Higgs Factories

Aidan Robson, University of Glasgow 2nd Corfu Workshop on Future Accelerators, May 2024

Higgs Factories

- \leftrightarrow Why e+e-?
- \triangleleft Single Higgs
- \leftrightarrow Higgs self-coupling
- Top & BSM physics
- \triangleleft Status and outlook of projects
- \triangleleft Strategic considerations

The Higgs Boson and the Universe

Is the Higgs the portal to the Dark Sector?

◆ What is Dark Matter made of?

lepton sectors?

• does the Higgs decays "invisibly", i.e. to dark sector particles? • does the Higgs have siblings in the dark (or the visible) sector?

 \blacklozenge What drove cosmic inflation?

◆ What generates the mass pattern in quark and

 \blacklozenge What created the matter-antimatter asymmetry?

 \blacklozenge What drove electroweak phase transition?

– and could it play a role in baryogenesis?

- The Higgs could be first "elementary" scalar we know:
	- is it really elementary?
	- is it the inflaton?
	- even if not it is the best "prototype" of a elementary scalar we have => study the Higgs properties precisely and look for siblings
- \blacklozenge Why is the Higgs-fermion interaction so different between the species?
	- does the Higgs generate all the masses of all fermions?
	- are the other Higgses involved or other mass generation mechanisms?
	- what is the Higgs' special relation to the top quark, making it so heavy?
	- is there a connection to neutrino mass generation?
	- => study Higgs and top and search for possible siblings!
- \triangle Does the Higgs sector contain additional CP violation?
	- in particular in couplings to fermions?
	- or do its siblings have non-trivial CP properties?
		- => small contributions -> need precise measurements!
- \blacklozenge What is the shape of the Higgs potential, and its evolution?
	- do Higgs bosons self-interact?
	- at which strength? => 1st or 2nd order phase transition?
		- => discover and study di-Higgs production

The Higgs Factory mission

- \blacklozenge Find out as much as we can about the 125-GeV Higgs
	- Basic properties:
	- total production rate, total width
	- decay rates to known particles
	- invisible decays
	- search for "exotic decays"
	- CP properties of couplings to gauge bosons and fermions
	- self-coupling
	- Is it the only one of its kind, or are there other Higgs (or scalar) bosons?
- \bullet To interpret these Higgs measurements, also need:
	- top quark: mass, Yukawa & electroweak couplings, their CP properties…
	- Z / W bosons: masses, couplings to fermions, triple gauge couplings, incl CP…
- \blacklozenge Search for direct production of new particles – and determine their properties
	- Dark Matter? Dark Sector?
	- Heavy neutrinos?
	- SUSY? Higgsinos?
	- The UNEXPECTED !

Conditions at e+e- colliders very complementary to LHC;

In particular:

- low backgrounds
- clean events
- triggerless operation (LCs)

The Higgs Factory mission

- \bullet Find out as much as we can about the 125-GeV Higgs
	- Basic properties:
	- total production rate, total width
	- decay rates to known particles
	- invisible decays
	- search for "exotic decays"
	- CP properties of couplings to gauge bosons and fermions
	- self-coupling
	- Is it the only one of its kind, or are there other Higgs (or scalar) bosons? and US Snowmass process 2023
- \bullet To interpret these Higgs measurements, also need:
	- top quark: mass, Yukawa & electroweak couplings, their CP properties…
	- Z / W bosons: masses, couplings to fermions, triple gauge couplings, incl CP…
- \blacklozenge Search for direct production of new particles – and determine their properties
	- Dark Matter? Dark Sector?
	- Heavy neutrinos?
	- SUSY? Higgsinos?
	- The UNEXPECTED !

 \bullet Conditions at e+e- colliders very complementary to LHC;

e+e– Higgs factory identified as

highest-priority next collider, by
Turopean Strategy Updater, by

European Strategy Update 2020

In particular:

- low backgrounds
- clean events
- triggerless operation (LCs)

Higgs factory contenders (1): Linear Colliders $\bar{\text{H}}$ International Linear Collider (ILC) ILC. Scenario H20-staged $CM - 250$ GeV uminosity 3000 $CM = 350$ GeV ナイバニアック $ECM = 500 GeV$ $4ab^{-1}$ 2000 $2ab^{-1}$ ILC: 250, 350, 500 GeV ; 1 TeV
21km / 31km / 40km
erconducting RF, 35 MVm⁻¹
I in Japan
2013, undated for 250GeV Upgrade 21km / 31km / 40km 1000 Superconducting RF, 35 MVm–1 eray Upo Sited in Japan TDR 2013, updated for 250GeV European XFEL demonstrates technology ⁰0 5 10 15 20 Compact Linear years Integrated luminosity [ab⁻¹] **Integrated luminosity** drive beam 6 **Total** Collider (CLIC) 1% peak power-generating structure 1.5 TeV 0.38 TeV 3 TeV 1 ab⁻¹ 2.5ab⁻¹ 5ab⁻¹ CLIC: 380 GeV ; 1.5, 3 TeV 11km / 29km / 50km Room temperature, 12-100 m.m. Communisted at CERN
CDR 2012, Updated Staging Baseline 2016, power Room temperature, 72–100 MVm–1 $\overline{2}$ Sited at CERN power accelerating structure Project Implementation Plan 2018 20 25 Ω 5 10 15 Similar structures used for Swiss FEL Year Cool Copper Collider (C3) C^3 : 250, 550 GeV 8km / 8km C3 Beam delivery / IP identical to ILC Operation temperature 77K, 70–120 MVm–1 Damping rings / injector similar to CLIC Sited at Fermilab Physics output very similar to ILC Pre-CDR Hybrid Asymmetric Linear Higgs Factory (HALHF) HALHF: 250 GeV (e^{-500GeV, e+31GeV)} 3.3km 25 MVm–1 conventional, 6.3GVm–1 plasma Pre-CDRAidan Robson 7

Higgs factory contenders (2): Circular Colliders

Higgs factory contenders (2): Circular Colliders

Hybrid <mark>, and location are equally possible and should be considered, e.g. ILC-like</mark> 3.3_F machine at CERN; or CLIC-like machine at 250GeV elsewhere than CERN.

Pre-CDR

Higgs in e^+e^-

Higgs production in e^+e^-

Aidan Robson 13

Higgs couplings sensitivity

Illustrative comparison of sensitivities (combined with HL-LHC)

Scale of new decoupled physics

 $L_{\rm SM}$

Dim-6 operators

Standard Model

 $\mathcal{L}_{\mathrm{SMEFT}} =$

Higgs program despite quite different assumed integrated luminosities

- several couplings at few-0.1% level: Z, W, g, b, τ
- some more at \sim 1%: γ , c

Snowmass EFT couplings

Higgs couplings sensitivity

Illustrative comparison of sensitivities (combined with HL-LHC)

Higgs program despite quite different assumed integrated luminosities

- several couplings at few-0.1% level: Z, W, g, b, τ
- some more at \sim 1%: γ , c

Standard Model

 $\mathcal{L}_{\mathrm{SMEFT}} =$

Scale of new decoupled physics

Dim-6 operators

Polarisation

 \leftrightarrow why is the performance between projects so similar, given the very different integrated luminosities? *–> beam polarisation at linear colliders*

Background suppression:

Chiral analysis:

- \triangleleft SM: Z and g differ in couplings to left- and righthanded fermions
- BSM: chiral structure unknown; needs to be determined

Signal enhancement:

- \bullet Many processes have strong polarisation dependence, e.g.:
- Higgs production in WW-fusion
- many BSM processes
- => polarisation can give higher S/B

Redundancy & control of systematics:

- 'wrong' polarisation yields 'signal-free' control sample
- \bullet flipping positron polarisation can control nuisance effects on observables relying on electron polarisation

–> ideally want to be able to reverse helicity quickly for both beams

many physics benefits from beam polarisation

Polarisation

Higgsstrahlung $e+e- \geq ZH$ is the key process at a Higgs factory

◆ *A*_{LR} of Higgsstrahlung helps to disentangle different SMEFT operators

Only SM diagram Flips sign under spin reversal $e_R \leftrightarrow e_L$

 \sim C_{MAM} Keeps sign under spin reversal $e_R \leftrightarrow e_L$

Constrained by EWPOs

*A*LR lifts degeneracy

between operators $\longrightarrow 2$ ab⁻¹ polarised ≈ 5 ab⁻¹ unpolarised => the reason all e+e- Higgs factories perform so similarly!

Higgs couplings sensitivity

 \triangle Aim of precision Higgs measurements is to *discover violation of the SM*

 \bullet Complementary to direct searches at LHC – these are examples with large coupling deviations due to new particles that are out of reach of HL-LHC, shown [just as an example] with projected ILC precisions at 500GeV

(Barklow et al. 1708.08912)

A pattern of well-established deviations can point to a common origin

 \bullet Typical models give coupling deviations at 1% level; e+e– factories can reach this sensitivity

Barklow/Peskin

Aidan Robson 18

Higgs self-coupling

The Higgs self-coupling gives access to the shape of the Higgs potential

Standard Model: Possible alternative:

In this case, two phases can coexist:

Higgs self-coupling: 0.5–1TeV

used state-of-the-art reconstruction at the time (2016), but sensitivity very dependent on b-tagging performance, dijet mass resolution –> update is ongoing

Higgs self-coupling: >1TeV

- vvHH dominates at both CLIC TeV stages
- studied in full sim with all processes & beam backgrounds using HH->bbbb /HH->bbWW* (all-hadronic)
- Σ b-tag (trained on e⁺e⁻ -> Zvv) used to separate bbbb and bbWW* channels
- main backgrounds: diboson and ZH production
- \triangle BDTs trained for 4-jet and 6-jet topologies
- 3.5 σ observation, and 28% precision on σ , at 1.4TeV 7.3% precision on σ at 3TeV (and observation with 700fb⁻¹)
- $\lambda/\lambda_{\text{SM}}$ extracted from template fit to binned M_{HH} in bins of BDT response

Aidan Robson

Higgs self-coupling: >1TeV

- \triangleleft 3TeV differential measurement gives -8% and +11% assuming SM g _{HHWW}
- \bullet simultaneous measurement of triple and quartic couplings gives constraints below 4% in g _{HHWW} and below 20% in g _{HHH} for large modifications of g _{HHWW}

[Eur. Phys. J. C 80, 1010 \(2020\)](https://doi.org/10.1140/epjc/s10052-020-08567-7)

Higgs self-coupling: non-SM case (0.5–1TeV)

Most interesting case is when λ does NOT take SM value –> examine behaviour of production mechanisms

Higgs self-coupling: non-SM case (0.5–1TeV)

 2.5

Higgs selfcoupling projections

HL-LHC (single coupl. analysis) cross-section-level extrapolation

^u Full simulation results from √*s*=500 GeV and 1TeV extrapolated to other energies, accounting for total cross-sections and interference contributions

 \bullet -> converted into precision on λ at highly enhanced or suppressed values

• Owing to their different behaviours, combining ZHH and vvHH gives a measurement of λ at the level of 10–15% *for any value of* λ

e.g. 2HDM models where fermions couple to only one Higgs doublet allow

 $0.5 \le \lambda/\lambda_{\text{SM}} \le 1.5$, while EWK baryogenesis typically requires $1.5 \le \lambda/\lambda_{\text{SM}} \le 2.5$

Aidan Robson

Higgs self-coupling: indirect access

 \bullet If λ deviates from SM, loop diagrams will give corrections to single-Higgs production and to Higgs decays

• e.g. $(\kappa_{\lambda}-1)=1$ increases σ (e⁺e⁻->ZH) by around 1.5% at √*s*=240GeV

ECFA Higgs@Future Colliders WG fitted single Higgs measurements, first to 1 parameter fit (SM modified only to shift of parameter κ_{λ}) – driven by ZH statistics

- \blacklozenge However, generic new physics tends to give deviations of the same size in several Higgs couplings so a fit to a larger model is needed and in this case contributions from λ (c_6) are highly suppressed
- \bullet need runs at several energies to disentangle
- –> 27% at FCC-ee (4IP)
- \bullet there are ideas for addressing this at 240GeV by separating observables by their *Q*-values

 $\bullet\;$ very interesting to see how far this can go

Aidan Robson

Threshold scan
- proposed by all projects - benefits from highe

sensitive to top mass, width, coupling reach Δm_t around level of 10MeV (stat)

Top-quark physics

-
- benefits from higher \sqrt{s} and multiple stages
- Top cross-sections, both polarisations
- Top forward-backward asymmetries
- Statistically optimal observables for top EWK couplings; more than one energy stage allows global fit

t -

t

BSM physics

SUSY signatures:

General benefit of searches in e^+e^- : avoiding 'holes' in parameter space

Exotic signatures:

Long-lived particles; displaced vertices – hidden valley H –> $\pi \sqrt{\sigma} \pi \sqrt{\sigma}$ –> bbbb General benefit of 'clean environment' in e+e–

> \bullet Plus BSM interpretations of precision measurements / EFT fits –> e.g. compositeness limits

FCC Project and CEPC

- Following last ESPP Update, FCC is CERN's "Plan A".
- Feasibility study 2021-25 concentrates on:
- technical & administrative feasibility of tunnel & surface areas
- optimisation of collider designs
- elaboration of a sustainable operational model
- development of a consolidated cost estimate
- identification of substantial resources from outside CERN's budget for the implementation of the first stage (tunnel & FCC-ee)
- Mid-term report published 2024 well-received by CERN committees.
- Final Feasibility Study Report brought forward to March 2025
- Tentative timeline laid out for FCC-ee detectors: CDRs 2031; TDRs 2035; Installation 2041; Commissioning 2035

- CEPC pursuing key technology R&D
- Prototype dipole modules produced
- TDR published 2023
- Chinese Academy of Sciences recently ranked CEPC top priority in the relevant subcommittee
- \triangle Seeking approval in the 15th 5-Year Plan (runs 2026–30)

ILC Project

- \bullet ILC TDR 2013, several updates since then
- \bullet Site well understood; geological surveys done
- European XFEL demonstrated industrial cavity production
- Local support for hosting at Kitakami

 \bullet The International Development Team (IDT) was set up in 2020 to move towards the ILC Pre-lab

• Pre-lab envisaged to complete engineering designs for machine and civil construction and support intergovernmental negotiation of organisation, governance, cost-sharing

\bullet Latest: ILC International Technology Network (ITN) launched in July 2023 \bullet Global collaboration programme focusing on time-critical accelerator R&D **SRF** e- & e+ Sources Synergy with Nano-beam other colliders

 \triangle KEK budget for this R&D significantly increased and activity started since April 2023; ITN allows flow of funds through bilateral agreements with regional host labs (and onwards)

 \bullet Some progress on discussing 'global project' governance etc

ILC International Technology Network (ITN)

- \rightarrow 17 ITN Work Packages \rightarrow \rightarrow 5 European areas of activity: A1 SRF SRF: Cavities, and Cryomodule Crab-cavities • Main Linac quads and cold BPMs A2 Sources • Pulsed magnet • Wheel/target A3 Damping Ring including kickers Low Emittance Ring lab A4 ATF activities for final focus, nanobeams, MDI A5 Implementation including Project Office • Dump, CE, Cryo **Sustainability** • EAJADE started (EU funding) Synergies also with CLIC
-

Updated working timeline: values and values of Diet Members for the ILC has been reactivated, April 2023

CLIC Project

~100 MV/m gradient in main-beam cavities Achieved in structures produced by different sources

Demonstrated 2-beam acceleration Power transfer + main-beam acceleration

Alignment & stability

The CLIC strategy:

- Alignment; vibration damping; good beam measurement and feedback
- Tests in small accelerators of equipment and algorithms (FACET at Stanford, ATF2 at KEK, CTF3, Light-sources)

–> Key accelerator technologies have been demonstrated

developed for 2025 CDR 2012 –> Updated Staging Baseline 2016 –> Project Implementation Plan 2018

- \bullet Following the European Strategy Update, CLIC is maintained at CERN –> if the FCC feasibility study is not conclusive then CLIC could be implemented in an expeditious way
- \triangle 2021-25 programme continues CLIC as an option for a Higgs/top accelerator facility at CERN, and is pursuing high-gradient R&D and nanobeam technology more generally with a focus on non-particle physics applications
- ◆ A Project Readiness Report will be

CLIC Technologies & Developments

X-band technology:

35

• Design and manufacturing of X-band structures and components

EXTREAK wn limits and optimization, operation and conditioning

Fast Figure verification and ease $\ddot{}$ alification

, FELs, medical, etc

Technical and experimental studies, design & parameters:

- Module studies
- Beam dynamics and parameters
- Tests in CLEAR (wakefields, instrumentation) and other facilities (e.g. ATF2)
- High efficiency klystrons
- Injector studies suitable for X-band linacs

Luminosity margins and increases at 380 GeV

- Initial estimates of static and dynamic degradations from damping ring to IP gave: 1.5×10^{34} cm⁻² s⁻¹
- Simulations taking into accord static and dynamic effects with corrective algorithms give 2.8 on average, and 90% of the machines above 2.3×10^{34} cm⁻² s⁻¹

Bending magnet

X-band technology readiness for the 380 GeV CLIC initial phase - more and more driven by use in small compact accelerators

Application of X-band technology (examples):

- A compact FEL (CompactLight: EU Design Study 2018-21)
- Compact Medical linacs (proton and electrons)
- Inverse Compton Scattering Source (SmartLight)
- Linearizers and deflectors in FELs (PSI, DESY, more)
- 1 GeV X-band linac at LNF

SwissFEL uses CLIC-like structures at C-band

–> helping to include industrial partners etc towards a collider

CERN and Lausanne University Hospital collaborate on a pioneering new cancer radiotherapy facility

CERN and the Lausanne University Hospital (CHUV) are collaborating to develop the sign of an innovative radiotherany facility, used for cancer to

Bending magnets

Flash electron therapy using CLIC technology at CHUV

$C³$ studies

8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m

Large portions of accelerator complex are compatible between LC technologies

- Beam delivery and IP modified from ILC (1.5 km for 550 GeV CoM)
- Damping rings and injectors to be optimized with CLIC as baseline
- **•** Reliant on work done by CLIC and ILC to • Make progress determine the performance of accelerating structures of accelerating structures of acceleratio **Edge The Established Trable Structures** Reliant on Work done by C.I.I

Preliminary Alignment and Positioning High Accelerating Gradients Cryogenic Operation Ongoing work:

Modern Manufacturing Prototype One Meter Structure

Integrated Damping Slot Damping with NiChrome Coating

- R&D received some support from US P5 committee
- Optimistic scenario: construction 2030; first collisions 2040

Aidan Robson 35

 $\overline{C^3}$

550

2.4

120

108

8

75

120

3.5

 $\mathbf{1}$

0.014

 \sim 175

pre-CDR

HALHF

Hybrid Asymmetric Linear Higgs Factory [https://arxiv.org/2303.10150](https://arxiv.org/abs/2303.10150)

- Overall facility length \sim 3.3 km which will fit on \sim any of the major pp labs.
	- needs around 10 years R&D (driven by plasma cell R&D)
	- very rough cost estimate extrapolating from ILC
		- ~1.5bn ILCU (compare ~5bn ILCU for ILC)
			- => towards single-country scale
	- could build in $~2$ years

e- BDS

Detectors & software

Different projects have individual specific requirements from – detector concepts

accelerator environments, but also many common aspects:

- detector technologies
	- software tools (& physics studies)

Menu of physics to be covered?

- \triangle 91 GeV \rightarrow precision EW
- \blacklozenge 250 GeV –> precision Higgs mass and Higgs branching fractions
- ◆ 350 GeV –> precision top quark mass (threshold scan)
- ◆ 550–600 GeV –> double Higgs-strahlung
	- -> ZHH, top electroweak couplings, precision WW –> H fusion
- \triangle 800–1000 GeV –> double Higgs from WW fusion

-> vvHH, precision top Yukawa and CP

 \blacklozenge beyond: pure exploration

Broad agreement that we want to do all of this physics

Different proposals take different approaches:

ILC/C³ proposal runs at each energy; CLIC proposal consolidates Higgs & top to 380GeV then >1TeV; FCC puts some parts with hh.

Strategic question 1:

– how much of the programme should be done with the next machine (e^+e^-)?

– or are we prepared to wait for the next-to-next (hh or $\mu\mu$)?

Timelines?

Sustainability?

Strategic question 3:

– when/how to fold in environmental considerations?

Full use of infrastructures – all projects FCCee considering:

- electrons from injector to beam-dump
- extracting electrons from booster
- use of synchrotron photons

Towards 'Green ILC': similarly @ CERN ILC center futuristic view

Lifecycle assessment:

Study by Arup on carbon footprint and other environmental impacts, done to international standards

Assesses Global Warming Potential of underground civil engineering – raw materials, transport, construction activities

CLIC 380GeV:

 127kton CO2-eq (two-beam option) 290kton CO2-eq (klystron option)

 ILC 250GeV:

266kton CO2-eq

 \rightarrow also points out potentials to reduce Report released summer 2023

Now commissioning extended study to account for accelerator components & detectors

Aidan Robson 41

Flexibility?

Strategic question 4:

– how concrete is the plan / how important is flexibility?

- \blacklozenge Looking ahead to the next-to-next machine:
	- are we ready to make the decision now on the next-to-next machine?
	- is FCC-hh definitely realisable at an achievable cost? (magnets?)
	- what is the timescale for currently-developing technologies to mature? and should we leave space for them to enter?

(muon collider? plasma wakefield acceleration?)

Flexibility?

Strategic question 4:

– how concrete is the plan / how important is flexibility?

- \blacklozenge Looking ahead to the next-to-next machine:
	- are we ready to make the decision now on the next-to-next machine?
	- is FCC-hh definitely realisable at an achievable cost? (magnets?)
	- what is the timescale for currently-developing technologies to mature? and should we leave space for them to enter? (muon collider? plasma wakefield acceleration?)
- \blacklozenge Linear machines are intrinsically flexibile in their run scenarios
	- –> allows to adapt to external factors (physics landscape / budgetary) and postpone decision on next-to-next machine

Cost, community, and scenarios?

Strategic question 5:

– when/how to fold in cost considerations?

– how to consider 'loss of opportunity' if money spent on one thing not others?

Strategic question 6:

– how to we wish to see the (collider) particle physics community evolving?

– concentrated in one large project or allowing room for more, smaller experiments? – FCC-ee up to 4 IPs; LCs up to 2 expts via (ILC) push-pull or (CLIC) 2 IPs

Strategic question 7:

– what should Europe do in the case that CEPC goes ahead?

- extent to which it would be possible to participate?
- or enter into a 'race' for a circular machine?
- or do something complementary e.g. higher √s e+e– ?

Summary

Future visions

Broad agreement across community on the physics we want to do with a next collider – everyone involved would be delighted for *any* Higgs factory to be realised…

However, there can be different routes to the physics:

\bullet Linear Collider

– a Higgs factory as soon as possible, upgradable

– R&D for the machine beyond in parallel; no constraints imposed by the LC

– a strong diversified programme using the LC complex

Initial Linear Collider can be followed (if funding permits) by energy increases and/or independent muon and/or hadron machines with radius and magnets to be determined – can also overlap in time with hadron/muon machines

In the longer future: the civil infrastructure can be used with novel acceleration techniques e.g. plasma

\bullet Circular Collider

– an integrated programme of e+e– and pp – R&D for FCC-hh magnets in parallel, but large-scale civil infrastructure secured at the first stage

– larger experimental community with up to 4 IPs

Initial Higgs Factory civil infrastructure reused (if funding permits) for hadron machine with radius fixed; magnets to be determined. Sequential progression.

Programme fixed to ~2090s or beyond.

Needs careful thought about how best to achieve Higgs Factory and beyond – trade-offs / risks

Hope for strong engagement in these discussions over the next ~year