

Neutrino Physics at Future Colliders

Bhupal Dev

bdev@wustl.edu

Washington University in St. Louis

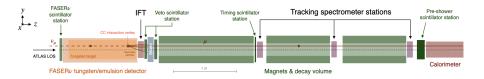
European Institute for Sciences and Their Applications

Corfu2024 Workshop on Future Accelerators

May 20, 2024

World's Largest Microscope

Figure from CERN Courier


World's Largest Microscope

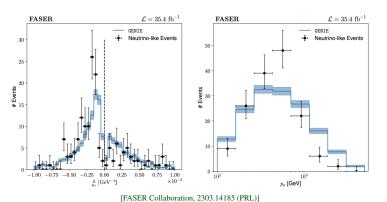
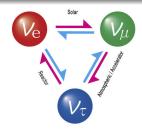


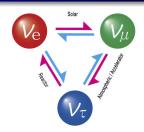
Figure from CERN Courier

What could it tell about the 'invisible' neutrinos?

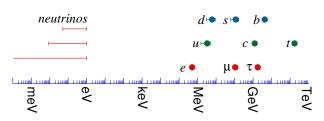
First Direct Observation of Collider Neutrinos



see Sebastian Trojanowski's talk on Wednesday

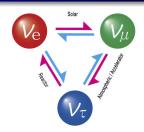

-

Neutrinos: Harbinger of New Physics

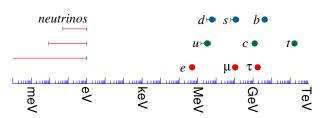


 $\textbf{Non-zero neutrino mass} \Longrightarrow \textbf{Physics beyond the Standard Model}$

Neutrinos: Harbinger of New Physics



Non-zero neutrino mass \Longrightarrow Physics beyond the Standard Model



Perhaps something beyond the standard Higgs mechanism...

Neutrinos: Harbinger of New Physics

Non-zero neutrino mass ⇒ Physics beyond the Standard Model

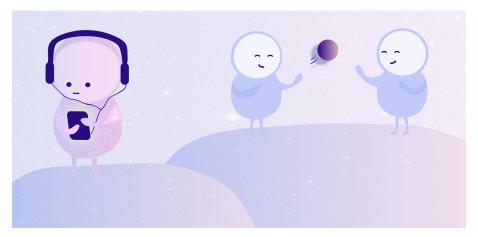
Perhaps something beyond the standard Higgs mechanism...

Can we probe the origin of neutrino mass at colliders?

Neutrino Mass Models

- From pheno point of view, can broadly categorize into
 - Tree-level (d = 5) vs. loop-level $(d \ge 7)$
 - $\bullet \,$ Minimal (SM gauge group) vs. gauge-extended [e.g., $U(1)_{B-L},$ Left-Right, SO(10)]
 - Non-supersymmetric vs. Supersymmetric

Neutrino Mass Models


- From pheno point of view, can broadly categorize into
 - Tree-level (d = 5) vs. loop-level $(d \ge 7)$
 - Minimal (SM gauge group) vs. gauge-extended [e.g., $U(1)_{B-L}$, Left-Right, SO(10)]
 - Non-supersymmetric vs. Supersymmetric
- New fermions, gauge bosons, and/or scalars messengers of neutrino mass.
- Rich phenomenology, both at hadron and lepton colliders, for messenger scale $\lesssim \mathcal{O}(\text{few TeV})$. [Deppisch, BD, Pilaftsis, <u>1502.06541</u>; Cai, Han, Li, Ruiz, <u>1711.02180</u>]
- Nice complementarity with low-energy LNV/LFV experiments.
- Possible connections to other puzzles (e.g. baryogenesis, dark matter, anomalies, NSI).

Neutrino Mass Models

- From pheno point of view, can broadly categorize into
 - Tree-level (d = 5) vs. loop-level $(d \ge 7)$
 - Minimal (SM gauge group) vs. gauge-extended [e.g., $U(1)_{B-L}$, Left-Right, SO(10)]
 - Non-supersymmetric vs. Supersymmetric
- New fermions, gauge bosons, and/or scalars messengers of neutrino mass.
- Rich phenomenology, both at hadron and lepton colliders, for messenger scale $\lesssim \mathcal{O}(\text{few TeV})$. [Deppisch, BD, Pilaftsis, <u>1502.06541</u>; Cai, Han, Li, Ruiz, <u>1711.02180</u>]
- Nice complementarity with low-energy LNV/LFV experiments.
- Possible connections to other puzzles (e.g. baryogenesis, dark matter, anomalies, NSI).
- This talk: Testing neutrino mass models at colliders.
- I'll mostly focus on (sub) TeV-scale mediators.
- For light mediators, see Vedran Brdar's talk on Thursday.

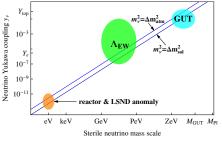
SM-singlet Fermions

(aka sterile neutrinos/heavy neutrinos/heavy neutral leptons/right-handed neutrinos)

Snowmass Whitepaper, 2203.08039

Figure from Symmetry Magazine

Motivated from Type-I Seesaw


[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '80]

• Add SM-singlet **Majorana** fermions (N):

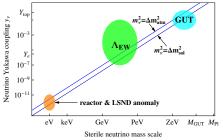
$$-\mathcal{L} \supset Y_{\nu} \overline{L} \phi^{c} N + \frac{1}{2} M_{N} \overline{N}^{c} N + \text{H.c.}$$

• After EWSB, $m_{\nu} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$, where $M_D = v Y_{\nu}$.

[Figure from Antusch, Cazzato, Fischer, $\underline{1612.02728}$]

.

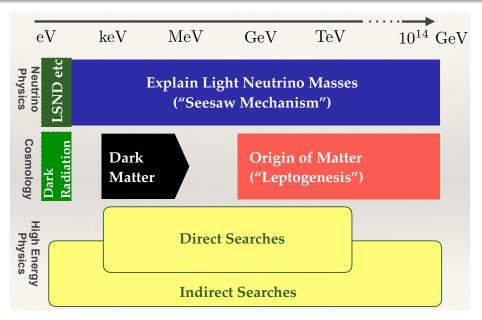
Motivated from Type-I Seesaw


[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '80]

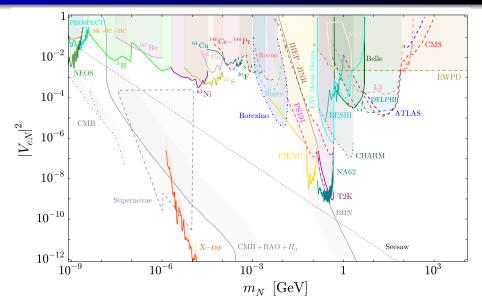
• Add SM-singlet **Majorana** fermions (N):

$$-\mathcal{L} \supset Y_{\nu} \overline{L} \phi^{c} N + \frac{1}{2} M_{N} \overline{N}^{c} N + \text{H.c.}$$

• After EWSB, $m_{\nu} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$, where $M_D = v Y_{\nu}$.

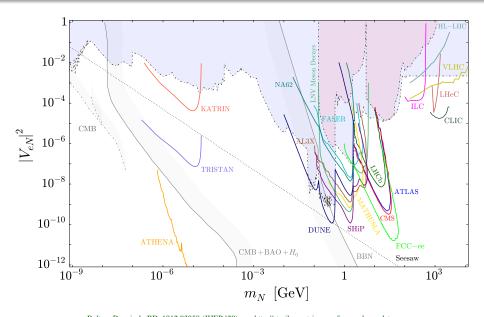


[Figure from Antusch, Cazzato, Fischer, 1612.02728]

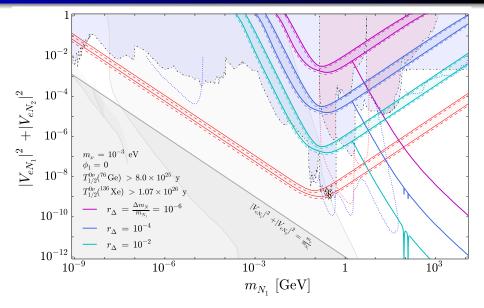

- Each N_i corresponds to $m_{\nu_i} \neq 0$. Need at least two.
- Naturalness of Higgs mass suggests $M_N \lesssim 10^7$ GeV. [Vissani (PRD '98); Clarke, Foot, Volkas (PRD '15); Bambhaniya, BD, Goswami, Khan, Rodejohann (PRD '17)]
- Interesting collider signatures for $\text{GeV} \lesssim M_N \lesssim \text{TeV}$.

.

Can do many things!



Summary of Current Constraints


 $Bolton, Deppisch, BD, \underline{1912.03058} \ (JHEP~'20); see \ \underline{http://sterile-neutrino.org} \ for \ regular \ updates$

Future Prospects

 $Bolton, Deppisch, BD, \underline{1912.03058} \ (JHEP \ '20); see \ \underline{http://sterile-neutrino.org} \ for \ regular \ updates$

Comment on Neutrinoless Double Beta Decay Constraint

Bolton, Deppisch, BD, 1912.03058 (JHEP '20); see also Hernandez, Jones-Perez, Suarez-Navarro, 1810.07210 (EPJC '19)

(Pseudo-)Dirac vs. Majorana RHN

$$\begin{pmatrix} N_e \\ N_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta e^{-i\delta} \\ -\sin\theta e^{i\delta} & \cos\theta \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \end{pmatrix}. \quad \text{Define } R_{\ell\ell} = \frac{\int_0^\infty dt |A_{\text{SS}}, \ell\ell(t)|^2}{\int_0^\infty dt |A_{\text{OS}}, \ell\ell(t)|^2} \equiv \frac{N_{\text{SS}}, \ell\ell}{N_{\text{OS}}, \ell\ell}$$

$$(BD, \text{Mohapatra } (PRL `15); \text{ Anamiati, Hirsch, Nardi } (IHEP `16)]$$

$$0.8$$

$$0.8$$

$$0.6$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

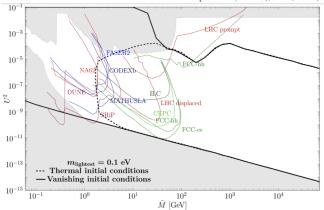
$$0.0$$

$$0.0$$

$$0.0$$

 $Can \ be \ used \ as \ a \ model \ discriminator \ [Das, BD, Mohapatra, \underline{1709.06553} \ (PRD \ '17)]$

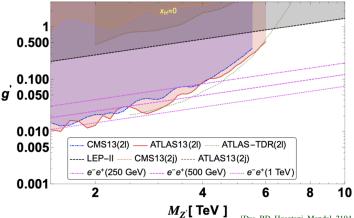
δ/π


Leptogenesis

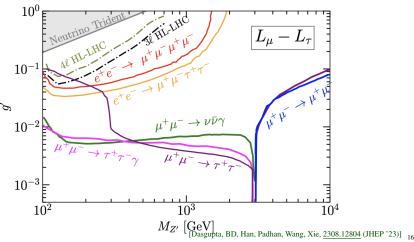
[Fukugita, Yanagida (PLB '86); Pilaftsis, Underwood (NPB '03); BD, Millington, Pilaftsis, Teresi (NPB '14); ...]

[Akhmedov, Rubakov, Smirnov (PRL '98); Canetti, Drewes, Frossard, Shaposhnikov (PRD '13); Shuve, Yavin (PRD '14); ...]

[Klaric, Shaposhnikov, Timiryasov, 2008.13771 (PRL '21); Drewes, Georis, Klaric, 2106.16226 (PRL '22)]


New Gauge Bosons

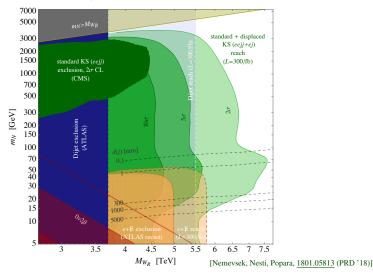
(W',Z')


$U(1)_X$ at Future Colliders

Gauge group	q_L^i	u_R^i	d_R^i	ℓ_L^i	e_R^i	N_R^i	H	Φ
$SU(3)_C$	3	3	3	1	1	1	1	1
$\mathrm SU(2)_L$	2	1	1	2	1	1	2	1
$U(1)_Y$	1/6	2/3	-1/3	-1/2	-1	0	1/2	0
$U(1)_X$	$\frac{1}{6}x_H + \frac{1}{3}x_\Phi$	$\frac{2}{3}x_H + \frac{1}{3}x_\Phi$	$-\frac{1}{3}x_H + \frac{1}{3}x_\Phi$	$-\frac{1}{2}x_H - x_\Phi$	$-x_H - x_\Phi$	$-x_{\Phi}$	$-\frac{x_H}{2}$	$2x_{\Phi}$

$U(1)_{L_{\alpha}-L_{\beta}}$ at Future Colliders

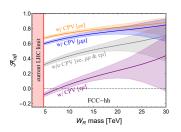
Gauge group	L_e	L_{μ}	$L_{ au}$	e_R	μ_R	$ au_R$	H	Φ
$SU(3)_c$	1	1	1	1	1	1	1	1
$SU(2)_L$	2	2	2	1	1	1	2	1
$U(1)_Y$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	-1	-1	-1	$\frac{1}{2}$	0
$U(1)_{L_{\mu}-L_{ au}}$	0	1	$-\tilde{1}$	0	1	-1	Õ	2



Left-Right Symmetric Extension: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

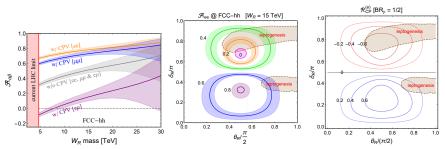
- Parity restoration at high scale. [Mohapatra, Pati (PRD '75); Senjanovic, Mohapatra (PRD '75)]
- A natural UV-completion of seesaw. [Mohapatra, Senjanovic (PRD '81)]
- $\bullet \ \ New\ contributions\ to\ collider\ signals.\ \ [\textit{Keung}, Senjanovic\ (PRL\ '83); Chen,\ BD,\ Mohapatra\ (PRD\ '13);...]$

Left-Right Symmetric Extension: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$


- Parity restoration at high scale. [Mohapatra, Pati (PRD '75); Senjanovic, Mohapatra (PRD '75)]
- A natural UV-completion of seesaw. [Mohapatra, Senjanovic (PRD '81)]
- New contributions to collider signals. [Keung, Senjanovic (PRL '83); Chen, BD, Mohapatra (PRD '13);...]

CP Violation in the RHN Sector

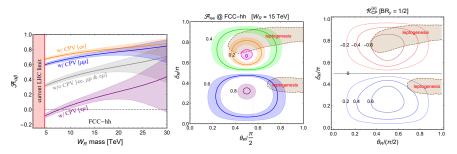
$$\begin{pmatrix} N_e \\ N_{\mu} \end{pmatrix} \; = \; \begin{pmatrix} \cos\theta_R & \sin\theta_R e^{-i\delta_R} \\ -\sin\theta_R e^{i\delta_R} & \cos\theta_R \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \end{pmatrix} \, .$$


$$\mathcal{A}_{\alpha\beta} \,\equiv\, \frac{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) - \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) + \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}; \quad \mathcal{R}_{\mathrm{CP}}^{(\ell)} \,\equiv\, \frac{\frac{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)}{\sigma(pp \to W_{R}^{+} \to e^{+}\mu^{+}jj)} - \frac{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}{\sigma(pp \to W_{R}^{-} \to e^{-}\mu^{-}jj)}}{\frac{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)}{\sigma(pp \to W_{R}^{+} \to e^{+}\mu^{+}jj)} + \frac{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}{\sigma(pp \to W_{R}^{-} \to e^{-}\mu^{-}jj)}}} \,.$$

CP Violation in the RHN Sector

$$\begin{pmatrix} N_e \\ N_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_R & \sin \theta_R e^{-i\delta_R} \\ -\sin \theta_R e^{i\delta_R} & \cos \theta_R \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \end{pmatrix}.$$

$$\mathcal{A}_{\alpha\beta} \equiv \frac{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) - \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) + \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}; \quad \mathcal{R}_{\mathrm{CP}}^{(\ell)} \equiv \frac{\frac{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)}{\sigma(pp \to W_{R}^{+} \to e^{+}\mu^{+}jj)} - \frac{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}{\sigma(pp \to W_{R}^{-} \to e^{-}\mu^{-}jj)}}{\frac{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)}{\sigma(pp \to W_{R}^{+} \to e^{+}\mu^{+}jj)}} + \frac{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}{\sigma(pp \to W_{R}^{-} \to e^{-}\mu^{-}jj)}}$$



[BD, Mohapatra, Zhang, 1904.04787 (JHEP '19)]

CP Violation in the RHN Sector

$$\begin{pmatrix} N_e \\ N_{\mu} \end{pmatrix} \; = \; \begin{pmatrix} \cos\theta_R & \sin\theta_R e^{-i\delta_R} \\ -\sin\theta_R e^{i\delta_R} & \cos\theta_R \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \end{pmatrix} \, .$$

$$\mathcal{A}_{\alpha\beta} \equiv \frac{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) - \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) + \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}; \quad \mathcal{R}_{\mathrm{CP}}^{(\ell)} \equiv \frac{\frac{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)}{\sigma(pp \to W_{R}^{+} \to e^{+}\mu^{+}jj)} - \frac{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}{\sigma(pp \to W_{R}^{-} \to e^{-}\mu^{-}jj)}}{\frac{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)}{\sigma(pp \to W_{R}^{+} \to e^{+}\mu^{+}jj)} + \frac{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}{\sigma(pp \to W_{R}^{-} \to e^{-}\mu^{-}jj)}}.$$

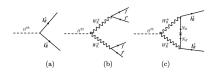
[BD, Mohapatra, Zhang, 1904.04787 (JHEP '19)]

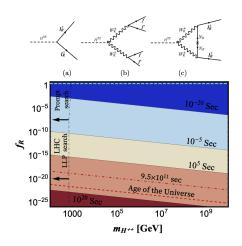
- Lower bound on $M_{W_R} \gtrsim 15 \text{ TeV}$ from leptogenesis.
- Direct collider test of TeV-scale thermal leptogenesis.

[Frere, Hambye, Vertongen (JHEP '09); BD, Lee, Mohapatra (J. Phys '15)]

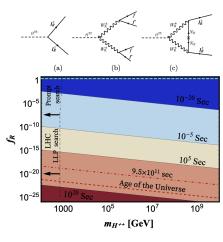
Minimal Left-Right Higgs Sector

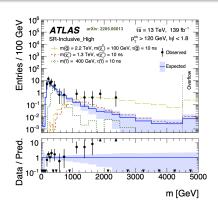
$$\phi(\mathbf{2}, \mathbf{2}, 0) = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}, \qquad \delta_R(\mathbf{1}, \mathbf{3}, 2) = \begin{pmatrix} \frac{\delta_R^+}{\sqrt{2}} & \delta_R^{++} \\ \delta_R^0 & -\frac{\delta_R^+}{\sqrt{2}} \end{pmatrix}$$

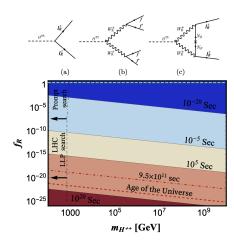

- $\langle \delta_R^0 \rangle \equiv v_R$ gives rise to RH Majorana neutrino masses \Longrightarrow type-I seesaw.
- 8 physical Higgs bosons: Rich phenomenology.


[Gunion, Grifols, Mendez, Kayser, Olness (PRD '89); Bambhaniya, Chakrabortty, Gluza, Kordiaczyńska, Szafron (JHEP '14); BD, Mohapatra, Zhang (JHEP '16); Du, Dunbrack, Ramsey-Musolf, Yu (JHEP '19);...]

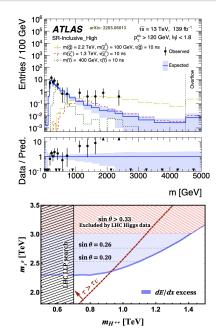
Minimal Left-Right Higgs Sector


$$\phi(\mathbf{2}, \mathbf{2}, 0) = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}, \qquad \delta_R(\mathbf{1}, \mathbf{3}, 2) = \begin{pmatrix} \frac{\delta_R^+}{\sqrt{2}} & \delta_R^{++} \\ \delta_R^0 & -\frac{\delta_R^+}{\sqrt{2}} \end{pmatrix}$$

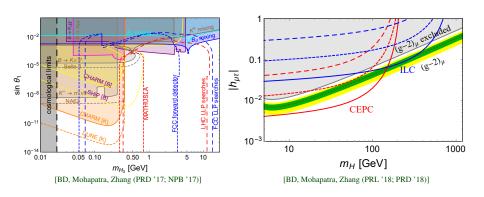

- $\langle \delta_R^0 \rangle \equiv v_R$ gives rise to RH Majorana neutrino masses \Longrightarrow type-I seesaw.
- 8 physical Higgs bosons: Rich phenomenology.
 [Gunion, Grifols, Mendez, Kayser, Olness (PRD '89); Bambhaniya, Chakrabortty, Gluza, Kordiaczyńska, Szafron (JHEP '14); BD, Mohapatra, Zhang (JHEP '16); Du, Dunbrack, Ramsey-Musolf, Yu (JHEP '19);...]
- But FCNC constraints require the bidoublet scalars (H_1^0, A_1^0, H_1^\pm) to be very heavy $\gtrsim 15$ TeV. [An, Ji, Mohapatra, Zhang (NPB '08); Bertolini, Maiezza, Nesti (PRD '14; PRD '20)] Need FCC-hh.
- Doubly-charged component $(H^{\pm\pm})$ constrained to be $\gtrsim 900$ (700) GeV from prompt (displaced) multilepton searches. [ATLAS, 2211.07505]
- Neutral component (H_3^0) is hadrophobic and can be much lighter!
- Can even be a dark matter candidate (but highly fine-tuned). [Nemevsek, Senjanovic, Zhang, 1205.0844]



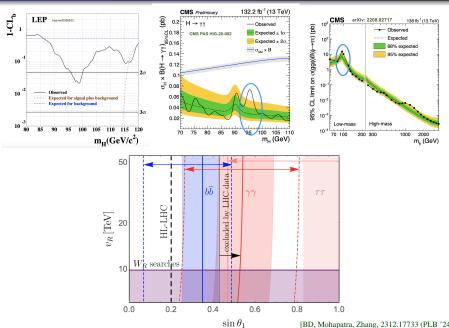
- Implications for HSCP searches at LHC.
- dE/dx excess!
 Akhmedov, BD, Jana, Mohapatra, 2401.15145 (PLB '24);
 see also Giudice, McCullough, Teresi, 2205.04473 (JHEP '22)



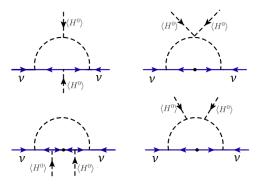
- Implications for HSCP searches at LHC.
- dE/dx excess!
 Akhmedov, BD, Jana, Mohapatra, <u>2401.15145</u> (PLB '24);
 see also Giudice, McCullough, Teresi, 2205.04473 (JHEP '22)



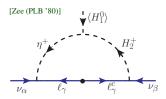
- Implications for HSCP searches at LHC.
- dE/dx excess!
 Akhmedov, BD, Jana, Mohapatra, 2401.15145 (PLB '24);
 see also Giudice, McCullough, Teresi, 2205.04473 (JHEP '22)



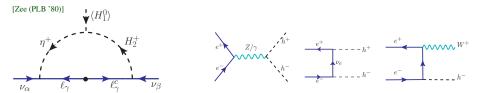
Neutral Scalar


- Hadrophobic and allowed to be light (down to sub-GeV scale) by current constraints.
- Suppressed coupling to SM particles (either loop-level or small mixing).
- Necessarily long-lived at the LHC, with displaced vertex signals.
- Clean LFV signals at future lepton colliders.

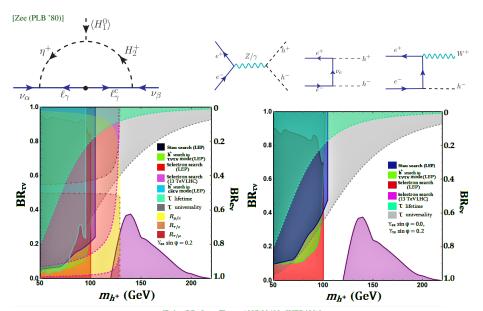
95 GeV Anomaly

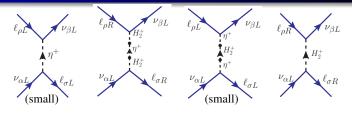


Radiative Models (One-loop)

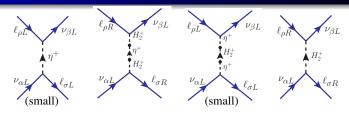


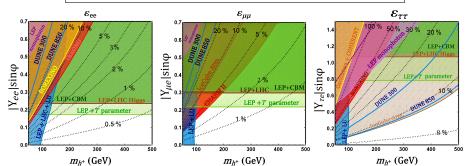
[Ma (PRL '98); Babu, Leung (NPB '01); de Gouvêa, Jenkins (PRD '08); Bonnet, Hirsch, Ota, Winter (JHEP '12)]


Singlet Charged Scalar in Zee Model


Singlet Charged Scalar in Zee Model

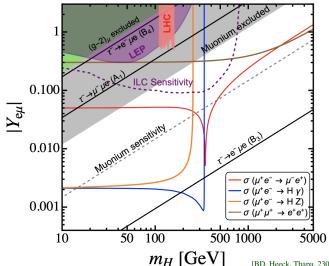
Singlet Charged Scalar in Zee Model

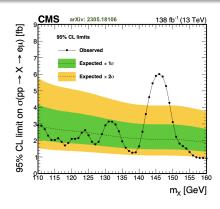

Nonstandard Neutrino Interactions


$$\varepsilon_{\alpha\beta} \equiv \varepsilon_{\alpha\beta}^{(h^+)} + \varepsilon_{\alpha\beta}^{(H^+)} = \frac{1}{4\sqrt{2}G_F} Y_{\alpha e} Y_{\beta e}^{\star} \left(\frac{\sin^2 \varphi}{m_{h^+}^2} + \frac{\cos^2 \varphi}{m_{H^+}^2} \right).$$

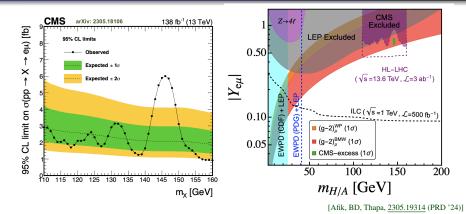
26

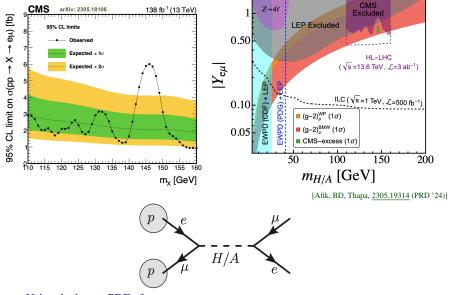
Nonstandard Neutrino Interactions


$$\varepsilon_{\alpha\beta} \equiv \varepsilon_{\alpha\beta}^{(h^+)} + \varepsilon_{\alpha\beta}^{(H^+)} = \frac{1}{4\sqrt{2}G_F} Y_{\alpha e} Y_{\beta e}^{\star} \left(\frac{\sin^2 \varphi}{m_{h^+}^2} + \frac{\cos^2 \varphi}{m_{H^+}^2} \right).$$

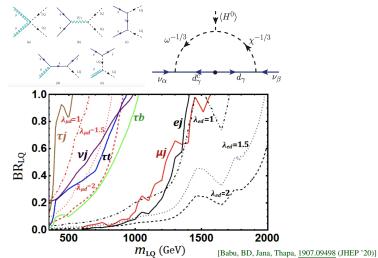

[Babu, BD, Jana, Thapa, 1907.09498 (JHEP '20)]

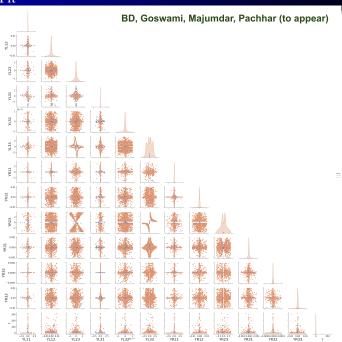
Extra Neutral Scalars in Zee Model


- Should have LFV couplings (to fit neutrino oscillation data).
- Stringent cLFV constraints. But depends on Yukawa texture.
- Lepton colliders provide an independent test.


CMS $e\mu$ Excess

CMS $e\mu$ Excess


CMS $e\mu$ Excess


 $Using \ the \ lepton \ PDF \ of \ proton. \ [Buonocore, Nason, Tramontano, Zanderighi, 2005.06477 \ (JHEP \ \ \ \ \ \ \ \ \ \ \ \ \)]$

Leptoquarks

- Also generate radiative neutrino mass, e.g. RPV SUSY or colored Zee, Zee-Babu models [Hall, Suzuki (NPB '84); Cai, Clarke, Schmidt, Volkas, 1410.0689].
- Color triplets ⇒ Strong limits from LHC and flavor observables.
- Popularized by flavor anomalies and muon g-2.

A Global Fit

Conclusions

- Understanding the neutrino mass mechanism will provide key insights into the BSM world.
- Current and future colliders provide an ideal testing ground for (sub) TeV-scale neutrino mass models.
- Can probe the messenger particles (new fermions/gauge bosons/scalars) in a wide range of parameter space.
- Healthy complementarity with the low-energy precision observables.
- Important implications for current experimental anomalies.

Conclusions

- Understanding the neutrino mass mechanism will provide key insights into the BSM world.
- Current and future colliders provide an ideal testing ground for (sub) TeV-scale neutrino mass models.
- Can probe the messenger particles (new fermions/gauge bosons/scalars) in a wide range of parameter space.
- Healthy complementarity with the low-energy precision observables.
- Important implications for current experimental anomalies.

31