# Status and prospects of collider searches for dark matter

Rakhi Mahbubani Rudjer Boskovic Institute Corfu Future Accelerators Workshop 2024





#### **Dark matter post naturalness**

Strong motivation for physics beyond the standard model.

What do we know about dark matter?

$$\begin{split} \Omega_{\rm DM} &= 0.25 \times \Omega_{\rm TOT} \mbox{ (CMB + supernovae, Planck)} \\ & \mbox{ Gravitational interactions dominant at large distances} \\ & \mbox{ $\beta$<<1$ during structure formation (DM simulations)} \\ & \mbox{ Small (if any) scattering XS with itself/$\color{V}$/v (DM simulations + baryons)} \\ & \mbox{ $\tau_{\rm DM} \gg \tau_{\rm universe}$} \\ & \mbox{ See Boehm, Nucl.Phys. B 1003 (2024) 116503 and references therein} \end{split}$$

#### **Dark matter post naturalness**



Figure credit: Tongyan Lin arXiv:1904.07915v1

#### **Dark matter post naturalness**



Figure credit: Tongyan Lin arXiv:1904.07915v1

#### **Dark matter at colliders**

Sizeable couplings to SM (large enough for DM-SM thermal equilibrium in early universe).



Direct + indirect detection - see Paolo's talk



Also: extended scalar sectors, Accidental dark matter, Composite dark matter,

This talk: 'minimal' models of DM - pure electroweak multiplets.

#### **Predictive**...

e.g. 
$$\mathcal{L}_{BSM} = i \bar{\chi} \not D \chi - M_{X} \bar{\chi} \chi + \dots$$
 (Dirac fermion)  
The original  
'wimp miracle'  $\sigma \sim \frac{\alpha_{2}^{2}}{M_{weak}^{2}}$   
Saturating thermal relic abundance  
fixes mass  $\Omega h^{2} \approx 0.1 \times \left(\frac{3 \times 10^{-26} cm^{3} s^{-1}}{\langle \sigma v \rangle}\right)$ 

$$M_{\chi} = \begin{cases} 1.1 \text{ TeV (Dirac (1, 2, -1/2) "higgsino")} \\ 2.8 \text{ TeV (Majorana (1, 3, 0) "wino")} \\ 14 \text{ TeV (Majorana (1, 5, 0) "quintuplet" fermion)} \end{cases}$$

This talk: 'minimal' models of DM - pure electroweak multiplets

'Universal' constraints:

Sensitive only to gauge charges and # d.o.f. Insensitive to mass splittings

Mono-X Precision searches

**Mass-splitting constraints**:

Disappearing charged tracks with special focus on "higgsino"

#### **Universal constraints**

#### **Mono-X (X+MET) searches**



9

#### **Mono-X at future colliders**



Quintuplet: 95% exclusion for  $M_X$ < 691 GeV for LHC13 and <3.8 TeV for 30 ab<sup>-1</sup> at FCC-hh (no systematics)

Cao et. al. arXiv:1810.07658

#### Di Luzio et. al. arXiv:1810.10993 Also: Harigaya et. al. arXiv:1504.03402 Precision searches in Drell-Yan

New EW multiplets give universal corrections to the Drell-Yan processes  $pp \rightarrow l^+l^-$ ,  $l^-$ ,  $l^- \rightarrow f \overline{f}$  at lepton colliders).



Can be sizeable close to pair-production threshold.

Parametrized by gauge boson form factors  $\Pi$ :

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{g^2 C_{WW}^{\rm eff}}{8} W^a_{\mu\nu} \Pi(-D^2/m_{\chi}^2) W^{a\mu\nu} + \frac{g'^2 C_{BB}^{\rm eff}}{8} B_{\mu\nu} \Pi(-\partial^2/m_{\chi}^2) B^{\mu\nu}$$

#### **Precision searches in Drell-Yan**

Di Luzio et. al. arXiv:1810.10993

Cut-and-count analysis

| Х          | Thermal<br>M <sub>X</sub> (TeV) | HL-LHC | HE-LHC | FCC100 | CLIC3               | Muon14              |
|------------|---------------------------------|--------|--------|--------|---------------------|---------------------|
| higgsino   | 1.1                             | -      | -      | _      | 0.4                 | 0.6                 |
| wino       | 2.8                             | -      | -      | 0.4    | 0.6 &<br>[1.0, 2.0] | 1.0                 |
| quintuplet | 14                              | 0.9    | 1.8    | 4.4    | 2.9                 | 3.5 &<br>[5.1, 8.7] |

95% CLS exclusion for: HL-LHC ( $\sqrt{s} = 14 \text{ TeV}$ , L = 3 ab<sup>-1</sup>); HE-LHC ( $\sqrt{s} = 28 \text{ TeV}$ , L = 10 ab<sup>-1</sup>), FCC100 ( $\sqrt{s} = 100 \text{ TeV}$ , L = 20 ab<sup>-1</sup>), CLIC3 ( $\sqrt{s} = 3 \text{ TeV}$ , L = 4 ab<sup>-1</sup>), Muon14 ( $\sqrt{s} = 14 \text{ TeV}$ , L = 20 ab<sup>-1</sup>)

**Mass splitting constraints** 

#### **Mass splitting**



'Chargino'  $c\tau = 6.6 \text{ mm}$  (higgsino) 6 cm (wino)



#### **'Disappearing' track**





ATLAS (CMS setup similar)

ATLAS require 4 pixel hits

#### ATLAS results arXiv:2201.02472



#### **Room for improvement?**

Decrease MET cut (MET correlated with vector sum of higgsino  $p_T$ , gives loss in efficiency).



Significant increase in background

Use soft pion?

Exploit 'free' forward boost.

Decrease # pixel hits for selection.

RM, Schwaller, Zurita arXiv:1703.05327



Hmmm...

3-layer without soft track 3-layer with soft track Both Backgrounds  $p_T$  cut: 40 GeV ATLAS 4-layer 1/r scaling No Hadron/electron ---- $p_T$  cut: 20 GeV  $p_T$  cut: 20 GeV No Fake Pure higgsino Constant scaling \_  $p_T$  cut: 40 GeV  $p_T$  cut: 20 GeV No Backgrounds .....  $p_T$  cut: 20 GeV  $10^{3}$  $10^{2}$  $c\tau \,[\mathrm{mm}]$  $10^{1}$  $\mathcal{L} = 136 \text{ fb}^{-1}$  $10^{0}$ 300 400 100 200 500 600 700  $m_{\chi}$  [GeV]

Gignac, RM, Kilic, Youn arXiv:2211.06949





#### The problems with dE/dx



Need independent mass measurement for momentum determination.

22

#### **Disappearing charged tracks: prospects**



Exclusion of almost entire thermal window at FCC100



Capdevilla et. al. arXiv:2405.08858

For thermal higgsino need 'soft tracks' and Muon3.

#### A message from our sponsors

"Disambiguating DM with dileptons + MET" - Royal Society collaboration RBI + Southampton, coming soon.

This talk generated 739 kg CO<sub>2</sub>eq.

## Environmental sustainability in basic research

A perspective from HECAP+

Sustainable HECAP+ Initiative

Accepted for publication in JINST!

Please read, and endorse here: https://sustainable-hecap-plus.github.io/



Unlike cosmological and astroparticle detectors, colliders can probe subleading components of DM.

Searches for pure EW multiplet DM at colliders:

Status: dim (particularly for higgsino)  $M_X > 210$  GeV.

Prospects: bright(er)

But we need to wait for muon collider (?!)

Unless we can we find a way to exploit smoking gun tracklet  $p_{\tau}$ .



#### **Effective theory for weak doublet fermion**



#### **Leveraging charged component**



$$egin{array}{l} {\Gamma}_{\pi\chi^0} \propto \Delta^3_+, \ {\Gamma}_{\ell
u\chi^0} \propto \Delta^5_+. \end{array}$$

For thermal relic,  $c\tau = 6.6 \,\mathrm{mm}$ 

#### **ATLAS** analysis

| Signal production channel                                          | Electroweak     | c production    | Strong production |               |
|--------------------------------------------------------------------|-----------------|-----------------|-------------------|---------------|
| $	au_{	ilde{\chi}_1^{\pm}}$                                        | 0.2 ns          | 1.0 ns          | 0.2 ns            | 1.0 ns        |
| $E_{\rm T}^{\rm miss}$ trigger                                     | $770.8\pm6.8$   | $775.3\pm5.2$   | $3177 \pm 22$     | $3177 \pm 22$ |
| Lepton veto                                                        | $769.4 \pm 6.8$ | $774.2 \pm 5.2$ | $3165 \pm 22$     | $3165 \pm 22$ |
| $E_{\rm T}^{\rm miss} > 200 { m ~GeV}$                             | $394.5 \pm 5.2$ | $390.9 \pm 4.0$ | —                 | —             |
| $E_{\rm T}^{\rm miss} > 250 {\rm ~GeV}$                            | -               | () <b></b> )    | $1852 \pm 17$     | $1852 \pm 17$ |
| Leading jet $p_{\rm T} > 100 \text{ GeV}$                          | $389.7 \pm 5.2$ | $384.9 \pm 4.0$ | $1848 \pm 17$     | $1848 \pm 17$ |
| Third jet $p_{\rm T} > 20 \text{ GeV}$                             | _               |                 | $1834 \pm 17$     | $1834 \pm 17$ |
| $\Delta \phi_{\min}^{\text{jet}-E_{\text{T}}^{\text{miss}}} > 1.0$ | $366.7\pm5.0$   | $362.3\pm3.9$   | _                 | -             |
| $\Delta \phi_{\min}^{\text{jet}-E_{\text{T}}^{\text{mass}}} > 0.4$ | -               | —               | $1578 \pm 16$     | $1578 \pm 16$ |
| Pixel tracklet selection ( $p_{\rm T} > 60 \text{ GeV}$ )          | $8.6\pm0.6$     | $27.3\pm0.8$    | $16.0 \pm 1.3$    | $105.0\pm3.3$ |
|                                                                    |                 |                 |                   |               |

ά.

#### **Backgrounds**



#### **EFT vs full EW form factor correction**



Figure 1. Kinematical dependence of the form factor for fermions (red) and scalars (blue) running in the loop, and in the EFT limit (black). Full and dashed lines denote respectively real and imaginary part of the form factor.



### Dark matter (post naturalness)