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Introduction

The IDEA detector
Inclusive PID studies with the IDEA detector
o  Using ee — Z — bb with exclusive DK and D decays
tffect of PID in B.—D K analysis, with D.— ¢z, ¢—KK
o  Benchmark channel included in the FCC mid-term review
o Based on studies by AC, Fabrizio Parodi and Emanuel Perez
Effect of PID in a jet flavour-tagging algorithm
o Using ee — Z/H — qq/gg with q = (u,d), s, ¢, b
o With emphasis on strange-jet tagging
o Based on Eur. Phys. J. C 82 (2022) 1. 646 by F. Bedeschi, L. Gouskos, M. Selvaggi
Impact of strange tagging on benchmark physics analyses
o Measurement of V . using W decays - Phys. Lett. B 439 (1998) 209-224 by DELPHI
o Measurement of H — ss - Phys. Rev. D 101 115009, arXiv:2203.07535
o  Background suppression in exclusive H — ¢ decays - JHEP 07 (2018) 12/



https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1
https://www.sciencedirect.com/science/article/abs/pii/S0370269398010612?via%3Dihub
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.115005
https://arxiv.org/abs/2203.07535
https://link.springer.com/article/10.1007/JHEP07(2018)127

Innovative Detector for Electron-positron Accelerator
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Ambitious detector for exploiting the physics potential of a future circular e'e” collider

Not necessarily the final detector choice for the real experiment



The IDEA detector
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The IDEA detector

: e S-layer vertex detector with 20-um active pixels with 3-
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The IDEA detector
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o-layer vertex detector with 20-.m active pixels with 3-
wm space-point resolution and 2-um of asymptotic track
P resolution

4-m long cylindrical drift chamber extending in radius up
to 2m. 1.6% X, for orthogonal tracks, ~100-..m of spatial
resolution, 2% dE/dx resolution with cluster counting



The IDEA detector
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o-layer vertex detector with 20-.m active pixels with 3-
wm space-point resolution and 2-um of asymptotic track
P resolution

4-m long cylindrical drift chamber extending in radius up
to 2m. 1.6% X, for orthogonal tracks, ~100-..m of spatial
resolution, 2% dE/dx resolution with cluster counting
Double-layer of silicon micro-strips to improve
momentum resolution and time-of-flight measurement
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2-T solenoidal magnet. (A higher field would compromise
the beam emittance and hence the delivered luminosity, in
particular at low center-of-mass energy)
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The IDEA detector
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e 2-Tsolenoidal magnet. (A higher field would compromise
the heam emittance and hence the delivered luminosity, in
particular at low center-of-mass energy)

e Pre-shower and dual-readout calorimeter with a total
depth of 2 m and ~8 pion interaction lengths.

Ongoing R&D for the various sub-detector technologies, in
particular for

Pixel technology, eventually curved and with timing
Metal coating of carbon fiber filaments for wires
Coupling of SiPM to fibers

Various readout and dedicated electronics
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Extremely transparent, with 112 layers of stereo wires

Gas mixture of 90% He and 10% iC4H10

Maximum drift time 350-400 ns with 0y ~100 um and 6, <1 mm
Based on R&D and experience by KLOE and MEG-II detectors
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PID at colliders

The difference in interaction in the HEP detectors is primarily used for lepton and photon identification
For unambiguously identifying hadrons, charge and mass need to be measured, the latter by simultaneous
measurements of momentum and velocity

Mass resolution determined primarily by the accuracy of the velocity measurement, being >>1

om\* _ ()’ zé_ﬂf
() = () (%
Velocity inferred by

o Measurement of the energy deposit by ionisation
o  Time-of-flight (TOF) measurement
o  Cherenkov radiation detection
o Iransition radiation detection
Main application is classification of kaon vs pion candidates
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PID studies with the IDEA detector

Possible options

e Likelihood ratio (LR) on dN/dx
e [Ronvelocity / TOF

e (ombined LR

e Also tested standard and x2 worse resolution in dN/dx and standard and improved TOF resolution

Samples

o 66— /— bb with exclusive DK and D  decays
e MG_aMC@NLO plus P8 for modelling the decay, parton shower and hadronization processes
e Delphes with IDEA card



Inclusive PID studies

with DSK and Dth
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The bachelor kaon and bachelor pion are selected using the D K and D oz samples
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Inclusive PID studies with DSK and Dsn
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e dN/dx is being used instead of dE/dx to avoid tuning the truncated mean to suppress Landau tails

e \Velocity is being used instead of TOF to have an observable independent of detector geometry
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Kaon dndx pull

Inclusive PID studies with DSK and Dsn

Pulls well under control for both variables
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Inclusive PID studies with DSK and Dth
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B.—D K analysis: mass spectrum without PID

Pre-selection based on Phi and D_ mass
pl > 1.5 GeV for all tracks

Vertex 2 <5

cos(B)_B. - cos(B)_bachelor < 0.5

5,33 GeV' < m(B) < 5.41 GeV

B/(S+B) = 48%

B/(S+B) defined in the region under the B, peak

x10° B. — D_K, 100 ab™
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B.—D K analysis: mass spectrum with dN/dx LR

Pre-selection based on Phi and D_ mass
pl>15 GeV for all tracks

Vertex x2<h

cos(B)_B. - cos( ) B8)_bachelor < 0.5

5,33 Ge\f< m(B.) < 5.41 GeV

B/(S+B) defined i |n the region under the B, peak

B/(S+B) =19%
D efficiency = 0.27%

x10° B, — D_K, 100 ab”
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B.—D K analysis: mass spectrum with velocity LR

e Pre-selection based on Phi and D_ mass

o > 15GeV for all tracks

o Vertex %’ <H

e 0s(B)_B. - cos(B)_bachelor<0.5

- 533Ge\f<m <5.41GeV

o B/(S+B) defined i |n the region under the B, peak
B/(S+B) = 33%

B, — D.K, 100 ab™
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Focus on LR with velocity

Likelihood ratio based on velocity has very low impact on signal but still reduces the inclusive Z—bb

Directly related to the bachelor momentum spectrum in the two samples and the momentum-dependent

()
background by a factor of 2
o
PID performance with velocity
[—bb
x10°

p [GeV/c]

DK+ Dz

4000

3500

3000

2500

2000

1500

1000

500

IHI]lIIIIIIJIII+IIlllllIIIIIIIIIIIIIIIIIIII

#44
+ 't
ot gttty
R

-+
+
-+

-
-+

4.
+++ ﬂﬂ'};
+

#

oo

35 40

p [GeV/c]

20



B.—D K analysis: mass spectrum with combined likelihood

Pre-selection based on Phi and D_ mass
pl>15 GeV for all tracks

Vertex x2<h

cos(B)_B. - cos( ) B8)_bachelor < 0.5

5,33 Ge\f< m(B.) < 5.41 GeV

B/(S+B) defined i |n the region under the B, peak

B/(S+B) =19%
D efficiency = 0.22%

As proven in previous slide, the PID based on combined
likelihood is only marginally improving over dN/dx
because of the bachelor momentum
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k/pi separation [o]

Standard - 30 ps

TOF resolution
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Away from nominal IDEA: 10 ps TOF resolution

Pre-selection based on Phi and D_ mass
pl > 15GeV for all tracks

Vertex x2<h

cos(B)_B. - cos(B)_bachelor < 0.5
5,33 ee\f<m <5.41GeV

B/(S+B) = 29%
With 30 ps TOF resolution B/(S+B) = 33%
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Away from nominal IDEA: x2 dN/dx worse resolution

Pre-selection based on Phi and D_ mass
pl>15 GeV for all tracks

Vertex 2 <5

c0s(8)_B. - cos(8)_bachelor < 0.5

533 GV < m(B) <5.41GeV

B/(S+B) defined in the region under the B, peak

B/(S+B) = 24%
With baseline dN/dx resolution B/(S+B) = 19%
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PID studies with ZH
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Charged pion and kaon tracks at @ = 90° in the IDEA drift chamber detector

[Eur. Phys. J. C 82 (2022) 7. 646]
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https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1

Jet flavour tagging with PID information

Variable Description
Kinematics
Econst/ Ejet energy of the jet constituent divided by the jet energy
Orel polar angle of the constituent with respect to the jet momentum
Prel azimuthal angle of the constituent with respect to the jet momentum
Displacement
day transverse impact parameter of the track
d, longitudinal impact parameter of the track
SIPop signed 2D impact parameter of the track
SIPop/oap signed 2D impact parameter significance of the track
SIPsp signed 3D impact parameter of the track
SIP3p/o3p signed 3D impact parameter significance of the track
dsp jet track distance at their point of closest approach
d3p/0dsp jet track distance significance at their point of closest approach
Ci; covariance matrix of the track parameters
Identification
q electric charge of the particle
Mt.of. mass calculated from time-of-flight
dN/dz number of primary ionisation clusters along track
isMuon if the particle is identified as a muon
isElectron if the particle is identified as an electron
isPhoton if the particle is identified as a photon
isChargedHadron if the particle is identified as a charged hadron
isNeutralHadron if the particle is identified as a neutral hadron

[Eur. Phys. J. C 82 (2022) 7. 646]
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https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1

Jet flavour tagging with PID information

FCC-ee Simulation (IDEA)

2 I L I B B B

e Architecture based on GNN as in the ParticleNet % - oo - 2H, H= ] st;gging |

tagging algorithm - Phys. Rev. D 101056019 e, T = u,d,s,c,b,g
o Most effective discrimination against b-jets s LSS i
o Mis-tag rate against ud and g substantially larger -3 - :z::ﬁd
e Rejection against g more effective due to higher £ P mi

particle multiplicities 2, | —susb
e PID-related variables playing a crucial role for 10 I VS 2 N A E

s-jet tagging - .

1002 " " 04 06 08 1

jet tagging efficiency
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[Eur. Phys. J. C 82 (2022) 1. 646]



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1

Jet flavour tagging with PID information

e PID vields one order of magnitude of reduced
mis-tag rate

e PID with a 3 ps resolution yields some additional
improvement, close to the ideal PID case
obtained by using MC truth information

Great example of detector design choice on
observable of interests for physics analyses

[Eur. Phys. J. C 82 (2022) 1. 646]

jet misid. probability
3

—
<
N

1073

FCC-ee Simulation (IDEA)

T IIIIII!

: | I | T T T |
C ete = ZH,H—jj ‘ ‘ :
" j=udscbg ]
B s tagging§ vs. ud a
....................... noPID_—é
— dN/dx ]
|

i— dN/dx + to.f (=30 ps) ]
~—— dN/dx + t.o.f (5,=3 ps)
| ideal PIDi

04

06 08 1
jet tagging efficiency

28


https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1

Jet flavour tagging with PID information

FCC-ee Simulation (IDEA)
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https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1
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Interlude on jet ﬂavour classmcatlon
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/

Impact of strange tagging on physics analyses — V_
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Momentum distribution of highest-momentum particle in s, ¢, d u-jets when particles are charged

kaons, on the left, or charged pions, on the right .
[Phys. Lett. B 439 (1998) 209-224]



https://www.sciencedirect.com/science/article/abs/pii/S0370269398010612?via%3Dihub

Impact of strange tagging on physics analyses — V_

With ~100 W bosons collected, two measurements
based on hadronic branching ratios and tagging the
jet flavour with also PID from RICH counters of |V
were performed by DELPHI

BR(W — hadrons) = 0.660"9 035 (stat) + 0.009(syst)
V.| = 0.90 + 0.17(stat) + 0.04(syst)

I'(W* - c5)
I'(W" — hadrons)

rles) — = 0.467 (13 (stat) £+ 0.07(syst)

V.| =0.94%032(stat) + 0.13(syst)

The former measurement comes with more assumptions,
the latter could be substantially improved with

|larger-statistics tagger calibration at the Z pole
[Phys. Lett. B 439 (1998) 209-224]
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https://www.sciencedirect.com/science/article/abs/pii/S0370269398010612?via%3Dihub

Impact of strange tagging on physics analyses — H — ss
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[Phys. Rev. D 101 115005]
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Colour contours represent the best limit on signal strength . for the process H — ss
after applying a strange-jet tagger based on a jet-flavour variable plus PID from the
simulated IDEA drift chamber
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.115005

Impact of strange tagging on physics analyses - H — ¢y
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[JHEP 07 (2018) 127]



https://link.springer.com/article/10.1007/JHEP07(2018)127

Conclusions and OQutlook

IDEA detector is in Delphes with PID-related variables. Allows studies on performance, expected physics reach,

and back to detector layout optimisation and technology choices.

Some literature on the topic exist and something new has been included in the FCC mid-term report. Much
more is obviously possible and welcome.

Full potential of strange-flavour tagging at a future circular lepton collider to be studied. In addition, ML
architectures for jet flavour classification still evolving.

More methods to be developed and studied such as

Estimate of systematic uncertainties to strange-flavour tagging

Reconstruction of in-flight decays

Holistic tagging including beauty, charm, tau and strange, with impact from gluon spitting
Complementarity of PID techniques for charged hadron identification

35



