The AFLAS ITK Strip Detector for the Phase-II LHC Upgrade

Serhat Ördek on behalf of the ATLAS ITk Collaboration

Workshop on Future Accelerators Corfu, 22nd of May 2024

The ATLAS experiment

Multi-purpose detector at the LHC

- Detector operated since 2010, collected around 250 fb^{-1} of physics data
- For some processes, e.g. *HH* production, highest current rate is too low
- Motivates High-Luminosity LHC upgrade to increase collision rate
- Also increases the number of interactions per pp bunch crossing

Mean Number of Interactions per Crossing DESY. Corfu 2024 | The ATLAS ITk Strip Detector | Serhat Ördek | serhat.oerdek@desy.de

What does the pile-up increase mean in practice?

 $t\bar{t}$ events at current LHC and HL-LHC pile-up levels

Upgrading the detector

ATLAS Inner Tracker design

- Current Inner Detector to be swapped out for ITk
- All-silicon detector with two subsystems: pixels and strips
- Higher radiation tolerance
- Faster response
- Increased channel density
- Bigger coverage in η
- Reduced material budget

• Pixels are innermost detector layer, strips around it

Expect more hits from strips at small $|\eta|$

η

- Pixels are innermost detector layer, strips around it •
- Expect more hits from strips at small $|\eta|$ •
- Focusing on strip detector, pixels covered in Emily's talk tomorrow •

η **= 2.0**

 $\eta = 3.0$

- Pixels are innermost detector layer, strips around it •
- Expect more hits from strips at small $|\eta|$ ٠
- Focusing on strip detector, pixels covered in Emily's talk tomorrow •
- Strip detector split into barrel and endcap subsystems ٠

Barrel modules

- n^+ -in-p silicon sensors, more radiation resistant than p-in-n
- Two types of modules in the barrel: long strip and short strip
- Electronics glued on sensor surface: hybrids and power boards
- Modules are arranged in staves to construct 4 barrel layers
- Short strips in inner, long strips in outer two layers of barrel

Long strip module

Endcap modules

- Consists of 6 discs
 around beampipe
- Wedge-shaped petals carry the modules
- Need to cover more area at larger distance from centre

Endcap modules

- Consists of 6 discs
 around beampipe
- Wedge-shaped petals carry the modules
- Need to cover more area at larger distance from centre
- Wider modules further up the petal
- Outer ringmodules
 consist of two sensors

ABCStar

DESY. Corfu 2024 | The ATLAS ITk Strip Detector | Serhat Ördek | serhat.oerdek@desy.de

HCCStar

AMACStar

Controls moduleDistributes power

HCCStar

Collects data from ABCs
Sends them out for further processing

AMACStar

Controls moduleDistributes power

Module quality control

1400 E

1200 E 1000 E

> > 0

635.8 e

641.0 e

128

Thermal cycling

Main test: electrical performance at $+20^{\circ}$ C ($+68^{\circ}$ F) and -35° C (-31° F) •

654.1 e

256

672.4 e

[°C]

512

677.1 e

384

10 times at both temperatures ٠

Input Noise (ENC

DESY, Corfu 2024 | The ATLAS ITk Strip Detector | Serhat Ördek | serhat.oerdek@desy.de

Module support structures

Staves and petals

- Modules loaded onto both sides of staves and petals
- Carbon fibre based \Rightarrow low mass but mechanically stable
- Good thermal and electrical properties, integrated cooling
- "End of substructure" (EoS) cards: single crossing point between what happens inside and outside a stave/petal

DESY. Corfu 2024 | The ATLAS ITk Strip Detector | Serhat Ördek | serhat.oerdek@desy.de

Barrel and endcap integration

Outermost cylinder of barrel

Number of
staves/petalsNumber of
modulesBarrel
@CERN39210976Endcaps
@Nikhef & DESY192*23456*2

Stereo information by:

- tilting modules on staves
- tilting and overlapping petals in endcap discs

Endcap structure DESY. Corfu 2024 | The ATLAS ITk Strip Detector | Serhat Ördek | serhat.oerdek@desy.de

Module challenge: "cold noise"

- In 2022, technical problem with barrel modules found
- While working fine at room temperature, high noise spikes observed when testing modules at -20° C
- Caused by vibrations of capacitors on power board which travelled through glue into sensors and affected ABCs
- Mitigation strategy: change glue used on sensor
- After this change: no longer happens in long strip nor endcap modules
 - Residual noise on short strip modules, studies of mitigation strategies and performance implications ongoing

Module challenge: sensor cracking

- Happens when cold testing fully loaded staves or petals
 - After cooling down to -35° C and testing electrical performance, found early breakdown in modules
- Modules did not have this before \Rightarrow sensors got fractured after loading
- At cold temperatures, hybrid/power board flexes curl up more strongly than a sensor (CTE mismatch)
- Free sensor can follow, but stave/petal keeps it in place
- \Rightarrow Sensor gets locally bent, leading to mechanical stress
- Currently exploring mitigation strategies (not mutually exclusive):
 - Harder glue under sensor to prevent bending
 - Larger gaps between flexes to reduce curvature
 - Intermediate layer ("interposer") between flexes and sensor (also helps with cold noise)

Construction status and timeline

- Production of sensors, chips and local/global support structures well underway
- Transitioning from preproduction to full production for modules
- Ready for integration of staves/petals into barrel/endcaps

		To	oday																		
2024						2025				2026				2027				2028			
C	ג2		Q 2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
					Bar	rel module	preprodu	uction		2				1				2 			
			E	C module	preprodu	uction															
										Long strip module											
																Sho	ort strip m	odules			
															EC Mod	ules					
																	Barrel	integratior	n i		
																	Endca	ps integra	tion		
															•	DESY E	C at CER	N			
																•	NIKHEF	EC at CE	RN		

Conclusion

- Currently building fully silicon-based tracking detector for ATLAS during HL-LHC phase
- Lighter, faster, more precise and more radiation resistant than current Inner Detector
- Production of different components well underway, preparing for integration
- While technical problems were found during pre-production, promising mitigation techniques are identified
- Mass production phase starting soon!

Backup