Future prospects for Gravitational waves

Djuna Lize Croon (IPPP Durham) Corfu, May 2024 djuna.l.croon@durham.ac.uk | djunacroon.com

An ever growing catalogue (GWTC-3)

Gravitational wave experiments

running, planned and proposed

Opportunities in the next decade

- LIGO/Virgo/KAGRA operational (O4 in progress)
- Pulsar Timing Arrays operational
- \cdot LISA $-$ 2035
- Atom interferometers: AION, Magis prototypes developed
- Next generation ground-based:
	- Einstein telescope (2030s?)
	- Cosmic Explorer (2030s?)
- Next generation space-based:
	- DECIGO, BBO, ...

Michelson interferometers

- GW induce changes in path length using interference of a split beam
- Largest interference signal: $\omega_{\rm gw}$ *L c* = *π* 2 \Rightarrow *L* = $\lambda_{\rm gw}$ 4
- $100\,\text{Hz} \rightarrow 750\,\text{km}$ detector
- With Fabry-Perot cavities, can increase the effective optical path length without physically lengthening the path
- Arm lengths down to $\mathcal{O}({\rm km})$

LIGO/Virgo/KAGRA

Plot from the Python Gravitational Wave Interferometer Noise Calculator (pygwinc)

LIGO/Virgo/KAGRA

Plot from the Python Gravitational Wave Interferometer Noise Calculator (pygwinc)

Future ground-based interferometers

Einstein Telescope (ET):

- **-** European
- Underground triangular setup
- **-** Cryogenic mirrors
- More intense laser beam, squeezed light

Future ground-based interferometers

Einstein Telescope (ET):

Seismic noise

- **-** European
- Underground triangular setup \rightarrow
- **-** Cryogenic mirrors
- More intense laser beam, squeezed light

Quantum noise Thermal noise

Future ground-based interferometers

Einstein Telescope (ET):

Seismic noise

- **-** European
- Underground triangular setup \rightarrow
- **-** Cryogenic mirrors
- More intense laser beam, squeezed light

Quantum noise Thermal noise

Voyager:

- **Upgrade to the existing LIGO**
- New technologies such as cryogenically cooled mirrors and improved laser systems
- 2024 white paper

Cosmic Explorer (CE):

- US-based
- two detectors, each with arms 40 kilometers long

NEMO (Neutron Star Extreme) Matter Observatory):

- Proposed in Australia
- high-frequency gravitational waves

Time-delay interferometry

- \bullet Much longer arms, e.g. for LISA $f_{\rm gw} = c/L =$ 3.0×10^5 km/s 2.5×10^6 km $= 0.12$ Hz
- Impossible to maintain an equal distance between multiple SC in orbit \rightarrow time-delay interferometry
- Each SC receives and transmits laser signals \rightarrow laser noise can be subtracted

LISA

- **ESA & NASA**
- Pathfinder mission: 2015
- Launch date: ~ 2035
- LISA Consortium already comprised of $\sim 10^3$ scientists and engineers

LISA (trailing the earth at 50M km in heliocentric orbit)

Pulsar timing

correlations in the arrival times of pulses from multiple millisecond pulsars across the galaxy

Atom interferometry

- Two atom interferometers $\Delta\Phi\equiv\Delta\phi_1-\Delta\phi_2$
- GW modify the light travel time \rightarrow times that the arms spend in excited state different between two interferometers $\rightarrow \Delta \Phi \neq 0 \rightarrow$ phase shift depends on GW strain

Cancel laser noise

Atom interferometry timeline

Astrometry

- Galaxy surveys such as GAIA make precise observations of 10^9 stars in our galaxy
- Gravitational wave signals interfere with the light of those stars as it travels towards the Earth, which would register as very small wiggles in their apparent position
- Compression of the dataset is necessary and possible
- For shifts of about a pc, frequency is similar to that of PTAs: $f_{\rm GW} \sim c/\rm pc \sim 10^{-9} Hz$ $h_c = 10^{-14}$

Moore, Mihaylov, Lasenby, Gilmore, PRL, arXiv:1707.06239

Absorption by binaries

Blas & Jenkins, PRL (2022) 10, 101103

• In the presence of GW,
$$
\ddot{r}^i + \frac{GM}{r^3}r^i = \delta^{ik} \frac{1}{2} \ddot{h}_{kj}r^j
$$

• Can probe via: binary pulsar timing, lunar and satellite ranging

Gravitational wave opportunities

for fundamental physics

Phenomenological opportunities

(not exhaustive!)

Compact object histories Populations of black holes and neutron stars at high redshift

Nuclear physics The dynamics of dense matter **Multi-Messenger Astrophysics**

Early Universe physics Cosmological phase transitions Cosmic strings

Cosmology Independent probe of H_0

Tests of GR Space-time near the horizon

Dark matter Dark object binaries Space-time near a black hole Environmental effects Early Universe signatures **Black hole superradiance** Direct searches for ultralight particles

Histories

GW detectors measure the displacement of test masses: strain amplitude scales with $\propto 1/r$

(The total *energy* of the quadrupole radiation would fall off with $1/r^2$)

 \rightarrow Can probe very high redshifts! E.g. mergers BHs from the very first (pop-III) stars, PBHs...

Image: Cosmic Explorer white paper, *arXiv:2306.13745*

• BNS mergers probe the EoS of nuclear matter under extreme densities (exceeding atomic nuclei)

Image: Yunes, Miller, Yagi, Nature Review of Physics, arXiv:2202.04117

- BNS mergers probe the EoS of nuclear matter under extreme densities (exceeding atomic nuclei)
- Inspiral regime
	- Tidal Deformability imprints on the waveform
- Post-merger/ringdown
	- Ringdown oscillations (frequency/damping time) can tell us about nuclear EOS under extreme conditions
	- Can also show signals of the presence of a phase transition (sudden changes)

Image: Yunes, Miller, Yagi, Nature Review of Physics, arXiv:2202.04117

Cosmology / expansion history

• GW amplitude depends on luminosity distance: $A = -\frac{c}{l} f(M_c,t)$ where $\tilde{M_c}$ d_{L} *f*(\tilde{M}_c , *t*) where $\tilde{M}_c = (1 + z) \frac{(m_1 m_2)^{3/5}}{(m_1 m_1)^{1/5}}$ $(m_1 + m_2)^{1/5}$

Break the mass-distance degeneracy

Bright sirens *EM counterparts*

Host galaxy redshift can be obtained from EM counterpart

Dark sirens *Galaxy catalogues*

Galaxy surveys are used to provide redshift estimates

Spectral sirens *Redshifted masses*

significant shift in posterior However: changing population d parameters leads to a

(*m*¹ + *m*2)1/5 analysis from spectral sirens \rightarrow Cannot separate this

> *image from LVK, ApJ, arXiv:2111.03604*

Bright sirens *EM counterparts*

Host galaxy redshift can be obtained from EM counterpart

Dark sirens *Galaxy catalogues*

Galaxy surveys are used to provide redshift estimates

Spectral sirens *Redshifted masses*

Cosmology / expansion \mathbb{R}^{H} history history

• GW amplitude depends on luminos $\frac{1}{2}$ $\sum_{\frac{20.012}{5}}^{\frac{0.012}{2}}$ $\bm{\tilde{M}_c}$

 $A = \frac{M_{\ell}}{d}$ ivery) sensitive to assumed p
model(shown in numerous oth (Very) sensitive to assumed population model(shown in numerous other works)

image from LVK, ApJ, arXiv:2111.03604

Bright sirens *EM counterparts*

 d_{L}

Host galaxy redshift can be obtained from EM counterpart

Dark sirens *Galaxy catalogues*

Galaxy surveys are used to provide redshift estimates

Spectral sirens *Redshifted masses*

Bright sirens *EM counterparts*

Host galaxy redshift can be obtained from EM counterpart

Dark sirens *Galaxy catalogues*

Galaxy surveys are used to provide redshift estimates

Spectral sirens *Redshifted masses*

• Inflation

- First order phase transitions
- Cosmic strings
- … among other mechanisms

• Inflation

- Imprint as B- modes on the CMB, f $\sim 10^{-16}\,\mathrm{Hz}$
- GW experiments are only competitive with current CMB constraints for blue-shifted spectra
- Such spectra may occur in non-standard scenarios
- Examples are nonlinear (p)reheating dynamics, features in the inflation potential, non-standard cosmologies...

Our cosmic timeline

Time since the Big Bang (s)

Our cosmic timeline

Time since the Big Bang (s)

Our cosmic timeline

Gravitational radiation released in the early Universe travels (nearly) *unimpeded until today*

First order phase transitions

First order phase transitions

First order phase transitions

Snapshot from simulation: Daniel *Cutting, private communication*

Early Universe physics *Phase transitions and GW spectra*

 f (Hz)

Phase transitions and GW spectra

Phase transitions and our cosmic timeline

Phase transitions and our cosmic timeline

Cosmic strings

- 1d defects formed during phase transitions
	- Extremely thin (about a proton width), very long
	- Large mass per unit length (tension μ)

Cosmic strings

- 1d defects formed during phase transitions
	- Extremely thin (about a proton width), very long
	- Large mass per unit length (tension μ)
- Must lose energy
	- Energy density redshifts as $\rho/a^2 \rightarrow$ would lead to cosmic string domination
	- Emit GW through dynamics such as loop formation, cusps, and kinks
	- Typically reach a scaling solution where the number of long strings and loops remains proportional to the volume of the universe.
- SGWB depends primarily on the string tension $G\mu$

Cosmic strings Early Universe physics

Tests of GR

Importance of signal assumption

Ohme and Krishnendu, Universe, arXiv:2201.05418

Tests of GR Search for ER counterpart: GW170817 ruled out a lot of scalar-tensor theories

Probes near-horizon structure of BHs

Waveform analysis

Ohme and Krishnendu, Universe, arXiv:2201.05418

G. Bertone, DC, et al. Scipost, arXiv:1907.10610

G. Bertone, DC, et al. Scipost, arXiv:1907.10610

DC, Ipek, McKeen, PRD, arXiv:2205.15396

Design sensitivity, $\text{SNR} = 8$

Dark binary observation with LVK

…Very sensitive to the assumed formation mechanism

 $M(M_{\odot})$

Late Universe formation (optimistic estimate)

S. Bird et al., PRL, arXiv:1603.00464

Early universe formation

Jedamzik, JCAP, arXiv:2006.11172 Vaskonen Veermae, PRD, arXiv:1908.09752. Hutsi, Raidal, Vaskonen, Veermae, JCAP, *arXiv:2012.02786*

See also Giudice, McCullough, Urbano, JCAP, arXiv:1605.01209

Complementary to other constraints on dark objects

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962, DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697, DC, Sevillano Muñoz arXiv:2403.13072

To conclude

- Currently running and future experiments will probe GW across many decades in frequency
	- Ground-based interferometers probe $1-10^3$ Hz
	- Space-based interferometers will probe $10^{-6} 10^{-1}$ Hz
	- Pulsar-timing arrays probe $10^{-9} 10^{-7}$ Hz
	- Further proposals include atom interferometry, lunar lensing, astrometry...
- This brings great opportunities in astrophysics, nuclear physics, and particle physics
- Not mentioned: other GW detection proposals in the nanomHz band, detecting high frequency GW, superradiance, ...

Thank you!

…ask me anything you like!

djuna.l.croon@durham.ac.uk | djunacroon.com