Workshop on Future Accelerators

MAY 19 - MAY 26, 2024

European Institute for Sciences and Their Applications Corfu Summer Institute

Gaseous Detector Technologies for Future Collider Experiments

Maxim Titov, CEA Saclay, Irfu, France

2 nd Corfu Workshop on Future Accelerators (Corfu2024), Corfu, Greece, May 19-26, 2024

Gas-Based Detectors: A Brief History

1968: MWPC – Revolutionising the Way Particle Physics is Done

Before MWPC: Detecting particles was a mainly a manual, tedious and labour intensive job – unsuited for rare particle decays

1968: George Charpak developed the MultiWire Proportional Chamber, (MWPC), which revolutionized particle detection & HEP, *and marked transition from Manual to Electronics era*

"Image" & "Logic (electronics)" tradition combined into the "Electronics Image" detectors during the 1970ies

1983/1984: Discovery of W and Z Bosons at UA1/UA2

UA1 used the largest wire / drift chamber of its day (5.8 m long, 2.3 m in diameter)

It can be seen in the CERN Microcosm Exhibition

Discovery of W and Z bosons C. Rubbia & S. Van der Meer,

1984:

Time Projection Chamber (TPC) in Particle and Ion Physics

PEP4 (SLAC)

ALEPH (CERN)

- **Invented by David Nygren (Berkeley) in 1974**
- ✓ **Proposed as a central tracking device for the PEP-4 detector @ SLAC in 1976**

STAR

50

200

 $2 * 210$

 $2.8 * 11.5$

 $6.2 * 19.5$

140000

 0.5

Ar/CH4

 $(90:10)$

135

38

230

360

500-2000

1000-3000

7

80

wire

Length (cm)

Pad size (mm)

Total # pads

Gas Mixture

An ultimate drift chamber design is TPC concept - 3D precision tracking with low material budget & PID through differential energy loss dE*/*dx measurement and/or cluster counting dN_{cl}/dx tech.

ILC

 $32₂$

170

 $2 * 250$

MPGD

 $2 * 6$

1200000

 \blacktriangle

 $(93:5:2)$

230

50

70

300

70-150

500-800 \leq 5

98

- Modern heavy ion collisions (RHIC, EIC)

ALICE

85

250

 $2 * 250$

wire

 $4 * 7.5$

 $6*10(15)$

560000

 0.5

Ne/CO₂

 $(90:10)$

400 88

220

220

300-2000

600-2000

7

95

- Liquid and high pressure TPCs neutrino and dark matter search

2021: Replace MWPC-readout with 4-GEM staggered holes

2008: Original Gaseous Detectors in LHC Experiments

LHCb: Tracker (straw tubes), Muon detector (MWPC, GEM)

Mostly wires, straws, RPCs

Gaseous Detectors: From Wire/Drift Chamber → **Time Projection Chamber (TPC)** → **Micro-Pattern Gas Detectors**

Primary choice for large-area coverage with low material-budget (+ dE/dx measurement)

1990's: Industrial advances in photolithography has favoured the invention of novel microstructured gas amplification devices (MSGC, GEM, Micromegas, …)

Examples of Gaseous Detectors for Future Colliders:

HL-LHC Upgrades: Tracking (ALICE TPC/MPGD); Muon Systems: RPC, CSC, MDT, TGC, GEM, Micromegas; Future Hadron Colliders: FCC-hh Muon System (MPGD - OK, rates are comparable with HL-LHC) Future Lepton Colliders: Tracking (FCC-ee / CepC - Drift Chambers; ILC / CePC - TPC with MPGD readout) Calorimetry (ILC, CepC – RPC or MPGD), Muon Systems (OK)

Future Election-Ion Collider: Tracking (GEM, mWELL; TPC/MPGD), RICH (THGEM), TRD (GEM)

Micro-Strip Gas Chamber (MSGC): An Early MPGD

Multi-Wire Proportional Chamber (MWPC)

Typical distance between wires limited to ~1 mm due to mechanical and electrostatic forces

Excellent spatial resolution

Micro-Pattern Gaseous Detector Technologies (MPGD)

- ✓ *Gas Electron Multiplier (GEM)*
- ✓ *Thick-GEM (LEM), Hole-Type & RETGEM*
- ✓ *MPDG with CMOS pixel ASICs ("GridPix")*

Micromegas GEM THGEM

- *Micro-Pixel Chamber (µ-PIC)*
- $μ$ -*Resistive WELL (μ-RWELL)*
- ✓ *Resistive-Plate WELL (RPWELL)*

Rate Capability: MWPC vs GEM:

Gas Electron Multiplier (GEM)

Thin metal-coated polymer foil chemically pierced by a high density of holes

A difference of potentials of ~ 500V is *+* applied between the two GEM electrodes.

 \rightarrow the primary electrons released by the ionizing particle, drift towards the holes where the high electric field triggers the electron multiplication process.

Electrons are collected on patterned readout board.

- \checkmark A fast signal can be detected on the lower GEM electrode for triggering or energy discrimination.
- \checkmark All readout electrodes are at ground potential.
- \checkmark Positive ions partially collected on GEM electrodes

Avalanche Simulation in GEM & Triple-GEM Structures

Animation of the avalanche process (Garfield++): monitor in ns-time electron/ ion drifting and multiplication in GEM

Full decoupling of amplification stage (GEM) and readout stage (PCB, anode)

Amplification and readout structures can be optimized independently !

MICE

http://cern.ch/garfieldpp/examples/gemgain

Mixed Totem

Micro Mesh Gaseous Structure (MICROMEGAS)

Micromesh Gaseous Chamber: micromesh supported by 50-100 mm insulating pillars

Small gap: fast collection of ions

 $50 - 100 \mu m$

50-100µm

Y. Giomataris, NIMA376 (1996) 29

Pixel Readout of MPGDs: "GridPix" Concept

"*InGrid" Concept: By means of advanced wafer processing-technology INTEGRATE MICROMEGAS amplification grid directly on top of TIMEPIX CMOS ASIC*

3D Gaseous Pixel Detector → *2D (pixel dimensions) x 1D (drift time)*

Other MPGDs Concepts: THGEM, µRWELL, RPWELL

THGEM Manufactured by standard PCB techniques of precise drilling in G-10 (and other materials) and Cu etching

STANDARD GEM THGEM

0.1 mm rim to prevent discharges

L. Periale, NIMA478 (2002) 377 LEM!: P. Jeanneret, PhD thesis, 2001

µRWELL and RPWELL

High-rate µRWELL prototypes made by new techniques

https://Indico.cem.ch/event/889369/contributions/4020066/attachments/ 2115302/3560690/RD51_collabration_meeting_Yout.vpptx

µRWELL with 2D-Strip **Readout - For RD51 Tracker**

https://indico.cem.ch/event/1040996/contributions/4404219/attachments/ 2266859/3849374/2021-06-18_RD51-Collaboration%20Meeting-ZhouYi-Final.pdf

Development of RWELL detectors for large area & high rate applications

https://indico.oern.ch/event/889369/contributions/4020068/attachments/ 2115585/3559626/RD51CollaborationMeeting-egf.pdf

Early MPGD Detector Concepts @ CERN Experiments

Legacy of the CERN-RD51 Collaboration: 2008-2023

RD51 CERN-based "TECHNOLOGY - DRIVEN R&D COLLABORATION" was established to advance MPGD concepts and associated electronics readout systems

- ✓ *Many of the MPGD Technologies were introduced before the RD51 was founded*
- ✓ *With more techniques becoming available, new detection concepts were introduced and the existing ones were substantially improved during the RD51 period (2008-2023)*
- ✓ *Beyond 2023, RD51 served as a nuclei for the new DRD1 ("all gas detectors") collaboration, anchored at CERN, as part of the ECFA Detector R&D Roadmap*

Legacy of the CERN-RD51 Collaboration:"RD51" Model

The success of the RD51 is related to the "RD51 model" inperforming R&D: combination of generic and focused R&D with bottom-up decision processes, full sharing of experience, "know-how", and common infrastructure, which allows to build community with continuity and institutional memory and enhances the training of younger generation instrumentalists.

Scientific organisation in 7 working groups

- WG1: New structures and technologies
- **WG2:** Detector physics and performance ۰
- **WG3:** Training and dissemination \bullet .
- **WG4:** Software & Simulation Tools \bullet
- **WG5: Readout Electronics (RD51 SRS)** \bullet .
- **WG6: MPGD Production & Industrialization** ٠
- WG7: Common test facilities

CERN Courier (5 pages) Volume, October 2015 Deter RD51 and the rise of micro-pattern gas detectors

inds of work involved. Top tors of RDS1 (banners dire: RDS)

lying power typical of solid-state pixe re the thick GEM (THGEM lier (LEM), pa or thick CEA stive plate WELL (RPWELL)

https://rd51-public.web.cern.ch/

Community and Expertize (RD51 Scientific Network)

$RD51$: 3 MAJOR ASSETS

MPGD Technology Development & Dissemination

R&D Tools, Facilities and Infrastructure

2022: MPGDs for High Luminosity LHC Upgrades

The successful implementation of MPGDs for relevant upgrades of CERN experiments indicates the degree of maturity of given detector technologies for constructing *large-size detectors, the level of dissemination within the HEP community and their reliability*

https://ep-news.web.cern.ch/content/atlasnew-small-wheel-upgrade-advances-0

https://ep-news.web.cern.ch/upgraded-alice-tpc https://ep-news.web.cern.ch/content/demonstratingcapabilities-new-gem

State-of-the-Art in Tracking Detectors: 3 Major Technologies

Silicon Tracking (strips, pixels, 3D, CMOS, MAPS)

Gaseous Tracking (MPGD, RPC, TPC, Wire and Drift Chambers) → **Core of CERN-DRD1 Collaboration**

Fiber Trackers:

E.g: LHCb Tracker Upgrade (Sci-fibers with SiPM readout):

inst

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: June 12, 2020 ACCEPTED: June 28, 2020 PUBLISHED: October 22, 2020

INTERNATIONAL CONFERENCE ON INSTRUMENTATION FOR COLLIDING BEAM PHYSICS

NOVOSIBIRSK, RUSSIA 24-28 FEBRUARY, 2020

M. Titov, JINST15 C10023 (2020)

Next frontiers in particle physics detectors: INSTR2020 summary and a look into the future

M. Titov

Commissariat à l'Énergie Atomique et Énergies Alternatives (CEA) Saclay, DRF/IRFU/DPHP, 91191 Gif sur Yvette Cedex, France

E-mail: maxim.titov@cea.fr

Gaseous Tracking (Drift Chambers, TPC, MPGD) @ Future Colliders

The Evolution of Drift Chambers & Future e+e- Colliders

present

futuro

An ultra-light drift chamber (IDEA concept) targetted for FCC-ee and CePC was inspired by DAFNE KLOE Wire Chamber and by more recent version of it for MEG2 experiment

IDEA: full stereo, high resolution, ultra-light drift chamber

- \cdot 4000 mm length, 350-2000 mm radius in \sim 2T solenoid B-field
- 14 SL \times 8 layers, 24 ϕ -sectors
- 56k sense wires, 20 µm diameter W (-Au)
- \sim 290k field and guard wires, 40/50 µm diameter Al(-Ag))
- He(90%) + i-C4H10
- $X/X0 \sim 0.1$ % (end plate incl. FEE with $X/X0 \sim$ few %)
- Spatial resolution: $\sigma \sim 100 \mu m$, mom. resolution: $\sigma(pt)/pt < 0.3$ %

Future R&D Challenges:

- *Aging studies for new modular DC designs (smaller size drift cells & higher fields, higher gain for cluster counting?)*
- *New wire materials- new alloy metallized carbon wire* → *specific topics: wire corrosion, coating quality, …*
- *Operation with hydrocarbon-free gas mixtures*

TPC with MPGD Readout for ALICE Upgrade and ILC

ALICE TPC → **replace MWPC with 4-GEM staggered holes** (to limit space-charge effects)

TPC reinstallation in the ALICE cavern (August 2020)

- Upgrade for continuous TPC readout @ 50 kHz Pb-Pb collisions

- Phys. requirements: $IBF < 1\%$. Energy res. $\sigma(E)E < 12\%$

ILC –TPC with MPGD-based Readout

Target requirement of a spatial resolution of 100 um in transverse plane and dE/dx resolution $<$ 5% have been reached with all technologies (GEM, MM and GridPix)

ILC: gating scheme, based on large-aperture GEM

- \rightarrow Machine-induced background and ions from gas amplific.
- \rightarrow Exploit ILC bunch structure (gate opens 50 us before the first bunch and closes 50 us after the last bunch)

Towards Large-Scale Pixel "GridPix" TPC

Testbeams with GridPixes: 160 GridPixes (Timepix) & 32 GridPixes (Timepix3)

3 modules for LP TPC @ DESY: 160 (1 x 96 & 2 x 32) GridPixs 320 cm² active area, 10,5 M. channels, new SRS Readout system

Crucial considerations for FCC-ee / CEPC @ Z pole running:

- primary ionization of the gas & backgrounds
- ions from the gas amplification stage;
- power consumption (no power pulsing);
- operation at 2 T during the Z-peak running;

Pixelated readout TPC has been formally chosen as the BASELINE TRACK DETECTOR in the CEPC Physics and Detector TDR document

Future R&D Challenges:

- **H. Qi** *cost reduction* • *Optimal pad size to improve track resolution: pixel size ~ 200 um* →
- *Ion backflow suppression (double grid, graphene coating)*
- *Baseline gas Ar/CF4/iC4H10 operation to be verified (replacement of CF4 with* w*t ~ 20 is difficult)*
- *Reduction of resistive protection layer s* → *sparking & radiation hardness of Gridpix fragile structure*

Cluster Counting / Charge Summation / Granularity

Simulation of PID with gaseous tracking and timing in ILD Prototype

Current full ILD reconstruction:

- \checkmark 6 mm pads \to 4.6 % dE/dx resolution
- 6 mm \rightarrow 1 mm: 15% improved resolution via charge summing (dE/dx)
- \checkmark 6 mm \Rightarrow 0.1 mm: 30% improved res. via cluster counting (dN/dx)

✓ **Cluster Counting promises a few times better dE/dx resolution & separation power:**

- \rightarrow in time (small drift cells): requires very fast electronics
- \rightarrow in space (TPC + pixelated endplates): requires good cluster finding algorithm
- ✓ Cluster Counting ia an attractive option and is complementary to classical dE/dx by the spread charge
- \rightarrow Some groups focus on it and ongoing for CEPC, FCC-ee…

Gaseous Tracking (MPGD) @ Nuclear Physics & EiC Collider

MPGD Tracking @ Nuclear Physics Experiments

UNIVERSITY

Gaseous Detectors @ HL-LHC: ATLAS Muon System Upgrade

Large-Area Micromegas for ATLAS NSW Upgrade

Resistive MM for ATLAS NSW Muon Upgrade:

Standard Bulk MM suffers from limited efficiency at high rates due to discharges induced dead time Solution: Resistive Micromegas technology:

- Add a layer of resistive strips above the readout strips
- Spark neutralization/suppression (sparks still occur, but become inoffensive)

Still, main issue encountered: HV unstability

==> found to be correlated to low resistance of resistive strip anode \equiv = applied solutions + passivation in order to deactivate the region where R<0.8 MΩ

Mass-production (in collaboration with industry), sector integration of large-area (~1200m²) MM:

- Changing from lab-sized detectors to large, mass producible detectors forced some changes that ended up reducing the MM performance and stability with the nominal gas mixture:
	- → **Replace Ar/CO2 with Ar-CO2-iC4H10 (93-5-2)**
- **GIF++ tests and extrapolation to Run 3 conditions are convincing and validates the use of the new mixture**
- The decision of operating MM with isobutane in Run3 demands the parallel execution of a long-term test program

Gaseous Detectors @ HL-LHC: CMS and LHCb Muon System Upgrade

CMS Large-Area GEMs (GE2/1, ME0) for HL-LHC Upgrade

GE21 Detector System

- 72 chambers arranged in 2 layers installed
- On-chamber and off-chamber
	- 4 triple GEM modules per chamber
- 20[°] Chambers, layout similar to GE1/1, but covering much larger surface. (1.62<h<2.43)
- hit rate < 2 kHz/cm² (GE1/1 was up to 5 kHz/cm²)

MEO Detector System

- 36 Stacks 6 layers each
- 20º Stacks. Module Size comparable with GE1/1 chamber but covering high eta region $(2 < h < 2.8)$
- Background \approx 10² higher that GE2/1, very demanding from performance point of view

Triple GEM for HL-LHC in CMS: ME0

High granularity and spatial segmentation for for efficient matching of muon stubs to the offline pixel tracks.

Multi-layered structure to discriminate muon against neutrons (uncorr hits).

Detector requirements

- Rate-Capability: up to 150kHz/cm²
- Ageing: 7.9 C/cm² integrated charge in 10 yrs

R&D needed to optimize the technology for operation of large area detector in very high rate environment

Discharge and x-talk mitigation strategy **GEM Foils Stack Design changes:**

- GEM1 & GEM2 double segmented for \bullet discharge mitigation
- GEM3 single side (toward the Drift) segmented to reduce "cross-talk" effects

Aging test tests

No aging observed anywhere in Ar:CO₂ up to 1.5 C/cm^2 => 7,9 $C/cm2$ expected by 2023

high rate layout

 $.08$

 $.06$

 $.04$

 $.02$

lo sa

0.96

0.94

Optimization of GEM foil layout for high rates

- 0.92 Fine foil segmentation along phi direction \rightarrow reduced hit rate per sector \rightarrow contained gain drop due to voltage drops on protection resistors
- Segmentation independent of flux shape

September 2020: 144 GEM GE1/1 chambers installed

Additional station GE2/1 and ME0 \rightarrow **same technical solution successfully adopted for the GE1/1**

ATLAS and CMS RPC Upgrades for HL-LHC

ATLAS BIS78 Upgrade – Pilot Project (LS2): ATLAS BI RPC Upgrade (LS3):

Bakelite: 1.8 mm \rightarrow 1.2 mm

ATLAS BI RPC Upgrade

Gap size: $2 \text{ mm} \rightarrow 1 \text{ mm}$

Front-End board

New generation of RPC

- \rightarrow Higher rate capability: \rightarrow kHz/cm²
- > Longer longevity: >10 years @ HL-LHC
- \rightarrow Higher spatial resolution: ≤ 1 cm
- \rightarrow Higher time resolution: ~ 0.5 ns

\triangleright Reduced bakelite thickness:

- Less voltage loss in bakelite \rightarrow improve the rate capability, larger induced signals
- \triangleright Reduced gap size:
	- Less charge produced per event \rightarrow improve longevity,
	- Less high voltage applied but higher field \rightarrow better time

\triangleright New generation FE electronic:

- Higher amplification factor and high S/N ratio to compensate the lost gas amplification.
- \triangleright Improved readout panel and method
	- Better mechanics structure, better signal transmission and better spatial resolution.

New LinkSystem (off-detector electronics): Increase readout frequency from 25 ns \rightarrow 1.56 ns No changes in the RPC detectors:

New 72 RPC detectors will be installed in the two last endcap station RE3/1 and RE4/1 to extend RPC n coverage from 1.8 to 2.4.

- **Improved RPCs:** Improved hit position resolution along
- strips (\approx 2cm)
- Rate capability up to 2 kHz/cm²

CERN Detector Seminars in 2022: LS2 Upgrades

Major MPGDs developments for ATLAS, CMS, ALICE upgrades, towards establishing technology goals and technical requirements, and addressing engineering and integration challenges … and first results from Run 3 !!!

"The New Small Wheel project of ATLAS" by Theodoros Vafeiadis (17 Jun 2022) https://indico.cern.ch/event/1168778/

"Continuous data taking with the upgraded ALICE GEM-TPC" by Robert Helmut Munzer (24 Jun 2022), https://indico.cern.ch/event/1172978/

"The GEM detectors within the CMS Experiment" Michele Bianco (08 Jul 2022) https://indico.cern.ch/event/1175363/

All three major LHC upgrades, incorporating MPGDs, started their R&D in close contact with RD51, using dedicated setups at GDD-RD51 Laboratory

Resistive Plate Chambers: Performance & Trends

FCC-hh $HL-HC$ Trigger and BX \triangleright Improve the rate capability **LHC** --- LHC "now" \checkmark from o(100 Hz/cm²) tagging at 100 \rightarrow o(1 kHz/cm²) --- HL-LHC திராஜனடியைத் LHC / HL-LHC: \rightarrow o(10 kHz/cm²) --- FCC-hh 90 Experimental $p \approx 4x10^{10} \Omega$ cm *Future R&D Challenges:* Simulated Rb $p = 8 \times 10^{10} \Omega$ cm Efficiency • *Will 10 kHz/cm2 be reachable and sustainably for 10-* 70 *20 years of future collider operation?* 60 • *What will be the trigger and aging performance with eco-friendly mixtures ?* 50 200 Hz/cm² 2 kHz/cm² • *MRPC challenges to produce large-areas of low* 10^{2} $10⁴$ 1 ffc *resistivity glass*

Multi-Gap Resistive Plate Chambers (MRPC):

Rate (Hz/cm⁻)

Resistive MPGD Structures: Performance & Trends

SINGLE-STAGE DESIGNS with RESISTIVE MATERIALS and related detector architecture → **μPIC, μRWELL, small-pad res. MM (proposed for ATLAS HL-LHC Forward Muon Tagger), RPWELL** → **improves detector stability; single-stage is advantage for assembly, mass production & cost**

Diamond-like carbon (DLC) resistive layers :

- \rightarrow Solutions to improve high-rate capability (\geq MHz)
- \rightarrow Spark Protection
- \rightarrow Resistive Spreading
- \rightarrow Possibillity to make capacitive sharing

Future R&D Challenges:

• *Radiation-induced modification of surface resistivity after the very high radiation dose*

"STD kit'

$2013 \rightarrow$ Resistive layer applied to MM structures High-rate detectors 10Mhz/cm2 Medium-rate detectors 100kHz/cm2 Side evacuation of the charges Charge evacuation inside active area Resistive Strip
0.5–5 ΜΩ/cm 2013 2015 2 layers with screen printed pads Screen printed resistive strips (ATLAS NSW) α r or 2015 2020 1 full DLC layer 2 DLC layers without patterns

m**RWELL High-Rate Layout O(Mhz/cm2) for LHCb Upgrade & Medium-Rate Layout for FCC-ee / CePC**

Muon Systems at Future Colliders (FCC, LHeC, Muon)

✓ **Muon System at ILC: no challenges, same technology as for HCAL (RPC, MPGD)**

✓ **Muon System at LHeC: CDR update uses design similar to Phase 2 in ATLAS, and in particular, Barrel Muon - second generation RPC and small Monitored Drift Tubes:** 1 layer composed of a triplet of RPC 1mm gas-gaps and ~8 layers of MDT tubes assembled in station of \sim 2 m²2

Muon System for the FCC-hh Collider

Barrel Muon system (2 layers) : 2000 m²total Endcap Muon System (2 layers): 500 m²total Forward Muon System: (4 layers): 320 m²total

ATLAS MDT Drift Tubes:

ATLAS Muon System HL-LHC: (kHz/cm²):

LHCb Muon System (MWPC):

Table 4.5: Expected rates on the muon detector when operating at an instantaneous luminosity of 2×10^{33} cm⁻²s⁻¹ at a collision energy of 14 TeV. The values are averages, in kHz/cm², over the chamber with the minimum illumination, the whole region and the chamber with maximum illumination. The values are extrapolated from measured rates at 8 TeV.

HL-LHC muon system gas detector technology will work for most of the FCC detector area

Rad-hard design and hydrocarbon-free gas mixture studies will be needed for the very forward region ((R < 1m; Rate ~ 500 kHz/cm2)

Muon System for the Muon Collider

Muon system, based on CLIC, instruments the iron yoke plates with barrel/endcap (6/7 layers)

MPGDs / RPCs, ... for readout of high-granularity hadronic calorimeters and for muon detectors in high rate (e.g. endcaps, first station in barrel,…)

 \checkmark Glass RPC cells of 30x30 mm2 to cover an area of 1942 (1547) m2 in barrel (endcaps)

C. Ilaria, C. Piccard N. Pastrone

Fast Timing MPGDs:

- Purpose of the fast timing MPGD (FTM): Improving on the time resolution of traditional MPGDs (~5ns) for MIP signals to ~500ps
- Jet energy resolution will scale 1/sgrt(number of jet particles)
- Working principle: Competition of arrival time of independent signals generated by fully decoupled drift+amplification layers

 $\sigma_{\text{FTM}} =$ $N_{layers} = 12 \rightarrow \sigma \sim 400 \text{ps}$

Signal pick-up by external R/O electrodes \rightarrow fully resistive detector structure

Prototypes undergoing tests in Bari, Pavia (Italy), Ghent (Belgium)

for different n. of layers

Beam Induced Background (BIB) due to the single bunch $(2x10^{12}\mu/bunch)$ muon beams is dominant \rightarrow affecting mostly the endcap region of the Muon detector

while the purple to $\theta < 10^{\circ}$.

cluster
cluster + cut>8°
cluster + cut>10°
cluster + cut>10' + p_>5 GeV Layer Number of hits per bunch crossing in

each layer of the muon system. Different cuts are applied

Glass RPC:

- σ , < 100 ps
- Rate capability \sim 100-200 kHz/cm². (but up to now only in small prototypes)
- ISSUE: gas mixture GWP

Alternatives: HPL-RPC:

- σ , < 100 ps also 50 ps in MRPC configuration \circ
	-
- $\sigma_v \sim 1 \times 1$ cm²
- Rate capability \sim 1-2 kHz/cm²
- Large size

MPGD-based:

- σ ₂ > 10 ns
- $\sigma_{v} \sim 100$ um
- Rate capability \sim 100 kHz/cm²
- Large size

 \rightarrow starting from MPDG technologies (ex. Triple-GEM) improve time resolution with alternative solution like PicoSec

Some thoughts on technologies:

Radiation Levels not Even Thought in '1980: from mC/cm → **C/cm**

'Low & Standard radiation levels' (LEP,HERA ep, BaBar/Belle,CDF/D0...)

- Basic rules for constructionare known and well tested
- Detectors are built and demonstrated to work
- Huge variety of gases are used
- If aging is nevertheless observed:
	- use oxygen-based (H20, alcohol) molecules to inhibit/relief/cure hydrocarbon polymerization (anode aging/Malter effect);
	- having identified the source of pollution, try to clean the gas system (e.g. operation with CF4 decreases a risk of Si polymerization)

New classes of lgas detectors – straws, MSGC, MPGD, CsI, RPC with their own specific aging effects evolved

MPGDs are much less sensitive to radiationinduced aging,

'*High radiation levels' – enormous R&D done (RD10, RD28, RD6, HERA-B, LHC, NP Exp…)*

- Some basic rules are found
- There are clearly a lot of 'bad' and some 'usable' materials \rightarrow careful choice of construction materials: radiation hardness and outgassing properties are of a primary importance
- Only a few gases are attractive candidates (noble gases, CF4, CO2, O2, H2O, alcohols) at high rates:
	- Hydrocarbons are not trustable for high rate exper.
	- Operational issues can be aggravated by CO2 as a quencher and by the very high aggressiveness of CF4 dissociative products (e.g. glass etching)
	- Adequate assembly procedures, maximal cleanliness for all processes andquality checks for all system parts \rightarrow personnel training, no greasy fingers, no polluted tools, no spontaneously chosen materials installed in the detector or gas system in the last moment, before the start of real operation
- Careful control for any anomalous activity in the detector: dark currents, variation of anode current, remnant activity in the chamber when beam goes away.

compared to MWPC **https://indico.cern.ch/event/1237829**

Gaseous Detectors: Software and Simulation Tools

Garfield, together with HEED, Degrad, Magboltz, SRIM, ANSYS, COMSOL, and neBEM software packages represent the core simulation tools for microscopic modelling of gaseous detector response.

MPGDs and the mean free path

 \blacktriangleright Recall:

 \triangleright Mean free path of electrons in Ar: 2.5 μ m,

\blacktriangleright Compare with:

- \triangleright Micromegas mesh pitch: $63.5 \text{ }\mu\text{m}$ $50 \mu m$
- GEM polyimide thickness: $18 \mu m$
- \triangleright Micromegas wire thickness:
- \triangleright GEM conductor thickness: $5 \mu m$

\blacktriangleright Hence:

- mean free path approaches small structural elements;
- such devices should be treated at a molecular level.
- \blacktriangleright In addition, MPGDs usually have structures for which no nearly-exact (e.g. 3d structures) fields are known.

✓ *HEED – energy loss, a photoabsorption and ionization model*

- ✓ *DEGRAD – electron transport, cluster size distribution*
- ✓ *Magboltz – electron transport properties: drift, diffusion, multiplication, attachment*
- ✓ *ANSYS, COMSOL, neBEM – electric field maps in 2D / 3D*
- ✓ *Garfield – fiedls, drift properties, signals (interfaced to above)*

Some recent highlights:

- *Garfield++ et al. (new development and maintenance of codes, documentation, examples)* **https://gitlab.cern.ch/garfield/garfieldpp**
- *Garfield++ and delayed weighting fields in the calculation of the induced signal (resistive electrodes)*
- *Greenhouse gases*
- *Improving accuracy of the modelling and the detector physics understanding: Penning transfer, Non equilibrium effect in gaseous detectors, Ions and cluster ions*

Signal Formation in Detectors with Resistive Elements

RD51 supported ongoing efforts on interfacing between different modeling tools – to address properly involved processes at the microscopic level - extending present simulation framework to other gaseous & Si-detectors

EP R&D SEMINAR, Signal formation in detectors with resistive elements by **Djunes Janssens:**

https://indico.cern.ch/event/1167590/contributi ons/4903447/attachments/2460899/4219187/ EPSeminar_DjunesJanssens.pdf

Garfield++ and COMSOL to model the signal formation in detectors with resistive elements by applying an extended form of the Ramo-Shockley theorem

Solid State (Silicon, Diamond,..)

Gaseous Detectors: DRD1 Successor and Extension of RD51

ECFA DETECTOR R&D ROADMAP CONTENT: TF1

Performance targets and main drivers from facilities

Example: Muon systems

Detector R&D themes

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs) < 2030 > 2045 2045 2035 2040 DRDT 1.1 Improve time and spatial resolution for gaseous detectors with

- long-term stability
- DRDT 1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability Gaseous in large volumes with very low material budget and different read-out schemes
	- DRDT 1.3 Develop environmentally friendly gaseous detectors for very larg areas with high-rate capability
	- DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs

Needs/benefits for physics reach

2030-2035

70.60

Main target projects of Gaseous Detector R&D

Gaseous Detector R&D: Common Issues

Despite the different R&D requirements, there is potential for overlapping in many aspects, allowing for a larger community of gaseous detectors to benefit. The most straightforward example is the classic ageing issues, but many others can be mentioned:

- **MPGD- the main challenges remain large areas, high rates, precise timing capabilities, and stable discharge-free operation**
- **RPC - focus stays on improving high-rate and precise timing capabilities, uniform detector response, and mechanical compactness.**
- **Straw tubes- requirements include extended length and smaller diameter, low material budget, and operation in a highly challenging radiation environment.**
- Large-volume Drift chamber with a reduced material budget in a high-rate environment requires **searching for new materials. Avalanche-induced Ion Back Flow (IBF) remains the primary challenge for TPC applications in future facilities.**

DRD1 Scientific Organization

ECFA Detector R&D Roadmap and General Recommendations are addressed with a scientific organization based on:

✓ **R&D Framework & Working Groups (RD51 Legacy)** → Distributed R&D Activities with Centralized Facilities.

Work Packages → Strategic R&D and Long -Term Funding (Funding Agency)

DRD1 Organization and Management

Approved during the Collaboration Board with Consensus

COLLABORATION BOARD

RESOURCE BOARD

MANAGEMENT BOARD

SPOKESPERSONS

SCIENTIFIC COORDINATION BOARD

(Working Groups, Work Packages, DRDs Liaisons, Common Projects

Simlar to the RD51 Structure + SCB

- DRD1 spokespersons and CB chair candidates, CV, statements and open presentations: https://indico.cern.ch/event/1352912/
- Wide consolations and nominations from whole community (about 160 institutes)
- Election procedure discussed & approved by the DRD1 Implementation Team and DRD1 CB
- About 110 instates casted votes:

Elections Results (2024 -2025)

- **2 Spokespersons: Eraldo Oliveri, Maxim Titov CB Chair: Anna Colaleo**
- ✓ **DRD1 implementation and organization: Community Driven with key role played by the Implementation Team (about 50 persons)**
- ✓ **DRD1 Management Elections and Organization approved by CB. All roles will be approved by DRD1 Meting in June 2024**
- ✓ **DRD1 Activities started**
- ✓ **Prompt actions required to preserve and enhance the current momentum in the community**

DRD1 Collaboration & Future Events: JOIN US !!!

1 st DRD Collaboration Meeting Agenda (Jan. 29 – Feb. 2)

1 st Collaboration Meeting Jan. 29-Feb. 2 (CERN): https://indico.cern.ch/event/136 0282/

2 nd Collaboration Meeting June 17-21 (CERN): https://indico.cern.ch/event/141 3681/

3 rd Collaboration Meeting December 9-13 (CERN)

More information on DRD1- related issues:

- **- Symposium of Task Force 1: https://indico.cern.ch/event/999799/**
- **- ECFA Detector R&D Roadmap (chapter 1): https://cds.cern.ch/record/2784893**
- **- DRD1 Proposal: https://cds.cern.ch/record/2885937**
- **- DRD1 Website: https://drd1.web.cern.ch/**
- **- Working Groups: https://drd1.web.cern.ch/working-groups**
- **- Work Packages: https://drd1.web.cern.ch/wp**

2024 Gaseous Detector Conferences & Schools:

- **RPC2024 Conference, Santiago, 9-13 September: https://indico.cern.ch/event/1354736**
- **MPGD2024 Conference, Hefei, 14-18 October: https://mpgd2024.aconf.org**
- **DRD1 Gaseous Detector School, Nov. 27 – Dec. 6: https://indico.cern.ch/e/drd1school2024**