair), Hugh **Montgomery** (SPC chair), Laurent **Salzarulo** (FC chair), Eliezer **Rabinovici** (Council president) "many thanks for the work done, congratulations for the results, impressive quality of the study…" "Financial Committee underlines the need to make the project attractive from the physics viewpoint and takes the view that it would be unfortunate to sacrifice the attractiveness of the physics for the sake of reducing costs." "Si j'ai voulu venir là aujourd'hui c'est pour témoigner ma confiance aux équipes et notre volonté, notre ambition de conserver la première place dans ce domaine." ["My visit here bears witness to my trust in CERN personnel and France's will and ambition to keep the leadership in this domain."] E. Macron, CERN 16.11.2023 CG - 11 / 38 #### **US Statement of Intent** Deirdre Mulligan Fabiola Gianotti "Should the CERN Member States determine the FCC-ee is likely to be CERN's next world-leading research facility following the highluminosity Large Hadron Collider, the United States intends to collaborate on its construction and physics exploitation, subject to appropriate domestic approvals." White House, April 26, 2024 We are only 20 years away from the first collisions! We are only 20 years away from the first collisions! We are only 20 years away from the first collisions! We are only 20 years away from the first collisions! P. Janot (officially endorsed by F. Gianotti@P5-BNL) **FCC-ee Accelerator** CG - 14 / 38 **Key dates** **FCC-ee Detectors** May 19, 2024 **FCC-ee Accelerator** CG - 14 / 38 **Key dates** **FCC-ee Detectors** May 19, 2024 The way forward. P. Janot FCC-ee physics run (officially endorsed by F. Gianotti@P5-BNL) 2046 -2046 Start accelerator commissioning **Start detector commissioning** 2044 -- 2044 2043 -- 2043 2042 -2042 Start detector installation **End of HL-LHC operation** - 2040 Start accelerator installation 2039 -- 2039 2038 -- 2038 2037 -- 2037 Start accelerator component production Start detector component production **Technical design & prototyping completed** Four detector TDRs completed 2034 -2034 2033 -- 2033 Ground-breaking and start civil engineering - 2032 Detector CDRs (>4) submitted to FC³ Start engineering design 2030 -- 2030 Completion of HL-LHC: more ATS personnel available Completion of HL-LHC upgrade: more detector experts available 2029 -FCC Approval, R&D, start prototyping FC³ formation, call for CDRs, collaboration forming **FCC-ee Accelerator** CG - 14 / 38 **US collider R&D studies** **FCC Feasibility Study Report** **Key dates** 2027 - **FCC-ee Detectors** **European Strategy Update** Detector EoI submission by the community May 19, 2024 Eol The way forward. P. Janot FCC-ee physics run (officially endorsed by F. Gianotti@P5-BNL) 2046 -2046 Start accelerator commissioning **Start detector commissioning** 2044 -- 2044 2043 -- 2043 2042 -2042 Start detector installation **End of HL-LHC operation** - 2040 Start accelerator installation 2039 -- 2039 2038 -- 2038 - 2037 2037 -Start accelerator component production Start detector component production **Technical design & prototyping completed** TDR Four detector TDRs completed 2034 -- 2034 2033 -- 2033 Ground-breaking and start civil engineering - 2032 CDR Detector CDRs (>4) submitted to FC³ Start engineering design 2030 -- 2030 Completion of HL-LHC: more ATS personnel available Completion of HL-LHC upgrade: more detector experts available 2029 -FCC Approval, R&D, start prototyping FC³ formation, call for CDRs, collaboration forming 2027 -**European Strategy Update US collider R&D studies** Detector EoI submission by the community Eol **FCC Feasibility Study Report** **FCC-ee Accelerator** CG - 14 / 38 **Key dates** **FCC-ee Detectors** May 19, 2024 CG - 14 / 38 May 19, 2024 The way forward. P. Janot FCC-ee physics run (officially endorsed by F. Gianotti@P5-BNL) 2046 2046 **Start detector commissioning** Start accelerator commissioning commission - 2044 2044 -2043 -- 2043 2042 -2042 Start detector installation **End of HL-LHC operation** - 2040 Start accelerator installation installation 2039 --20392038 -- 2038 - 2037 2037 -Start accelerator component production Start detector component production **Technical design & prototyping completed** TDR Four detector TDRs completed 2034 -**– 2034** 2033 -- 2033 Ground-breaking and start civil engineering - 2032 CDR Detector CDRs (>4) submitted to FC³ Start engineering design 2030 -- 2030 Completion of HL-LHC: more ATS personnel available Completion of HL-LHC upgrade: more detector experts available FCC Approval, R&D, start prototyping FC³ formation, call for CDRs, collaboration forming 2027 -**European Strategy Update US collider R&D studies** Detector EoI submission by the community Eol **FCC Feasibility Study Report** CG - 14 / 38 May 19, 2024 **Key dates** **FCC-ee Detectors** **FCC-ee Accelerator** The way forward. P. Janot FCC-ee physics run (officially endorsed by F. Gianotti@P5-BNL) 2046 2046 **Start detector commissioning** Start accelerator commissioning commission 2044 -- 2044 2043 -- 2043 2042 -2042 Start detector installation **End of HL-LHC operation** - 2040 Start accelerator installation installation 2039 --20392038 -- 2038 2037 -- 2037 Start accelerator component production Start detector component production **Technical design & prototyping completed** TDR Four detector TDRs completed 2034 -**– 2034** 2033 -- 2033 Ground-breaking and start civil engineering - 2032 Detector CDRs (>4) submitted to FC³ Start
engineering design 2030 -- 2030 Completion of HL-LHC: more ATS personnel available Completion of HL-LHC upgrade: more detector experts available FCC Approval, R&D, start prototyping FC³ formation, call for CDRs, collaboration forming 2027 -2027 **US collider R&D studies** 2026 **European Strategy Update FCC Feasibility Study Report FCC-ee Accelerator FCC-ee Detectors Key dates** ## How to contribute? EU Projects NN ### Study Support and Coordination Study Leader: Michael Benedikt Deputy Study Leader: Frank Zimmermann FCC Feasibility Study **Study Support Unit** IT: Sylvain Girod Procurement: Adam Horridge Quality management: Beatriz Arias Resources: Sylvie Prodon Secretariat: Julie Hadre ### Collaboration building Gregorio Bernardi, Tadeusz Lesiak, Emmanuel Tsesmelis, #### Communications Panagiotis Charitos, Arnaud Marsollier ## Physics, Experiments and Detectors Patrick Janot, Christophe Grojean ### Physics programme Matthew McCullough, Frank Simon ### **Detector concept** Mogens Dam, Marc-André Pleier, Felix Sefkow ### Physics performance Patrizia Azzi, Emmanuel Perez, Michele Selvaggi ### Software and computing Gerardo Ganis, Brieuc François #### **EPOL** Jacqueline Keintzel, Guy Wilkinson #### MDI Manuela Boscolo, Fabrizio Pala #### Accelerators Tor Raubenheimer Frank Zimmermann ### FCC-ee accelerator design Christian Carli, Frank Zimmermann ### FCC-ee technical implementation Jean-Paul Burnet, Tor Raubenheimer ### FCC-ee injector Paolo Craievich, Alexej Grudiev ### **FCC transfer lines** Wolfgang Bartmann ### FCC-hh design Massimo Giovannozzi ### **Technical Infrastructures** Jean-Paul Burnet Klaus Hanke #### Integration Jean-Pierre Corso ### Geodesy & survey Hélène Mainaud Durand ### **Electricity and energy management** Jean-Paul Burnet ### Cooling and ventilation Guillermo Peon ### **Cryogenics systems** Laurent Delprat ### Computing and controls infrastructure, communication and network Pablo Saiz ### Safety Thomas Otto ### Operation, maintenance, availability, reliability Jesper Nielsen ### Transport, installation concepts Roberto Rinaldesi ### Organisation and financing models Florian Sonnemann #### Administrative processes Host State processes and civil engineering **Timothy Watson** Friedemann Eder #### **Placement studies** Johannes Gutleber ### **Environmental evaluation** Johannes Gutleber ### Tunnel, subsurface design John Osborne ## Surface sites layout, access and building design A. Mayoux ### Project organisation model NN ### Financing model Florian Sonnemann ### Procurement strategy and rules Anders Unnervik ### In-kind contributions Anders Unnervik ### Operation model Verena Kain # 3. FCC-ee: overview of physics programme LEP1 data accumulated in **every 2 mn**. Exciting & diverse programme with different priorities every few years. (order of the different stages still subject to discussion/optimisation) LEP1 data accumulated in **every 2 mn**. Exciting & diverse programme with different priorities every few years. (order of the different stages still subject to discussion/optimisation) | Working point | Z, years 1-2 | Z, later | WW, years 1-2 | WW, later | ZH | ${f t} \overline{f t}$ | _ | |---|-----------------|----------|---------------------|-----------|---------------------------------------|--------------------------|-----------| | $\sqrt{s} \; (\mathrm{GeV})$ | 88, 91, | 94 | 157, 1 | 63 | 240 | 340-350 | 365 | | Lumi/IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$ | 70 | 140 | 10 | 20 | 5.0 | 0.75 | 1.20 | | $Lumi/year (ab^{-1})$ | 34 | 68 | 4.8 | 9.6 | 2.4 | 0.36 | 0.58 | | Run time (year) | 2 | 2 | 2 | _ | 3 | 1 | 4 | | Number of events | 6×10^1 | 2 Z | 2.4×10^{8} | WW | $1.45 \times 10^{6} \mathrm{ZH} +$ | 1.9×10
+330k | | | | | | | | $45 \text{k WW} \rightarrow \text{H}$ | +80k WW | $V \to H$ | LEP1 data accumulated in **every 2 mn**. Exciting & diverse programme with different priorities every few years. (order of the different stages still subject to discussion/optimisation) ### — Superb statistics achieved in only 15 years - in each detector: 10⁵ Z/sec, 10⁴ W/hour, 1500 Higgs/day, 1500 top/day | Working point | Z, years 1-2 | Z, later | WW, years 1-2 | WW, later | ZH | ${ m t} \overline{ m t}$ | | |---|-----------------|-------------|---------------------|-----------|---|------------------------------|------| | $\sqrt{s} \; (\text{GeV})$ | 88, 91, | 94 | 157, 10 | 63 | 240 | 340-350 | 365 | | Lumi/IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$ | 70 | 140 | 10 | 20 | 5.0 | 0.75 | 1.20 | | $Lumi/year (ab^{-1})$ | 34 | 68 | 4.8 | 9.6 | 2.4 | 0.36 | 0.58 | | Run time (year) | 2 | 2 | 2 | _ | 3 | 1 | 4 | | Number of events | 6×10^1 | $^2~{ m Z}$ | 2.4×10^{8} | WW | $1.45 \times 10^6 \mathrm{ZH}$ + $45 \mathrm{k} \mathrm{WW} \rightarrow \mathrm{H}$ | 1.9 × 10
+330k
+80k WW | ZH | LEP1 data accumulated in **every 2 mn**. Exciting & diverse programme with different priorities every few years. (order of the different stages still subject to discussion/optimisation) CG - 18 / 38 CG - 18 / 38 CG - 18 / 38 - $\bullet m_Z, \; \Gamma_Z, \; N_{\nu}$ - α s(mz) with per-mil accuracy - •R_I, A_{FB} •m_W, Γ_W - Quark and gluon fragmentation - •Clean non-perturbative QCD studies ### EW & QCD ## Higgs m_{Higgs}, Γ_{Higgs} Higgs couplings self-coupling ## tracking, calorime ## direct search of light new ph Axion-like particles, darkHeavy Neutral Leptonslong lifetimes - LLPs | baseline | FCC-ee | detector | performance | |----------|--------|----------|-------------| | | | | | | track momentum | $\frac{\sigma_p}{p} = 0.02 \cdot 10^{-3} \cdot p_T(\text{GeV}) \oplus 1 \cdot 10^{-3}$ | |----------------|--| | | | track impact parameter $$\sigma_{d_0} = rac{15\,\mu\mathrm{m}}{\sin^{3/2} heta} \oplus 5\,\mu\mathrm{m}$$ electromagnetic energy $$\dfrac{\sigma_{E_{\gamma}}}{E_{\gamma}} = \dfrac{15\%}{E_{\gamma}} \oplus 1\%$$ electromagnetic energy $$xy$$ position $\sigma_{\gamma,xy} = \frac{6\,\mathrm{mm}}{E(\mathrm{GeV})} \oplus 2\,\mathrm{mm}$ ## physics B phy •τ-based EWPOs lept. univ. violation tests •Flavour EWPOs (R_b, A_{FB}^{b,c}) •CP violation in neutral B mesons •Flavour anomalies in, e.g., b ightarrow sau au vertexing, tagging energy resolution ## Top $m_{ ext{top}},\, \Gamma_{ ext{top}}$ EW top couplings momentum restracker CG - 18 / 38 May 19, 2024 # Collider Programme (and beyond). - CDR baseline runs (2IPs) - Additional opportunities - **Opportunities** beyond the baseline plan (√s below Z, 125GeV, 217GeV; larger integrated lumi...) - Opportunities to exploit FCC facility differently (to be studied more carefully): - using the electrons from the injectors for beam-dump experiments, - extracting electron beams from the booster, - reusing the synchrotron radiation photons. CG - 19 / 38 # FCC-ee: Explore & Discover. PED @ CERN-SPC 2022 - **EXPLORE INDIRECTLY** the 10-100 TeV energy scale with precision measurements - \bullet From the correlated properties of the Z , b, c, τ , W, Higgs, and top particles - ► Up to 20-50-fold improved precision on ALL electroweak observables (EWPO) - \rightarrow m_Z , m_W , m_{top} , Γ_Z , sin² θ_W^{eff} , R_b , $\alpha_{QED}(m_Z)$, $\alpha_s(m_Z m_W m_t)$, top EW couplings ... - ► Up to 10 × more precise and model-independent Higgs couplings (width, mass) measurements - → Access the Higgs potential and infer the vacuum structure of the Universe - → Reveals the dynamics of the EW phase transition and infer the fate of the EW vacuum - **DISCOVER** that the Standard Model does not fit - New Physics! → Pattern of deviations may point to the source. - **DISCOVER** a violation of flavour conservation / universality - $Z \rightarrow \tau \mu$ in $5x10^{12}$ Z decays; $\tau \rightarrow \mu \nu / e \nu$ in 2×10^{11} τ decays; $B^0 \rightarrow K^{*0} \tau^+ \tau^-$ or $B_S \rightarrow \tau^+ \tau^-$ in 10^{12} bb evts - **DISCOVER** dark matter, e.g., as invisible decays of Higgs or Z - DISCOVER DIRECTLY elusive (aka feebly-coupled) particles - in the 5-100 GeV mass range, such as right-handed neutrinos, dark photons, light Higgs-like scalars, dilaton, ALPs, relaxions... See Bonus Slides for examples and plots May # FCC-ee: Explore & Discover. ### ALPs@ colliders Knapen, Thamm arXiv:2108.08949 Astro/Cosmo → long-lived ALPs colliders → short-lived ALPs MeV+ ALP coupling to photons ### ALP coupling to electrons ### • Search for u_{RH} . Direct observation in Z decays from LH-RH mixing # 4. FCC-ee/hh as a Higgs/electroweak factory # Higgs @ FCC-ee. Central goal of FCC-ee: model-independent measurement of Higgs width and couplings with (<)% precision. Achieved through operation at two energy points. Sensitivity to both processes very helpful in improving precision on couplings. Complementarity with 365GeV on top of 240GeV improvement factor: $\infty/3/2/1.5/1.2$ on $\kappa_{\lambda}/\kappa_{W}/\kappa_{b}/\kappa_{g}$, $\kappa_{c}/\kappa_{\gamma}$ (plot in bonus) # Higgs @ FCC-ee. - Absolute normalisation of couplings (by recoil method) - Measurement of width (from ZH>ZZZ* and WW>H) - $\delta\Gamma_H\sim 1\%, \delta m_H\sim 3\,{ m MeV}$ (resp. 25%, 30 MeV @ HL-LHC) - Model-independent coupling determination and improvement factor up to 10 compared to LHC - (Indirect) sensitivity to new physics up to 70 TeV (for maximally strongly coupled models) $(\delta \kappa_X = v^2/f^2 \& m_{\rm NP} = g_{\rm NP} f)$ - Unique access to electron Yukawa ### Higgs coupling sensitivity | Coupling | HL-LHC | FCC-ee (240–365 GeV)
2 IPs / 4 IPs | |--|------------------------------------
---| | $\kappa_W \ [\%]$ $\kappa_Z \ [\%]$ $\kappa_g \ [\%]$ $\kappa_{\gamma} \ \ [\%]$ $\kappa_{Z\gamma} \ \ [\%]$ $\kappa_c \ \ [\%]$ | 1.5* 1.3* 2* 1.6* 10* - 3.2* | $0.43 \ / \ 0.33$ $0.17 \ / \ 0.14$ $0.90 \ / \ 0.77$ $1.3 \ / \ 1.2$ $10 \ / \ 10$ $1.3 \ / \ 1.1$ $3.1 \ / \ 3.1$ | | $\kappa_b \ [\%]$ $\kappa_{\mu} \ [\%]$ $\kappa_{\tau} \ [\%]$ BR _{inv} (<%, 95% CL) BR _{unt} (<%, 95% CL) | 2.5*
4.4*
1.6*
1.9*
4* | 0.64 / 0.56 $3.9 / 3.7$ $0.66 / 0.55$ $0.20 / 0.15$ $1.0 / 0.88$ | Table from mid-term report $$\kappa_X = \frac{g_{hXX}}{g_{hXX}^{SM}}$$ # Higgs @ FCC-ee. - Absolute normalisation of couplings (by recoil method) - Measurement of width (from ZH>ZZZ* and WW>H) - $\delta\Gamma_H\sim 1\%, \delta m_H\sim 3\,{ m MeV}$ (resp. 25%, 30 MeV @ HL-LHC) - Model-independent coupling determination and improvement factor up to 10 compared to LHC - (Indirect) sensitivity to new physics up to 70 TeV (for maximally strongly coupled models) $(\delta \kappa_X = v^2/f^2 ~\&~ m_{\rm NP} = g_{\rm NP} f)$ - Unique access to electron Yukawa ## — Higgs programme needs Z-pole — ### Higgs coupling sensitivity | Coupling | HL-LHC | FCC-ee (240–365 GeV)
2 IPs / 4 IPs | |----------------------------------|-----------|---------------------------------------| | κ_W [%] | 1.5* | 0.43 / 0.33 | | $\kappa_Z[\%]$ | 1.3* | $0.17 \; / \; 0.14$ | | $\kappa_g [\%]$ | 2^* | $0.90 \ / \ 0.77$ | | $\kappa_{\gamma} [\%]$ | 1.6* | 1.3 / 1.2 | | $\kappa_{Z\gamma}\left[\% ight]$ | 10* | 10 / 10 | | $\kappa_c~[\%]$ | _ | 1.3 / 1.1 | | $\kappa_t \ [\%]$ | 3.2^{*} | 3.1 / 3.1 | | $\kappa_b \ [\%]$ | 2.5^{*} | 0.64 / 0.56 | | $\kappa_{\mu} [\%]$ | 4.4^{*} | 3.9 / 3.7 | | $\kappa_{ au}$ [%] | 1.6* | 0.66 / 0.55 | | $BR_{inv} (<\%, 95\% CL)$ | 1.9* | 0.20 / 0.15 | | BR _{unt} (<%, 95% CL) | 4* | 1.0 / 0.88 | Table from mid-term report $$\kappa_X = \frac{g_{hXX}}{g_{hXX}^{\text{SM}}}$$ The high luminosity, the precise control of the beam √s, the clean reconstruction of final states make it possible to observe: $$\sigma(e^+e^-\to H) = 1.64 \text{ fb}$$ $$\sigma_{\text{spread+ISR}}(e^+e^-\to H) = 0.17 \times \sigma(e^+e^-\to H) = 290 \text{ ab}$$ The high luminosity, the precise control of the beam √s, the clean reconstruction of final states make it possible to observe: FCC-ee is in the unique position to establish that the Higgs is responsible for the mass of the stable elementary particles ordinary matter is made of. The high luminosity, the precise control of the beam √s, the clean reconstruction of final states make it possible to observe: - ♦ 20 ab⁻¹ / year at \sqrt{s} = 125 GeV (not in baseline FCC-ee) - Monochromatization $\sigma_{\sqrt{s}} \sim 1-2 \times \Gamma_{H} \sim 6$ to 10 MeV The high luminosity, the precise control of the beam √s, the clean reconstruction of final states make it possible to observe: - ♦ 20 ab⁻¹/year at $\sqrt{s} = 125$ GeV (not in baseline FCC-ee) - Monochromatization $\sigma_{\sqrt{s}} \sim 1-2 \times \Gamma_{H} \sim 6$ to 10 MeV ## Monochromatisation opposite difference in arrival time CG - 25 / 38 May 19, 2024 opposite sign horizontal dispersion The high luminosity, the precise control of the beam √s, the clean reconstruction of final states make it possible to observe: - ♦ 20 ab⁻¹ / year at \sqrt{s} = 125 GeV (not in baseline FCC-ee) - Monochromatization $\sigma_{\sqrt{s}} \sim 1-2 \times \Gamma_{H} \sim 6$ to 10 MeV The high luminosity, the precise control of the beam √s, the clean reconstruction of final states make it possible to observe: - ♦ 20 ab⁻¹ / year at \sqrt{s} = 125 GeV (not in baseline FCC-ee) - Monochromatization $\sigma_{\sqrt{s}} \sim 1-2 \times \Gamma_{H} \sim 6$ to 10 MeV The high luminosity, the precise control of the beam √s, the clean reconstruction of final states make it possible to observe: - ♦ 20 ab⁻¹ / year at \sqrt{s} = 125 GeV (not in baseline FCC-ee) - Monochromatization $\sigma_{\sqrt{s}} \sim 1-2 \times \Gamma_{H} \sim 6$ to 10 MeV The high luminosity, the precise control of the beam √s, the clean reconstruction of final states make it possible to observe: - ♦ 20 ab⁻¹ / year at \sqrt{s} = 125 GeV (not in baseline FCC-ee) - Monochromatization $\sigma_{\sqrt{s}} \sim 1-2 \times \Gamma_{H} \sim 6$ to 10 MeV The high luminosity, the precise control of the beam √s, the clean reconstruction of final states make it possible to observe: - ♦ 20 ab⁻¹ / year at \sqrt{s} = 125 GeV (not in baseline FCC-ee) - Monochromatization $\sigma_{\sqrt{s}} \sim 1-2 \times \Gamma_{H} \sim 6$ to 10 MeV # Higgs @ FCC-hh. | | $\mid ggH (N^3LO)$ | VBF (N ² LO) | $ $ WH (N^2LO) | $ m ZH~(N^2LO)$ | $ t\bar{t}H (N^2LO) $ | HH (NLO) | |---------------------|--------------------|-------------------------|---------------------|---------------------|-------------------------|---------------------| | N100 | 24×10^9 | 2.1×10^9 | 4.6×10^{8} | 3.3×10^{8} | 9.6×10^{8} | 3.6×10^{7} | | $-\frac{100}{N100}$ | 180 | 170 | 100 | 110 | 530 | 390 | $$(N100 = \sigma_{100 \text{ TeV}} \times 30 \text{ ab}^{-1} \& N14 = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1})$$ - Large rate (> 10¹⁰H, > 10⁷ HH) - unique sensitivity to rare decays - few % sensitivity to self-coupling - Explore extreme phase space: - e.g. 10⁶ H w/ pT>1 TeV - clean samples with high S/B - small systematics # Tera-Z EW precision measurements. - ▶ The target is to reduce syst. uncertainties to the level of stat. uncertainties. (exploit the large samples and innovative control analyses) - ▶ Exquisite √s precision (100keV@Z, 300keV@WW) reduces beam uncertainties (EPOL) - ~50 times better precision than LEP/LSD on EW precision observables (stat. improvement alone is a factor 300-2'000 so innovative analyses can bring syst. down too) Indirect sensitivity to 70TeV-scale sector connected to EW/Higgs (For the impact of the theory uncertainties on the EW fit, see bonus slides) - Tera-Z EW precision measurements. - The target is to reduce syst. uncertainties to the level of stat. uncertainties. (exploit the large samples and innovative control analyses) - ▶ Exquisite √s precision (100keV@Z, 300keV@WW) reduces beam uncertainties ~50 times better precision than LEP/LSD on EW precision observables (stat. improvement alone is a factor 300-2'000 so innovative analyses can bring syst. down too) ## Need TH results to fully exploit Tera-Z | Quantity | Current precision | FCC-ee stat.
(syst.) precision | Required theory input | Available calc. in 2019 | Needed theory improvement [†] | |--|--|---|--|--|--| | $m_{ m Z}$ $\Gamma_{ m Z}$ $\sin^2 heta_{ m eff}^\ell$ | $2.1 \mathrm{MeV}$ $2.3 \mathrm{MeV}$ 1.6×10^{-4} | $0.004 (0.1) \mathrm{MeV}$
$0.004 (0.025) \mathrm{MeV}$
$2(2.4) \times 10^{-6}$ | non-resonant
$e^+e^- \rightarrow f\bar{f},$
initial-state
radiation (ISR) | NLO,
ISR logarithms
up to 6th order | NNLO for $e^+e^- \to f\bar{f}$ | | m_W | $12\mathrm{MeV}$ | $0.25~(0.3){ m MeV}$ | lineshape of $e^+e^- \rightarrow WW$ near threshold | NLO (ee \rightarrow 4f or EFT framework) | NNLO for $ee \rightarrow WW$, $W \rightarrow ff$ in EFT setup | | HZZ
coupling | | 0.2% | cross-sect. for $e^+e^- \to ZH$ | NLO + NNLO
QCD | NNLO
electroweak | | $m_{ m top}$ | $100\mathrm{MeV}$ | 17 MeV | threshold scan $e^+e^- \to t\bar{t}$ | N ³ LO QCD,
NNLO EW,
resummations
up to NNLL | Matching fixed orders with resummations, merging with MC, α_s (input) | Indirect sensitivity to 70TeV-scale sector connected to EW/Higgs Pable from mid-term report May 19, 2024 [†]The listed needed theory calculations constitute a minimum baseline; additional partial higher-order contributions may also be required. ### New Physics Reach @ Z-pole. There are 48 different types of particles that can have tree-level linear interactions to SM. de Blas, Criado, Perez-Victoria, Santiago, arXiv: 1711.10391 | Name
Irrep | $\mathcal{S} \\ (1,1)_0$ | \mathcal{S}_1 $(1,1)_1$ | $\frac{\mathcal{S}_2}{(1,1)_2}$ | $\varphi $ $(1,2)_{\frac{1}{2}}$ | Ξ $(1,3)_0$ | $\Xi_1 \\ (1,3)_1$ | Θ_1 $(1,4)_{\frac{1}{2}}$ | Θ_3 $(1,4)_{\frac{3}{2}}$ | |---------------|-----------------------------------|---|--|----------------------------------|--------------------------------|---------------------------------|----------------------------------|----------------------------------| | Name
Irrep | ω_1 $(3,1)_{-\frac{1}{3}}$ | $\omega_2 \\ (3,1)_{\frac{2}{3}}$ | $\omega_4 \ (3,1)_{-\frac{4}{3}}$ | Π_1 $(3,2)_{\frac{1}{6}}$ | $\Pi_7 $ $(3,2)_{\frac{7}{6}}$ | $\zeta \\ (3,3)_{-\frac{1}{3}}$ | | | | Name
Irrep | $\Omega_1 $ $(6,1)_{\frac{1}{3}}$ | $\frac{\Omega_2}{(6,1)_{-\frac{2}{3}}}$ | $\frac{\Omega_4}{(6,1)_{\frac{4}{3}}}$ | Υ $(6,3)_{\frac{1}{3}}$ | $\Phi $ $(8,2)_{\frac{1}{2}}$ | | | _ | | Name | N | E | Δ_1 | Δ_3 | Σ | Σ_1 | | |-------|-------------|--------------|------------------------|------------------------|-------------|--------------|-------| | Irrep | $(1,1)_{0}$ | $(1,1)_{-1}$ | $(1,2)_{-\frac{1}{2}}$ | $(1,2)_{-\frac{3}{2}}$ | $(1,3)_{0}$ | $(1,3)_{-1}$ | | | | | | | | | | | | Name | U | D | Q_1 | Q_5 | Q_7 | T_1 | T_2 | | Name | \mathcal{B} | \mathcal{B}_1 | \mathcal{W} | \mathcal{W}_1 | \mathcal{G} | \mathcal{G}_1 | \mathcal{H} | \mathcal{L}_1 | |-------|-----------------
-----------------|-----------------|-----------------|---------------|-----------------|-----------------|-----------------| | Irrep | $(1,1)_{0}$ | $(1,1)_1$ | $(1,3)_0$ | $(1,3)_1$ | $(8,1)_0$ | $(8,1)_1$ | $(8,3)_0$ | (1,2) | | | | | | | | | | | | Name | \mathcal{L}_3 | \mathcal{U}_2 | \mathcal{U}_5 | Q_1 | Q_5 | \mathcal{X} | \mathcal{Y}_1 | \mathcal{Y}_5 | Scalars Fermions Vectors They are not all affecting EW observables at tree-level. CG - 28 / 38 May 19, 2024 ### New Physics Reach @ Z-pole. There are 48 different types of particles that can have tree-level linear interactions to SM. They are not all affecting EW observables at tree-level. However, all, but a few, have leading log. running into EW observables. Allwicher, McCullough, Renner, in progress Tree-level matching and running from 1 TeV to Z mass. W- and Z-pole observables only (no Higgs, no LEP-2 like observables) ### 5. FCC-ee as a flavour factory ### Flavour potential. Decay mode/Experiment FW/H ponguing At present (Z/h/NewPhysics) FCNCs mostly constrained by low energy observables. The large statistics of FCC will open on-shell opportunities. | Particle production (10 ⁹) | $B^0 \ / \ \overline{B}^0$ | B^+ / B^- | $B_s^0 \ / \ \overline{B}_s^0$ | $\Lambda_b \ / \ \overline{\Lambda}_b$ | $c\overline{c}$ | τ^-/τ^+ | |--|----------------------------|-------------|--------------------------------|--|-----------------|-----------------| | Belle II | 27.5 | 27.5 | n/a | n/a | 65 | 45 | | FCC- ee | 300 | 300 | 80 | 80 | 600 | 150 | LHCb Run I LHCb Upgr. (50/fb) FCC-ee FCC-ee = 10 x Belle II | \mathbb{Z} | EW/H penguins | | | | | |---------------|---|------------------------|------------------|--------------------------------|--------------------------------| | | $B^0 \to K^*(892)e^+e^-$ | ~ 2000 | ~ 150 | ~ 5000 | ~ 200000 | | Ω. | $\mathcal{B}(B^0 \to K^*(892)\tau^+\tau^-)$ | ~ 10 | _ | _ | ~ 1000 | | S | $B_s \to \mu^+ \mu^-$ | n/a | ~ 15 | ~ 500 | ~ 800 | | 01 | $B^0 o \mu^+ \mu^-$ | ~ 5 | _ | ~ 50 | ~ 100 | | | $\mathcal{B}(B_s o au^+ au^-)$ | | | | | | | Leptonic decays | | | | | | out of reach | $B^+ o \mu^+ \nu_{mu}$ | 5% | _ | _ | 3% | | | $B^+ o au^+ u_{tau}$ | 7% | _ | _ | 2% | | at LHCb/Belle | $B_c^+ o au^+ u_{tau}$ | n/a | _ | _ | 5% | | | CP / hadronic decays | | | | | | | $B^0 o J/\Psi K_S \; (\sigma_{\sin(2\phi_d)})$ | $\sim 2.*10^6~(0.008)$ | $41500 \ (0.04)$ | $\sim 0.8 \cdot 10^6 \ (0.01)$ | $\sim 35 \cdot 10^6 \ (0.006)$ | | | $B_s o D_s^\pm K^\mp$ | n/a | 6000 | ~ 200000 | $\sim 30 \cdot 10^6$ | | | $B_s(B^0) \to J/\Psi \phi \; (\sigma_{\phi_s} \; \mathrm{rad})$ | n/a | 96000 (0.049) | $\sim 2.10^6 \ (0.008)$ | $16 \cdot 10^6 \ (0.003)$ | Belle II (50/ab) ### boosted b's/τ's at FCC-ee Makes possible a topological rec. of the decays w/ miss. energy CG - 30 / 38 # Monteil, Flavour@FCC See ### Flavour potential. At present (Z/h/NewPhysics) FCNCs mostly constrained by low energy observables. The large statistics of FCC will open on-shell opportunities. CG - 30 / 38 May 19, 2024 ### Flavour potential. At present (Z/h/NewPhysics) FCNCs mostly constrained by low energy observables. The large statistics of FCC will open on-shell opportunities. Flavour defines shared (vertexing, tracking, calorimetry) and specific (hadronic PID) detector requirements. CG - 30 / 38 May 19, 2024 ### FCC-ee flavour opportunities. - CKM element V_{cb} (critical for normalising the Unitarity Triangle) from WW decays - **Tau physics** (>10¹¹ pairs of tau's produced in Z decays) - test of lepton flavour universality: G_F from tau decays @ 10 ppm @ FCC-ee (0.5 ppm from muon decays) - lepton flavour violation: - ► $\tau \rightarrow \mu \gamma$: 4x10⁻⁸ @Belle2021 \rightarrow 10⁻⁹ @ FCC-ee - ► τ → 3 μ : 2x10⁻⁸ @Belle → 3x10⁻¹⁰ @Belle II → 10⁻¹¹ @ FCC-ee - tau lifetime uncertainty: - ▶ 2000 ppm → 10 ppm - tau mass uncertainty: - ► 70 ppm → 14 ppm - Semi-leptonic mixing asymmetries as_{sl} and ad_{sl} • May 19, 2024 6. FCC-hh: the broadest exploration potential at high-energy ### Resonance production. Protons are made of 5 quarks, gluons, photons, W/Z FCC-hh effectively collides 196 different initial states = perfect exploratory machine CG - 33 / 38 ### Resonance production. Protons are made of 5 quarks, gluons, photons, W/Z FCC-hh effectively collides 196 different initial states = perfect exploratory machine FCC-hh allows the direct exploration of new physics at energy scales up to 40 TeV, including any physics that may be indirectly indicated by precision Higgs and EW measurements at FCC-ee. CG - 33 / 38 May 19, 2024 ### Pushing limits of SUSY. Plot from arXiv:1606.00947 15-20TeV squarks/gluinos require kinematic threshold 30-40TeV: FCC-hh is more than a √ŝ~10TeV factory Plot from arXiv:1605.08744 and arXiv:1504.07617 Factor 10 increase on the HL-LHC limits. CG - 34 / 38 ## 7. Examples of complementarity & synergy FCC-ee→FCC-hh ### Synergy ee+hh. FCC-hh without ee could bound BR_{inv} but it could say nothing about BR_{untagged} (FCC-ee needed for absolute normalisation of Higgs couplings) FCC-hh is determining top Yukawa through ratio tth/ttZ So the extraction of top Yukawa heavily relies on the knowledge of ttZ from FCC-ee | Mangano+ 15 | | | | | | | | | |-------------|--|---|---|--|--|--|--|--| | | $\sigma(t \bar{t} H) [ext{pb}]$ | $\sigma(t \bar{t} Z) [ext{pb}]$ | $ rac{\sigma(tar{t}H)}{\sigma(tar{t}Z)}$ | | | | | | | 13 TeV | $0.475^{+5.79\%}_{-9.04\%} + 3.33\%$ | $0.785^{+9.81\%}_{-11.2\%}{}^{+3.27\%}_{-3.12\%}$ | $0.606^{+2.45\%}_{-3.66\%}{}^{+0.525\%}_{-0.319\%}$ | | | | | | | 100 TeV | $33.9^{+7.06\%}_{-8.29\%}^{+2.17\%}_{-2.18\%}$ | $57.9^{+8.93\%+2.24\%}_{-9.46\%-2.43\%}$ | $0.585^{+1.29\%}_{-2.02\%}^{+0.314\%}_{-0.147\%}$ | | | | | | (uncertainty drops in ratio) Subsequently, the 1% sensitivity on tth is essential to determine h³ at O(5%) at FCC-hh Plots from mid-term report ### FCC-hh tunnel is great for FCC-ee. - 80-100 km is needed to accelerate pp up to 100 TeV - 80-100 km is also exactly what is needed - to get enough luminosity (5 times more than in 27 km) to maybe get sensitivity to the Higgs self coupling, the electron Yukawa coupling, or sterile neutrinos, - to make TeraZ a useful flavour factory, - for transverse polarisation to be available all the way to the WW threshold (allowing a precise W mass measurement) - for the top threshold to be reached and exceeded. CG - 37 / 38 ### Conclusions & Outlook A circular "Higgs factory" like FCC-ee has a rich potential: * Search directly *&* indirectly for New Physics ★ Establish new organising principles of Nature (LEP→ gauge symmetries, FCC→??) And FCC-ee is an essential part of an integrated programme to probe the energy frontier. The FCC project perfectly fits the **needs of HEP after LHC**: * guaranteed deliverables & broad exploration potential * CG - 38 / 38 ### Conclusions & Outlook A circular "Higgs factory" like FCC-ee has a rich potential: * Search directly *&* indirectly for New Physics ★ Establish new organising principles of Nature (LEP→ gauge symmetries, FCC→??) And FCC-ee is an essential part of an integrated programme to probe the energy frontier. The FCC project perfectly fits the **needs of HEP after LHC**: * guaranteed deliverables & broad exploration potential * We have profound questions and we need to create opportunities to answer them. FCC will for sure contribute. CG - 38 / 38 ### Conclusions & Outlook A circular "Higgs factory" like FCC-ee has a rich potential: - * Search directly *&* indirectly for New Physics - ★ Establish new organising principles of Nature (LEP→ gauge symmetries, FCC→??) - And FCC-ee is an essential part of an integrated programme to probe the energy frontier. The FCC project perfectly fits the **needs of HEP after LHC**: - * guaranteed deliverables & broad exploration potential * We have profound questions and we need to create opportunities to answer them. FCC will for sure contribute. Colliders are the most powerful microscopes we have to study Nature at the smallest scales and also from the early moments of the Universe. They'll keep providing a quantitative understanding to progress forward. CG - 38 / 38 May 19, 2024 ### Acknowledgement. This project is supported from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754. CG - 39 / 38 May 19, 2024 ### BONUS ### Some work ahead of us. - Development of a common software and the estimate of the computing needs - Evaluation of the physics performance and requirements for detectors - Conceptualisation of detectors capable of delivering these requirements - Mitigation of the interaction region constraints on detectors and vice versa - Design of methods and tools for centre-of-mass energy calibration, beam polarisation, and monochromatization - Understanding and optimisation of the physics programm - Exploration of the physics opportunities - Development of the theoretical tools and observables needed to meet the measurement targets May 19, 2024 ### FCC feasibility study CG - 42 / 38 May 19, 2024 ### Objectives of FCC feasibility study. - Demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas and optimisation of placement and layout of the ring and related infrastructure. - Pursuit, together with the Host States, of the preparatory administrative processes required for a potential project approval to identify and remove any showstopper. - Optimisation of the design of the colliders and their injector chains, supported by R&D to develop the needed key technologies. - Elaboration of a sustainable
operational model for the colliders and experiments in terms of human and financial resource needs, as well as environmental aspects and energy efficiency. - Development of a consolidated cost estimate, as well as the funding and organisational models needed to enable the project's technical design completion, implementation and operation. - Identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project (tunnel and FCC-ee). - Consolidation of the physics case and detector concepts for both colliders. CG - 43 / 38 May 19, 2024 ### Optimized placement and layout. #### M. Benedikt @ CERN 13.02.24 Layout chosen out of ~ 100 initial variants, based on **geology** and **surface constraints** (land availability, access to roads, etc.), **environment**, (protected zones), **infrastructure** (water, electricity, transport), **machine performance** etc. "Avoid-reduce-compensate" principle of EU and French regulations Overall lowest-risk baseline: 90.7 km ring, 8 surface points. Whole project now adapted to this placement CG - 44 / 38 May 19, 2024 ### Optimized placement and layout. #### M. Benedikt @ CERN 13.02.24 Layout chosen out of ~ 100 initial variants, based on **geology** and **surface constraints** (land availability, access to roads, etc.), **environment**, (protected zones), **infrastructure** (water, electricity, transport), **machine performance** etc. "Avoid-reduce-compensate" principle of EU and French regulations Overall lowest-risk baseline: 90.7 km ring, 8 surface points. Whole project now adapted to this placement ### Optimized placement and layout. M. Benedikt @ CERN 13.02.24 Layout chosen out of ~ 100 initial variants, based on **geology** and **surface constraints** (land availability, access to roads, etc.), **environment**, (protected zones), **infrastructure** (water, electricity, transport), **machine performance** etc. "Avoid-reduce-compensate" principle of EU and French regulations Overall lowest-risk baseline: 90.7 km ring, 8 surface points. Whole project now adapted to this placement - Site investigations in areas with uncertain geological conditions: - ► Optimisation of localisation of drilling locations ongoing with site visits since end 2022. - ► Alignment with FR and CH on the process for obtaining autorisation procedures. Ongoing for start of drillings in Q2/2024 - Contracts Status: - ► Contract for engineering services and role of Engineer during works, active since July 2022 - ► Site investigations tendering ongoing towards contract placement in December 2023 and mobilization from January 2024 ### Environmental considerations. M. Benedikt @ CERN 13.02.24 - Excavated material from FCC subsurface infrastructures: 6.5 Mm³ in situ, 8.4 Mm³ excavated - Priority : reuse, minimize disposal - 2021-2022: International competition "Mining the Future", launched with the support of the EU Horizon 2020 grant, to find innovative and realistic ideas for the reuse of molasse (96% of excavated materials) - 2023: "OpenSky Laboratory" project: Objective Develop and test an innovative process to transform sterile "molasse" into fertile soil for agricultural use and afforestation. launched in Jan. 2024: 5500m² near LHC P5 in Cessy (FR). Trial with 5 000t of excavated local molasse → convert it to arable soil (agricultural/forestry) - Heat: - heating for local houses - cheese factories in Jura and Haute-Savoie expressed special interest Accelerated soil transformation with funghi ### Connections with local infrastructre. M. Benedikt @ CERN 13.02.24 - Road accesses developed for all 8 surface sites - ► Four possible highway connections defined - ► Less than 4 km new departmental roads required #### Connections to electrical grid ► Electrical connection concept studied by RTE (French electrical grid operator) → requested loads have no significant impact on grid Powering concept and power rating of the three sub-stations compatible with FCC-hh R&D efforts aiming at further reduction of the energy consumption of FCCee and FCC-hh ### Civil engineering #### T. Watson @ Annecy FCC Physics '24 Tunnel Boring Machine (TBM) - Tunnel Boring Machines are designed to work almost continuously 24/7 other than periodic maintenance. Rate of 18m/day in the Molasse. 21-27 months to complete one sector \rightarrow 8 years with two TBMs. - 13 shafts - 2/2 large/small caverns small cavern complex shaft @ exp. site ### Civil engineering ### Higgs and EW measurements CG - 49 / 38 ### Experimental Inputs. A circular ee Higgs factory starts as a Z/EW factory (**TeraZ**) A linear ee Higgs factory operating above Z-pole can also preform EW measurements via **Z-radiative** return A linear ee Higgs factory could also operate on the Z-pole though at lower lumi (**GigaZ**) | | Higgs | aTGC | EWPO | Top EW | |--------|--|---------------------------------|---|--------------------| | FCC-ee | Yes (μ, σ _{ZH})
(Complete with HL-LHC) | Yes (aTGC dom.) Warning | Yes | Yes (365 GeV, Ztt) | | ILC | Yes (μ, σ _{ZH})
(Complete with HL-LHC) | Yes (HE limit) Warning | LEP/SLD (Z-pole) +
HL-LHC + W (ILC) | Yes (500 GeV, Ztt) | | CEPC | Yes (μ, σ _{ZH})
(Complete with HL-LHC) | Yes (aTGC dom) Warning | Yes | No | | CLIC | Yes (μ, σ _{ZH}) | Yes (Full EFT parameterization) | LEP/SLD (Z-pole) +
HL-LHC + W (CLIC) | Yes | | HE-LHC | Extrapolated from
HL-LHC | N/A → LEP2 | LEP/SLD
+ HL-LHC (M _W , sin ² θ _w) | - | | FCC-hh | Yes (µ, BR _i /BR _j)
Used in combination
with FCCee/eh | From FCC-ee | From FCC-ee | - | | LHeC | Yes (μ) | N/A → LEP2 | LEP/SLD
+ HL-LHC (M _W , sin ² θ _w) | - | | FCC-eh | Yes (µ)
Used in combination
with FCCee/hh | From FCC-ee | From FCC-ee
+ Zuu, Zdd | - | CG-50 / 38 May 19, 2024 | Observable | value | presen | nt
error | FCC-ee Stat. | FCC-ee
Syst. | Comment and leading error | |---|----------|--------|-------------|--------------|-----------------|--| | $m_{\rm Z} ({\rm keV})$ | 91186700 | | 2200 | | 100 | From Z line shape scan Beam energy calibration | | $\Gamma_{\rm Z}~({ m keV})$ | 2495200 | ± | 2300 | 4 | 25 | From Z line shape scan Beam energy calibration | | $\overline{\sin^2 \theta_{\mathrm{W}}^{\mathrm{eff}}(\times 10^6)}$ | 231480 | ± | 160 | 2 | 2.4 | From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration | | $1/\alpha_{\rm QED}(m_{\rm Z}^2)(\times 10^3)$ | 128952 | 土 | 14 | 3 | small | From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate | | $R_{\ell}^{\mathbf{Z}} \ (\times 10^3)$ | 20767 | ± | 25 | 0.06 | 0.2-1 | Ratio of hadrons to leptons
Acceptance for leptons | | $\frac{\alpha_{\rm s}(m_{\rm Z}^2) \ (\times 10^4)}{\alpha_{\rm s}(m_{\rm Z}^2) \ (\times 10^4)}$ | 1196 | 土 | 30 | 0.1 | 0.4-1.6 | From R_{ℓ}^{Z} | | $\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$ | 41541 | 土 | 37 | 0.1 | 4 | Peak hadronic cross-section
Luminosity measurement | | $N_{\nu}(\times 10^3)$ | 2996 | 土 | 7 | 0.005 | 1 | Z peak cross-sections
Luminosity measurement | | $R_{\rm b} \ (\times 10^6)$ | 216290 | 土 | 660 | 0.3 | < 60 | Ratio of bb to hadrons
Stat. extrapol. from SLD | | $A_{\rm FB}^{\rm b}, 0 \ (\times 10^4)$ | 992 | 土 | 16 | 0.02 | 1-3 | b-quark asymmetry at Z pole
From jet charge | | $\overline{A_{FB}^{\text{pol},\tau} (\times 10^4)}$ | 1498 | 土 | 49 | 0.15 | <2 | au polarization asymmetry $ au$ decay physics | | τ lifetime (fs) | 290.3 | ± | 0.5 | 0.001 | 0.04 | Radial alignment | | $\tau \text{ mass (MeV)}$ | 1776.86 | 土 | 0.12 | 0.004 | 0.04 | Momentum scale | | τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. $(\%)$ | 17.38 | 土 | 0.04 | 0.0001 | 0.003 | e/μ/hadron separation | | $m_{W} \text{ (MeV)}$ | 80350 | ± | 15 | 0.25 | 0.3 | From WW threshold scan
Beam energy calibration | | $\Gamma_{ m W}~({ m MeV})$ | 2085 | ± | 42 | 1.2 | 0.3 | From WW threshold scan
Beam energy calibration | | $\frac{\alpha_{\rm s}(m_W^2)(\times 10^4)}{\alpha_{\rm s}(m_W^2)(\times 10^4)}$ | 1010 | ± | 270 | 3 | small | From R_{ℓ}^{W} | | $N_{\nu}(\times 10^3)$ | 2920 | 土 | 50 | 0.8 | small | Ratio of invis. to leptonic in radiative Z returns | | $m_{\rm top}~({ m MeV})$ | 172740 | 土 | 500 | 17 | small | From tt threshold scan
QCD errors dominate | | $\Gamma_{ m top} ({ m MeV})$ | 1410 | 土 | 190 | 45 | small | From tt threshold scan QCD errors dominate | | $\lambda_{ m top}/\lambda_{ m top}^{ m SM}$ | 1.2 | 土 | 0.3 | 0.10 | small | From tt threshold scan
QCD errors dominate | | ttZ couplings | | 土 | 30% | 0.5 - 1.5 % | small | From $\sqrt{s} = 365 \mathrm{GeV}$ run | # EW Precision Measurements at FCC-ee Experimental (statistical and systematic) precision of a selection of measurements accessible at FCC-ee, compared with the present world-average precision. FCC-ee syst. scaled down from LEP estimates. Room for improvement with dedicated studies. Note that syst. go down also with stat. (e.g. beam energy determination from ee→Z/γ thus goes down with luminosity). Table from mid-term report ### Improvements of EW measurements Exquisite measurements of m_Z (100 keV), Γ_Z (25 keV), m_W (<500 keV), $\alpha_{QED}(m_Z)$ (3.10-5) (all unique to FCC-ee) #### The importance of improved EW measurements is threefold: - 1) improve mass reach in indirect search for NP (S~10-2 → M~70 TeV) - 2) reduced parametric uncertainties for other measurements - 3) reduced degeneracies in a global fit for Higgs couplings CG - 52 / 38 ### Improvements of EW measurements Exquisite measurements of m_Z (100 keV), Γ_Z (25 keV), m_W (<500 keV), $\alpha_{QED}(m_Z)$ (3.10-5) (all unique to FCC-ee) #### The importance of improved EW measurements is threefold: - 1) improve mass reach in
indirect search for NP (S~10-2 → M~70 TeV) - 2) reduced parametric uncertainties for other measurements - 3) reduced degeneracies in a global fit for Higgs couplings CG - 52 / 38 May 19, 2024 ### Systematics vs. Statistics. PED @ CERN-SPC '2022 We often hear that more Z pole statistics is useless, because they are systematics-limited FCC-ee - ◆ This is a passive attitude, which leads to pessimistic expectations and wrong conclusions/planning - Experience shows that a careful experimental systematic analysis boils down to a statistical problem - If well prepared, theory will go as far as deemed useful: this preparation starts today (and needs SUPPORT) - We are working in the spirit of matching systematic errors to expected statistics for all precision measurements - Take the Z lineshape #### $\alpha_{\text{QED}}(\mathbf{m}_{\text{Z}})$: Stat. 3×10^{-5} - Enters as a limiting parametric uncertainties in the new physics interpretation many past and future measurements. - Is statistics limited and will directly benefit from more luminosity - No useful impact on $\alpha_{QED}(m_z)$ with five times less luminosity - ♦ Most of the work is (will be) on systematics - But huge statistics will turn into better precision - → A real chance for discovery $\sin^2\theta_W^{eff}$ and Γ_Z (also m_W vs m_Z): Stat. 2×10⁻⁶ and 4 keV Error dominated by point-to-point energy uncertainties. Based on in-situ comparisons between √s (e.g. with muon pairs), with measurements made every few minutes (100's times per day) Boils down to - statistics (the more data the better, scales down as $1/\sqrt{L}$) - detector systematics (uncorrelated between experiments, scales down a $1/\sqrt{N_{\text{experiments}}}$) Z (and W) mass: Stat. 4 keV (250 keV) Error dominated by \sqrt{s} determination with resonant depolarization. As more understanding is gained, progress are made at a constant pace, and this error approaches regularly the statistical limit CG - 53 / 38 May 19, 2024 ### Impact of TH uncertainties. J. de Blas, FCC CDR overview '19 | | Cur | rent | \mathbf{FCCee} | | | | |---|-----------|---------------|------------------|-----------------|------------|--| | | Exp. | \mathbf{SM} | Exp. | SM (par.) | SM (th.) | | | $\overline{\delta M_W \; [{ m MeV}]}$ | ±15 | ±8 | ±1 | $\pm 0.6/\pm 1$ | <u>±1</u> | | | $\delta \Gamma_Z \; [{ m MeV}]$ | ± 2.3 | ± 0.73 | ± 0.1 | ± 0.1 | ± 0.2 | | | $\delta \mathcal{A}_\ell \left[imes 10^{-5} ight]$ | ± 210 | ± 93 | ± 2.1 | $\pm 8/\pm 14$ | ± 11.8 | | | $\delta R_b^0 \left[imes 10^{-5} ight]$ | ± 66 | ± 3 | ± 6 | ± 0.3 | ± 5 | | CG - 54 / 38 May 19, 2024 # 2021 week Wilkinson #### Some EW measurements @ Tera measure $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ and $A_{FB}^{\mu\mu}$ at (a) judicious \sqrt{s} The γ exchange term is proportional to $\alpha^2_{OFD}(\sqrt{s})$ The Z exchange term is proportional to G_{F}^2 , hence independent of α_{OFD} The γZ interference is proportional to $\alpha_{OED}(\sqrt{s}) \times G_F$ Excellent experimental control of off-peak di-muon asymmetry motivates campaign to collect 50-80 ab-1 off peak to gain highest sensitivity to Z-γ interference strongly depends on $$\sqrt{s}$$ \leftarrow direct measurement of $\alpha_{\rm QED}(s)$ at \sqrt{s} != $m_{\rm Z}$ \leftarrow $A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \times \left[1 + \frac{8\pi\sqrt{2}\alpha_{\rm QED}(s)}{m_{\rm Z}^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff}\right)^2} \frac{s - m_{\rm Z}^2}{2s}\right]$ measure $\sin^2\!\theta_{\rm W}$ to high precision \leftarrow Allows for clean determination of $\alpha_{OED}(m_Z^2)$, which is a *critical* input for m_w closure tests (see later). relative α_{QED} uncertainty with 80 ab⁻¹ This dependence, & location of half-integer spin tunes, guides the choice of off-peak energies: 87.8 & 93.9 GeV. - \rightarrow Measure $\alpha_{OFD}(m_z^2)$ to $3x10^{-5}$ rel. precision (currently $1.1x10^{-4}$) - \rightarrow Stat. dominated; syst. uncertainties < 10⁻⁵ (dominated by \sqrt{s} calib) - → Theoretical uncertainties ~ 10⁻⁴, higher order calcs needed CG - 55 / 38 May 19, 2024 - Two independent W mass and width measurements @FCCee: - **1. The** m_W and Γ_W determinations from the WW threshold cross section lineshape, with 12/ab at $E_{CM} \simeq 157.5-162.5$ GeV Δm_W =0.4 MeV $\Delta \Gamma_W$ =1 MeV - 2. Other measurements of m_W and Γ_W from the decay products Δm_w , $\Delta \Gamma_w$ = 2-5 MeV? kinematics at $E_{CM} \simeq 162.5-240-365$ GeV f=0.25 Scans of possible E_1 E_2 data taking energies and luminosity fractions f (at the E_2 point) $\Delta m_{\text{W}} = 0.35 \text{ MeV}$ FCC workshop - 27 Jan 2023 P.Azzurri - W mass and width May 19, 2024 CG - 56 / 38 J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311 CG-57 / 38 May 19, 2024 J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311 CG-57/38 May 19, 2024 J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311 CG-57 / 38 May 19, 2024 J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311 CG-57/38 May 19, 2024 J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311 CG-57 / 38 May 19, 2024 J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311 - At linear colliders, at high energy: EW measurements via Z-radiative return has a large impact on Zqq couplings - Improvements depend a lot on hypothesis on systematic uncertainties Yellow: LEP/SLD systematics / 2 Blue: small EXP and TH systematics CG-57/38 May 19, 2024 # Why Z-pole for Higgs? J. De Blas et al. 1907.04311 CG - 58 / 38 May 19, 2024 #### Why Z-pole for Higgs? Correlation < 50% Correlation > 50% EW J. De Blas et al. 1907.04311 With Z-pole measurements, Higgs coupling determination improves by up to 50% CG - 58 / 38 May 19, 2024 #### Why Z-pole for Higgs? EW J. De Blas et al. 1907.04311 With Z-pole measurements, Higgs coupling determination improves by up to 50% Z-pole run at circular colliders decorrelates EW and Higgs sectors from each other EW CG - 58 / 38 May 19, 2024 J. De Blas et al. 1907.04311 Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements FCC-ee Z/WW/240GeV CG - 59 / 38 May 19, 2024 J. De Blas et al. 1907.04311 Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements J. De Blas et al. 1907.04311 Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements CG - 59 / 38 J. De Blas et al. 1907.04311 Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements - FCC-ee and CEPC benefit a lot (>50% on HVV) from Z-pole run - FCC-ee and CEPC EW measurements are almost perfect for what concerns Higgs physics (<10%). CG - 59 / 38 May 19, 2024 J. De Blas et al. 1907.04311 Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements - FCC-ee and CEPC benefit a lot (>50% on HVV) from Z-pole run - FCC-ee and CEPC EW measurements are almost perfect for what concerns Higgs physics (<10%). - LEP EW measurements are a limiting factor (\sim 30%) to Higgs precision at ILC, especially for the first runs But EW measurements at high energy (via Z-radiative return) help mitigating this issue CG - 59 / 38 May 19, 2024 J. De Blas et al. 1907.04311 Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements • Higher energy runs reduce the EW contamination in Higgs coupling extraction CG - 59 / 38 May 19, 2024 #### Complementarity 240+365 GeV. ECFA Higgs study group '19 CG-60 / 38 ECFA Higgs study group '19 May 19, 2024 0.0 0.6 1.2 1.8 2.4 3.0 ECFA Higgs study group '19 May 19, 2024 ECFA Higgs study group '19 CG - 61 / 38 ECFA Higgs study group '19 CG - 61 / 38 ECFA Higgs study group '19 CG - 62 / 38 #### Impact of Diboson Systematics. J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311 #### precision reach with different assumptions on $e^+e^-\rightarrow WW$ measurements #### Higgs self-coupling. Higgs self-couplings is very interesting for a multitude of reasons (vacuum stability, hierarchy, baryogenesis, GW, EFT probe...). How much can it deviate from SM given the tight constraints on other Higgs couplings? Do you need to reach HH production threshold to constrain h³ coupling? CG - 64 / 38 May 19, 2024 #### Large self-coupling scenarios. Generically: $$\left| \frac{\delta_{h^3}}{\delta_{\text{single } h}} \right| \sim O(1)$$ $\left| \frac{\delta_{h^3}}{\delta_{\text{single }h}} \right| \sim O(1)$ (composite Higgs/susy) Particular exceptions: Higgs DM-portal models or custodial EW quadruplet DiVita et al,: 1704.01953 Falkowski, Rattazzi: 1902.05936 Durieux, McCullough, Salvioni: 2209.00666 h³ generically is not a tool to discover BSM but exceptions exist. Other exceptions: non-decoupled/fine-tuned spectra Bahl, Braathen, Weiglein: 2202.03453 #### Large self-coupling scenarios. It is true that we haven't "measured" the Higgs potential but there are only peculiar physics scenarios that produce large deviations in the shape of the potential without leaving imprints elsewhere. R. Petrossian-Byrne/N. Craig @ LCWS'23 Important to understand which dynamics is really probed when embarking into challenging measurements. Actually, double Higgs production is also interesting to probe new physics in its tail rather than near threshold (where the sensitivity to Higgs self-coupling comes from). CG-65/38 #### ECFA Higgs study group '19 ## Higgs self-coupling. Don't need to reach HH threshold to have access to h³. Z-pole run is very important if the HH threshold cannot be reached The determination of h^3 at FCC-hh relies on HH channel, for which FCC-ee is of little direct help. But the extraction of h^3 requires precise knowledge of y_t . 1% $y_t \leftrightarrow 5\%$ h^3 Precision measurement of y_t needs ee **50% sensitivity:**
establish that h³≠0 at 95%CL 20% sensitivity: 5σ discovery of the SM h³ coupling 5% sensitivity: getting sensitive to quantum corrections to Higgs potential CG - 66 / 38 May 19, 2024 #### Discovery potential beyond LHC CG-67/38 ## Discovery Potential Beyond LHC. Precisely measured EW and Higgs observables are sensitive to heavy New Physics Examples of improved sensitivity wrt direct reach @ HL-LHC: SUSY Fan, Reece, Wang '14 ESU Physics BB '19 ## Discovery Potential Beyond LHC. Precisely measured EW and Higgs observables are sensitive to heavy New Physics Examples of improved sensitivity wrt direct reach @ HL-LHC: Composite Higgs Fig. 8.5: Exclusion reach of different colliders on the inverse Higgs length $1/\ell_H = m_*$ (orange bars, left axis) and the tuning parameter $1/\varepsilon$ (blue bars, right axis), obtained by choosing the weakest bound valid for any value of the coupling constant g_* . ESU Physics BB '19 #### Direct Searches for Elusive New Physics - LLP searches with displaced vertices - e.g. in twin Higgs models glueballs that mix with the Higgs and decay back to b-quarks Craig et al, arXiv:1501.05310 Rare decays Gori et al arXiv:2005.05170 e.g. ALP mixing w/ SM mesons: $$K_L \to \pi^0 a \to \pi^0 \gamma \gamma \text{ (KOTO)}$$ $$K^+ \to \pi^+ a \to \pi^+ \gamma \gamma \text{ (NA62)}$$ $$\mathcal{L} = \frac{\alpha_s}{8\pi F_a} a G_{\mu\nu} \tilde{G}^{\mu\nu}$$ ALPs@ colliders Knapen, Thamm arXiv:2108.08949 Astro/Cosmo → long-lived ALPs colliders → short-lived ALPs MeV+ CG -70 / 38 May 19, 2024 #### Search for VRH. Direct observation in Z decays from LH-RH mixing Important to understand - 1. how neutrinos acquired mass - 2. if lepton number is conserved - 3. if leptogenesis is realised Fig. from mid-term report CG - 71 / 38 May 19, 2024 #### Search for VRH. Direct observation in Z decays from LH-RH mixing Important to understand - 1. how neutrinos acquired mass - 2. if lepton number is conserved - 3. if leptogenesis is realised Fig. from mid-term report CG - 71 / 38 May 19, 2024 #### Exotics/Long Lived Particles. Z. Liu @ CEPC 2020 The Higgs could be a good portal to Dark Sector— rich exotic signatures — • Scalar messenger s• $\epsilon \Lambda(H^+H)s$ • $\epsilon (H^+H)(s^+s)$ • Vector messenger A'_{μ} • $\epsilon F^{\mu\nu}F'_{\mu\nu}$ • $\epsilon J^{\mu}_{SM}A'_{\mu}$ • Neutrino messenger N• $\epsilon (LH)N$ • Axion messenger a• $\frac{a}{f_{\sigma}}(\frac{\alpha_3}{8\pi}G\tilde{G} + \frac{\alpha_2}{8\pi}W\tilde{W})$ | Decay Topologies | Decay mode \mathcal{F}_i | Decay Topologies | Decay mode \mathcal{F}_i | |-------------------------------------|---|---|--| | h o 2 | $h \to E_T$ | $h \rightarrow 2 \rightarrow 4$ | $h \rightarrow (b\bar{b})(b\bar{b})$ | | h o 2 o 3 | $h o \gamma + ot\!\!\!E_{ m T}$ | | $h o (b\bar{b})(au^+ au^-)$ | | | $h ightarrow (bar{b}) + E_{ m T}$ | | $h o (b\bar b)(\mu^+\mu^-)$ | | | $h ightarrow (jj) + ot\!\!\!/ _{ m T}$ | | $h \rightarrow (\tau^+ \tau^-)(\tau^+ \tau^-)$ | | | $h ightarrow (au^+ au^-) + E_{ m T}$ | <i>─</i> < `` | $h \rightarrow (\tau^+ \tau^-)(\mu^+ \mu^-)$ | | | $h o (\gamma \gamma) + \cancel{E}_{ m T}$ | | $h \rightarrow (jj)(jj)$ | | | $h \rightarrow (\ell^+\ell^-) + \cancel{E}_{\mathrm{T}}$ | | $h \rightarrow (jj)(\gamma\gamma)$ | | h o 2 o 3 o 4 | $h o (bb) + \cancel{E}_{\mathrm{T}}$ | | $h o (jj)(\mu^+\mu^-)$ | | | $h ightarrow (jj) + ot\!\!\!\!E_{ m T}$ | | $h \rightarrow (\ell^+\ell^-)(\ell^+\ell^-)$ | | | $h \rightarrow (\tau^+ \tau^-) + \cancel{E}_{\mathrm{T}}$ | | $h o (\ell^+\ell^-)(\mu^+\mu^-)$ | | | $h o (\gamma \gamma) + \cancel{E}_{\mathrm{T}}$ | | $h \to (\mu^+ \mu^-)(\mu^+ \mu^-)$ | | | $h o (\ell^+\ell^-) + \cancel{E}_{\mathrm{T}}$ | | $h \rightarrow (\gamma \gamma)(\gamma \gamma)$ | | 1 . 0 . (1 . 0) | $h \rightarrow (\mu^+\mu^-) + \cancel{E}_{\mathrm{T}}$ | | $h o \gamma \gamma + E_{ m T}$ | | $h \rightarrow 2 \rightarrow (1+3)$ | $h o bb + \cancel{E}_{\mathrm{T}}$ | $h \rightarrow 2 \rightarrow 4 \rightarrow 6$ | $h o (\ell^+\ell^-)(\ell^+\ell^-) + E_{ m T}$ | | | $h \rightarrow jj + \cancel{E}_{\mathrm{T}}$ | | $h \rightarrow (\ell^+\ell^-) + \cancel{E}_{\mathrm{T}} + X$ | | | $h ightarrow au^+ au^- + ot\!$ | $h \rightarrow 2 \rightarrow 6$ | $h ightarrow \ell^+ \ell^- \ell^+ \ell^- + E_{ m T}$ | | | $h \to \ell^+\ell^- + \cancel{E}_{\mathrm{T}}$ | | $h ightarrow \ell^+\ell^- + E_{ m T} + X$ | | | | | | LHC's strength Hard at LHC due to missing energy Hard at LHC due to hadronic background Lepton colliders' strength CG-72 / 38 May 19, 2024 #### Exotics/Long Lived Particles. Z. Liu @ CEPC 2020 The Higgs could be a good portal to Dark Sector — rich exotic signatures — How to improve? > Dedicated detectors, see e.g. talk by R. Gonzalez Suarez @ FCC week 2021 CG -72 / 38 #### Cost of Operation #### Energy and carbon footprint. FCC-ee total instantaneous power demand at each centre-of-mass energies | | JP. Burnet, FCC Week'22 | | | | | | |----------------------------------|-------------------------|------|------|------|-------|--------------------------| | | | Z | W | Н | TT | | | Beam energy (GeV) | | 45.6 | 80 | 120 | 182.5 | | | Magnet current | | 25% | 44% | 66% | 100% | | | Power ratio | | 6% | 19% | 43% | 100% | | | PRF EL (MW) | Storage | 146 | 146 | 146 | 146 | Ongoing R&D | | PRFb EL (MW) | Booster | 2 | 2 | 2 | 2 | | | Pcryo (MW) | all | 1,3 | 12,6 | 15,8 | 47,5 | | | Pcv (MW) | all | 33 | 34 | 36 | 40.2 | Ongoing R&D | | PEL magnets (MW) | Stroage | 6 | 17 | 39 | 89 | | | PEL magnets (MW) | Booster | 1 | 3 | 5 | 11 | | | Experiments (MW) | Pt A & G | 8 | 8 | 8 | 8 | Potential energy savings | | Data centers (MW) | Pt A & G | 4 | 4 | 4 | 4 | Potential energy savings | | General services (MW) | | 36 | 36 | 36 | 36 | | | | | | | | | | | Power during beam operation (MW) | | 237 | 262 | 291 | 384 | | | | | | | | | | - ◆ At 240 GeV, the instantaneous power of FCC-ee amounts to 291 MW - As a comparison, $P(ILC_{250})=140$ MW, $P(CLIC_{380})=110$ MW: less power hungry than FCC-ee? - ► Not clear: both produce (2 to 4 times) less Higgs than FCC-ee₂₄₀, with (3 to 6 times) longer running time CG - 74 / 38 March 8, 2024 #### Energy and carbon footprint. - Our first responsibility (as particle physicists) is to do the maximum of science - With the minimal energy consumption and the minimal environmental impact for our planet - Should become one of our top-level decision criteria for design, choice and optimization of a collider - All Higgs factories have a "similar" physics outcome (ESU'20 and Snowmass'21) - Natural question: what is their energy consumption or carbon footprint for the same physics outcome? - Circular colliders have a much larger instantaneous luminosity and operate several detectors - FCC-ee is at CERN, where electricity is already almost carbon-free (and will be even more so in 2048) -75 / 38 March 8, 2024 #### Cost of Operation. The total electrical energy consumption over the fourteen years of the FCC-ee research programme is estimated to be around 27 TWh [58], corresponding to an average electricity consumption of 1.9 TWh/year over the entire operation programme, to be compared with the 1.2 TWh/year consumed by CERN today and the expected 1.4 TWh/year for HL-LHC⁹. At the CERN electricity prices from 2014/15, the electricity cost for FCC-ee collider operation would be about 85 MEuro per year. In the HZ running mode, about one million Higgs bosons are expected to be produced in three years, which sets the price of each FCC-ee Higgs boson at 255 Euros. A similar exercise can be done for the first stage of CLIC, expected to consume 0.8 TWh/year over 8 years at 380 GeV to produce about 150,000 Higgs bosons, which sets the price of a CLIC Higgs boson at about 2000 Euros. Finally, with the official ILC operation cost in Japan of 330 MEuro per year [10], its 11.5 to 18.5 years of operation (Section 5), and the 500,000 Higgs bosons produced in total, the price of an ILC Higgs boson is between 7,000 and 12,000 Euros, i.e., between 30 and 50 times more expensive than at FCC-ee. These operation costs are summarized in Table 8. Table 8: Operation costs of low-energy Higgs factories, expressed in Euros per Higgs boson. | Collider | ILC_{250} | $CLIC_{380}$ | $FCC-ee_{240}$ | |--------------------|-----------------|--------------|----------------| | Cost (Euros/Higgs) | 7,000 to 12,000 | 2,000 | 255 |