

Status and future accelerator prospects of flavor physics

Ben A. Stefanek

King's College London Theoretical Particle Physics & Cosmology (TPPC) Group

[Based on: Allwicher, Cornella, Isidori, BAS, 2311.00020]

Corfu 2024 Future Accelerators *May 23rd, 2024*

Searching for New Physics (NP) beyond the SM

The SM as an Effective Field Theory

The Flavor of the SMEFT

- Flavor of C_i is very important in the search for NP- if all flavors populated with O(1) couplings, processes like $\mu \rightarrow 3e$ require a very high NP scale $M_{\rm NP} \gtrsim 1000$ TeV.
- Why? This process is zero in the SM- individual lepton number conservation is an accidental symmetry of the SM.
- Any NP close by in energy cannot have an arbitrary flavor structure. Can we use the accidental symmetries of the SM as a guiding principle for flavor structure in the SMEFT?

Hints of NP structure: Flavor symmetries of the SM

- Standard Model (SM) gauge sector is *flavor blind!*
- $\mathcal{G}_F(\mathrm{SM}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

$$\mathscr{G}_F(\mathrm{SM}) = U(1)_B \times U(1)_{L_e} \times U(1)_{L_\mu} \times U(1)_{L_\tau}$$

• But, since the light family Yukawa couplings are very small:

$$\mathscr{G}_F(\mathrm{SM}) \approx U(2)^5 \equiv U(2)_q \times U(2)_u \times U(2)_d \times U(2)_\ell \times U(2)_\ell$$

 $U(2)^5$ is a good approximate symmetry of the SM!

Hints of NP structure: Data

- No deviations in *flavor data* that test the accidental symmetries of the SM. Perhaps NP is very heavy, but there cannot be any large breaking of $U(2)^5$ at nearby energy scales.
- Similarly, *direct searches at the LHC* tell us that NP does not couple strongly to valence quarks at nearby energy scales.
- Interestingly, these two hints point toward a coherent hypothesis for the structure of NP.

The hypothesis of (dominantly) third-family NP

- New physics is NOT flavor universal- there could be new flavor non-universal interactions as low as the TeV scale coupled dominantly to the third family. NP coupled to Higgs & top is what we need to address the EW hierarchy problem.
- These new interactions see flavor just like the SM Higgs. They could be connected to a low scale solution to the SM flavor puzzle. (see e.g. Davighi and BAS, <u>arXiv: 2305.16280</u>)
- NP dominantly coupled to the third family is described by an approximate $U(2)^5$ flavor symmetry, just like the SM Yukawa couplings.

[R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone, D. Straub, <u>1105.2296</u>]

Ben A. Stefanek | Status and future accelerator prospects of flavor physics

Combining data: NP must confront a triad of bounds

• U(2) helps pass flavor + collider bounds, but is less effective against EWPT.

Combining data: NP must confront a triad of bounds

• These two directions are expected to dramatically improve with a tera-Z machine!

Heavy flavor physics at a tera-Z machine

Table 7: Expected production yields of heavy-flavored particles at Belle II (50 ab^{-1}) and FCC-ee (Z pole). The X/\overline{X} represents the production of a *B*-hadron or its charge conjugated state. The Z branching fractions and hadronization rates are taken from [2].

Particle production (10^9)	B^0/\overline{B}^0	B^+/B^-	B_s^0/\overline{B}_s^0	B_c^+/\overline{B}_c^-	$\Lambda_b/\overline{\Lambda}_b$	$c\overline{c}$	$\tau^+ \tau^-$
Belle II	27.5	27.5	n/a	n/a	n/a	65	45
FCC-ee	620	620	150	4	130	600	170

- With 5×10^{12} Z-bosons, heavy flavors produced at the 1-100 billion level. In particular, the heavier $B_{s,c}$ and Λ_b will be accessible in large numbers.
- Unique opportunity to study a large number of B- and tau-decays in a clean e^+e^- environment. Expected benefit from large boost and excellent vertexing capability.

[FCC Snowmass Summary, 2203.06520]

Curiosities in $b \rightarrow c \tau \nu$ **transitions:** R_D and R_{D^*}

- Theoretically clean. Measurements by Babar, Belle, LHCb in good agreement.
- Enhancement of ~ 10% over SM due to excess in tau mode: $B \to D^{(*)} \tau \bar{\nu}_{\tau}$.
- Combined, ~3.2 σ tension w.r.t the SM prediction.

Connections between $b \to c\tau\nu$ and $b \to s\tau\tau(\nu\nu)$

• If NP, $R_{D^{(*)}}$ requires an O(10%) correction to a tree-level SM process

- For left-handed NP, $b \rightarrow s\tau\tau(\nu\nu)$ neutral currents are connected by $SU(2)_L$.
- Since $b \rightarrow s\tau\tau(\nu\nu)$ is a FCNC, it is a rare 1-loop process in the SM, but it is tree-level in the NP. We therefore expect a loop factor of NP enhancement!
- Allowed by current data, particularly in the poorly measured $b \rightarrow s\tau\tau$ transitions. Current bound is far from the SM rate- opportunity for large NP to hide!

Tera-Z searches for $b \rightarrow s \tau \tau$ **transitions**

• Tera-Z will be ideal for measuring rare $b \to s\tau\tau$ transitions! Examples are $B \to K^*\tau^+\tau^-$, $B_s \to \tau^+\tau^-$. A potential $B \to K^*\tau^+\tau^-$ event:

Need to fix 6 dofs (two neutrinos). Possible since PV and B vertices give the B direction, tau vertices can be reconstructed, and tau mass (over) closes the system. About 1000 fully reconstructed events can be expected at FCC-ee!

[Figure: Marie-Hélène, FCCee Workshop Jan 2020] [Ka

U_1 LQ connects $R_{D^{(*)}}$ to $b \rightarrow s \tau \tau$ observables

• We have tree-level effects in $b \to s \tau \tau$ connected to the size of $R_{D^{(*)}}$

• Since $b \rightarrow s\tau\tau$ is a FCNC, it is a 1-loop process in the SM. We therefore expect a huge NP enhancement in $b \rightarrow s\tau\tau$!

$$\frac{\mathscr{B}(B \to K^{(*)}\tau\tau)}{\mathscr{B}(B \to K^{(*)}\tau\tau)_{\rm SM}} \sim 16\pi^2 \frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\rm SM}}$$

U_1 connects $R_{D^{(*)}}$ to $b \to s \tau \tau$ observables

• We have tree-level effects in $b \rightarrow s\tau\tau$ connected to the size of $R_{D^{(*)}}$

Updated 90% CL region preferred by low-energy $b \rightarrow c \tau \nu$ data <u>2210.13422</u>

[J. Aebischer, G. Isidori, M. Pesut, BAS, F. Wilsch, 2210.13422]

Ben A. Stefanek | Status and future accelerator prospects of flavor physics

U_1 connects $R_{D^{(*)}}$ to $b \to s \tau \tau$ observables

• We have tree-level effects in $b \rightarrow s\tau\tau$ connected to the size of $R_{D^{(*)}}$

Updated 90% CL region preferred by low-energy $b \rightarrow c \tau \nu$ data <u>2210.13422</u>

[J. Aebischer, G. Isidori, M. Pesut, BAS, F. Wilsch, 2210.13422]

Ben A. Stefanek | Status and future accelerator prospects of flavor physics

Tera-Z searches for $b \rightarrow s \nu \nu$ **transitions**

• The decay $B \to K^* \nu \bar{\nu}$ is theoretically clean (no long-distance charm loop), making it an excellent probe of NP. First observation recently by Belle II:

$$\frac{\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{\overline{\exp}}}{\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{SM}}} = 2.6 \pm 0.8 \\\approx 2\sigma$$

*Big effect- if NP, likely it should be tree-level. But Belle II (10%) and FCC-ee (1%) will test even loop models. The EFT of the U_1 gives:

[Belle II Collaboration, 2311.14647]

Tera-Z searches for $B_c \rightarrow \tau \nu$

• Right now only an upper bound exists $B_c \rightarrow \tau \nu < 0.1 \ (95 \% \text{ CL})$

$N_Z(imes 10^{12})$	$N(B_c^+ o au^+ u_ au)$	Relative σ (%)
0.5	$430 \hspace{0.2cm} \pm 33$	7.8
1	$858\ \pm 46$	5.5
2	1717 ± 64	3.8
3	2578 ± 83	3.2
4	3436 ± 93	2.7
5	4295 ± 103	2.4

$$\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau}) = R_c \times \mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})^{\mathrm{SM}}$$

• Measurement of $\mathscr{B}(B_c \to \tau \nu)$ possible with $\lesssim 8\%$ precision.

(*currently limited by knowledge of the normalization mode form factors)

[Ahmis, Hartmann, Helsens, Hill, Sumensari, 2105.13330]

Ben A. Stefanek | Status and future accelerator prospects of flavor physics

Tera-Z: Flavor blind probes of flavor

 Searches at the LHC have the benefit of potentially *directly* producing NP states, but also an inherent flavor asymmetry in the production:

LHC: Strong bounds on flavor universal NP O(10 TeV), but NP coupled to the third family is much less constrained O(1 TeV).

 At tera-Z, we can exploit the flavor blindness of the SM gauge interactions to *indirectly* probe NP coupled to any generation!

Tera-Z: Almost flavor democratic bounds. Non-universal NP scenarios such as 3rd family NP ($U(2)^5$) will be extremely well probed.

SMEFT in the Exact U(2) Limit

- SMEFT with 3 generations has 1350 + 1149 = 2499 independent WC's at dim-6.
- In the exact $U(2)^5$ limit, this is reduced to 124 + 23 = 147 independent WC's.

	$ $ $U(2)^5$ [terms summed up to different orders]													
Operators	Exa	act	O(V	$^{/1})$	O(V	$^{/2})$	$\int \mathcal{O}(V$	$^{1},\Delta^{1})$	$\int \mathcal{O}(V$	$^{2},\Delta^{1})$	$\int \mathcal{O}(V$	$^{2},\Delta^{1}V^{1})$	$\int \mathcal{O}(V$	$^{3},\Delta^{1}V^{1})$
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	_	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	_	29	_	29	_	29	_	29	_	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	_	48	16	64	16	53	21	69	21	90	42	90	42
$(ar{L}R)(ar{R}L)$	$\parallel 1$	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	81	234	93	212	111	264	123	349	208	356	215

Table 6: Number of independent operators in the SMEFT assuming a minimally broken $U(2)^5$ symmetry, including breaking terms up to $\mathcal{O}(V^3, \Delta^1 V^1)$. Notations as in Table 1.

- Focus on the 124 CP-even independent WC's in the exact $U(2)^5$ limit. Makes an exhaustive phenomenological analysis tractable.
- [D. A. Faroughy, G. Isidori, F. Wilsch, K. Yamamoto, arXiv:2005.05366]

Ben A. Stefanek | Status and future accelerator prospects of flavor physics

Combined pheno analysis: Our procedure

• WC's entering observables are run up to a reference high scale of $\Lambda_{NP} = 3$ TeV. We then impose $U(2)^5$ flavor symmetry on the high-scale WC's, e.g:

$$\begin{split} [C_{Hq}^{(1)}]_{11}(\mu_{\rm EW}) & \to & 0.906 \, {\rm CHq1[l]} - 0.022 \, {\rm Cqq1[l, h, h, l]} - \\ & 0.189 \, {\rm Cqq1[l, l, h, h]} - 0.004 \, {\rm Cqq1[l, l, p, p]} - \\ & 0.004 \, ({\rm Cqq1[l, l, p, p]} + {\rm Cqq1[l, p, p, l]}) - \\ & 0.071 \, {\rm Cqq3[l, h, h, l]} + 0.009 \, {\rm Cqq3[l, l, h, h]} + \\ & 0.089 \, {\rm Cqu1[l, l, h, h]} + 0.004 \, {\rm Cqu8[l, l, h, h]} + ... \end{split}$$

- For EWPT and direct searches, which constrain mainly the flavor-conserving WC's, the exact $U(2)^5$ limit is already sufficient.
- Flavor-violating effects taken into account by considering the cases where the $U(2)^5$ basis corresponds to the 1) down-quark mass basis and 2) up-quark mass basis.
- We then construct a likelihood as a function of the high-scale $U(2)^5$ invariants and switch on one at a time to obtain bounds.

Combined pheno analysis: Our observables

EW Precision

• W-pole observables

- [V. Bresó-Pla, A. Falkowski, M. González-Alonso, 2103.12074]
- Z-pole observables [L. Allwicher, G. Isidori, J. M. Lizana, N. Selimovic, BAS, 2302.11584]
- Higgs signal strengths + LFU tests in τ -decays

Direct searches

- LHC Drell-Yan $pp \to \ell \ell$ and mono-lepton $pp \to \ell \nu$
- LHC 4-quark observables
 LEP 4-lepton *ee* → *ℓℓ* [L. Allwicher, D. A. Faroughy, F. Jaffredo, O. Sumensari, F. Wilsch, <u>2207.10756</u>]
 [Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang, <u>2105.00006</u>]

Flavor Bounds

- $\Delta F = 1 (B \to X_s \gamma, B \to K \nu \bar{\nu}, K \to \pi \nu \bar{\nu}, B \to K^{(*)} \mu^+ \mu^-, B_{s,d} \to \mu^+ \mu^-)$
- $\Delta F = 2 (B_{s,d}$ -mixing, *K*-mixing, *D*-mixing)
- Charged-current B-decays ($R_D,\,R_{D^*},\,B_{u,c}\to\tau\nu$)

Bounds from the Z-pole

- With no RGE, only 16 of 124 operators constrained on the Z-pole.
- Including RGE, we have 120 of 124, 38 with bounds $\gtrsim 1$ TeV.

No RGE

#	Wilson Coef.	[Obs] _{bound}	$\Lambda_{bound} [TeV]$
1	cHWB	AbFB	9.63
2	CHl1[l]	$\sigma_{\sf had}$	8.07
3	CHl3[l]	A _b ^{FB}	7.96
4	CHe[l]	$\sigma_{\sf had}$	6.93
5	cHD	A _b ^{FB}	5.74
6	CHq3[l]	R _τ	5.73
7	CHl1[h]	Rτ	4.57
8	CHl3[h]	Rτ	4.48
9	Cll[l, p, p, l]	A _b ^{FB}	4.43
10	CHe[h]	R _τ	3.97
11	CHq3[h]	R _b	3.43
12	CHq1[h]	R _b	3.43
13	CHu[l]	Rτ	2.58
14	CHq1[l]	R _c	2.07
15	CHd[l]	Rτ	1.81
16	CHd[h]	R _b	1.4

#	Wilson Coef.	[Obs] _{bound}	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	A _b ^{FB}	8.98	8.78	2.2
2	CHl3[l]	Ohad	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	Rτ	5.56	5.48	1.4
6	cHD	AbFB	5.05	4.71	6.7
7	Cll[l, p, p, l]	A _b ^{FB}	4.52	4.52	0.
8	CHl1[h]	Rτ	4.37	4.3	1.6
9	CHl3[h]	Rτ	4.36	4.3	1.4
10	CHe[h]	Rτ	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	A _b ^{FB}	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	Rτ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	A _b ^{FB}	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	A _b ^{FB}	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	Rτ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	R _τ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	AbFB	1.24		
33	Cqe[h, h, h, h]	Rτ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37		Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	Rτ	0.95	1.26	-32.6
			•	•	

Bounds from the Z-pole

- With no RGE, only 16 of 124 operators constrained on the Z-pole.
- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.
- Important effects come from operators w/ third-family quarks
 running strongly with y_t into operators
 directly constrained on the Z-pole:

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	#	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	cHWB	A _b ^{FB}	8.98	8.78	2.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	CHq3[l]	R _τ	5.56	5.48	1.4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	cHD	A _b FB	5.05	4.71	6.7
9CHl3[h] R_{c} 4.364.31.410CHe[h] R_{c} 3.763.682.111CHq1[h] Γ_{Z} 3.744.34-16.12CHq3[h] R_{b} 3.483.53-1.413CHu[h] A_{b}^{FB} 3.043.99-31.314Clq1[l, l, h, h] σ_{had} 2.462.87-16.715CHu[l] R_{c} 2.432.391.616Clq3[l, l, h, h] A_{b}^{FB} 2.412.72-12.917Clu[l, l, h, h] σ_{had} 2.392.81-17.618CuB[h] A_{b}^{FB} 2.382.79-17.219CuW[h] A_{b}^{FB} 2.382.61-14.521Cqq3[l, l, h, h] R_{b} 2.282.61-14.522Ceq1, h, l, l] σ_{had} 2.082.41-15.923CHq1[l] R_{c} 1.941.92.124CHd[l] R_{c} 1.941.92.125Cq3[l, l, p, p] R_{c} 1.491.5-0.727Clq1[h, h, h, h] R_{c} 1.321.47-11.428Clq1[h, h, h, h] R_{c} 1.321.47-11.430CHd[h] R_{b} 1.311.291.531Cqu1[h, h, h, h] R_{c} 1.321.47-11.430CHd[h] R_{b} 1.311.291.534Ceu[h, h, h,	7	Cll[l, p, p, l]	A _b ^{FB}	4.52	4.52	0.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	CHl1[h]	Rτ	4.37	4.3	1.6
11CHq1[h] Γ_Z 3.744.34-16.12CHq3[h] R_b 3.483.53-1.413CHu[h] A_b^{FB} 3.043.99-31.314Clq1[l, l, h, h] σ_{had} 2.462.87-16.715CHu[l] R_{τ} 2.432.391.616Clq3[l, l, h, h] A_b^{FB} 2.412.72-12.917Clu[l, l, h, h] σ_{had} 2.392.81-17.618CuB[h] A_b^{FB} 2.382.79-17.219CuW[h] A_b^{FB} 2.352.67-13.620Cqq3[l, l, h, h] R_b 2.282.61-14.521Cqe[h, h, l, l] σ_{had} 2.122.47-16.522Ceu[l, l, h, h] R_b 2.082.41-15.923CHq1[l] R_c 1.941.92.124CHd[l] R_{τ} 1.711.681.825Cqq1[h, h, h, h] R_b 1.61.75-9.426Cq3[l, l, p, p] R_{τ} 1.361.59-16.929Clq3[h, h, h, h] R_{τ} 1.361.59-16.929Clq3[h, h, h, h] R_{τ} 1.321.47-11.430CHd[h] R_b 1.311.291.531Cqu1[h, h, h, h] R_{τ} 1.251.24.32Cuu[h, h, h, h] R_{τ} 1.181.38-16.933Cq	9	CHl3[h]	Rτ	4.36	4.3	1.4
12CHq3[h] R_b 3.483.53-1.413CHu[h] A_b^{FB} 3.043.99-31.314Clq1[l, l, h, h] σ_{had} 2.462.87-16.715CHu[l] R_c 2.432.391.616Clq3[l, l, h, h] A_b^{FB} 2.412.72-12.917Clu[l, l, h, h] σ_{had} 2.392.81-17.618CuB[h] A_b^{FB} 2.382.79-17.219CuW[h] A_b^{FB} 2.352.67-13.620Cqq3[l, l, h, h] σ_{had} 2.122.47-16.521Cqe[h, h, l, l] σ_{had} 2.082.41-15.923CHq1[l] R_c 1.941.92.124CHd[l] R_c 1.491.5-0.727Clq1[h, h, h, h] R_b 1.61.75-9.426Cq3[l, l, p, p] R_c 1.361.59-16.929Clq3[h, h, h, h] R_b 1.311.291.531Cqu[h, h, h, h] R_c 1.321.47-11.430CHd[h] R_b 1.311.291.531Cqu[h, h, h, h] R_c 1.251.24.32Cuu[h, h, h, h] R_c 1.21.41-17.534Ceu[h, h, h, h] R_c 1.21.41-17.534Ceu[h, h, h, h] R_c 1.21.41-17.535Cq3[h, h,	10	CHe[h]	R _τ	3.76	3.68	2.1
13CHu[h] A_b^{FB} 3.043.99-31.314Clq1[l, l, h, h] σ_{had} 2.462.87-16.715CHu[l] R_{ϵ} 2.432.391.616Clq3[l, l, h, h] A_b^{FB} 2.412.72-12.917Clu[l, l, h, h] σ_{had} 2.392.81-17.618CuB[h] A_b^{FB} 2.382.79-17.219CuW[h] A_b^{FB} 2.352.67-13.620Cqq3[l, l, h, h] R_b 2.282.61-14.521Cqe[h, h, l, l] σ_{had} 2.122.47-16.522Ceu[l, l, h, h] σ_{had} 2.082.41-15.923CHq1[l] R_c 1.941.92.124CHd[l] R_c 1.941.92.124CHd[l] R_c 1.491.5-0.727Clq3[h, h, h, h] R_b 1.61.75-9.426Cq3[l, l, p, p] R_c 1.431.63-14.28Clu[h, h, h, h] R_c 1.321.47-11.430CHd[h] R_b 1.311.291.531Cqu[h, h, h, h] R_c 1.251.24.32Cuu[h, h, h, h] R_c 1.21.41-17.534Ceu[h, h, h, h] R_c 1.21.41-17.534Ceu[h, h, h, h] R_c 1.21.41-17.535Cq3[h, h, h	11	CHq1[h]	Γz	3.74	4.34	-16.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	CHq3[h]	R _b	3.48	3.53	-1.4
15CHu[l] R_{τ} 2.432.391.616Clq3[l, l, h, h] A_b^{FB} 2.412.72-12.917Clu[l, l, h, h] σ_{had} 2.392.81-17.618CuB[h] A_b^{FB} 2.382.79-17.219CuW[h] A_b^{FB} 2.352.67-13.620Cqq3[l, l, h, h] R_b 2.282.61-14.521Cqe[h, h, l, l] σ_{had} 2.122.47-16.522Ceu[l, l, h, h] σ_{had} 2.082.41-15.923CHq1[l] R_c 1.941.92.124CHd[l] R_{τ} 1.711.681.825Cqq1[h, h, h, h] R_b 1.61.75-9.426Cqq3[l, l, p, p] R_{τ} 1.431.63-14.28Clu[h, h, h, h] R_{t} 1.361.59-16.929Clq3[h, h, h, h] R_{t} 1.321.47-11.430CHd[h] R_b 1.311.291.531Cqu1[h, h, h, h] R_{τ} 1.251.24.32Cuu[h, h, h, h] R_{τ} 1.21.41-17.534Ceu[h, h, h, h] R_{τ} 1.181.38-16.935Cq3[h, h, h, h] R_{τ} 1.181.38-16.935Cq3[h, h, h, h] R_{τ} 1.181.38-16.935Cq3[h, h, h, h] R_{τ} 1.160.7733.6	13	CHu[h]	A _b FB	3.04	3.99	-31.3
16Clq3[l, l, h, h] A_b^{FB} 2.412.72-12.917Clu[l, l, h, h] σ_{had} 2.392.81-17.618CuB[h] A_b^{FB} 2.382.79-17.219CuW[h] A_b^{FB} 2.352.67-13.620Cqq3[l, l, h, h] R_b 2.282.61-14.521Cqe[h, h, l, l] σ_{had} 2.122.47-16.522Ceu[l, l, h, h] σ_{had} 2.082.41-15.923CHq1[l] R_c 1.941.92.124CHd[l] R_{τ} 1.711.681.825Cqq1[h, h, h, h] R_b 1.61.75-9.426Cqq3[l, l, p, p] R_{τ} 1.431.63-14.28Clu[h, h, h, h] R_c 1.361.59-16.929Clq3[h, h, h, h] R_c 1.311.291.531Cqu1[h, h, h, h] R_{τ} 1.251.24.32Cuu[h, h, h, h] R_{τ} 1.21.41-17.534Ceu[h, h, h, h] R_{τ} 1.181.38-16.935Cqq3[h, h, h, h] R_{τ} 1.081.09-0.937Cuu[l, l, h, h] R_{τ} 1.081.09-0.937Cuu[l, l, h, h] R_{τ} 1.071.27-18.7	14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	CHu[l]	Rτ	2.43	2.39	1.6
18CuB[h] A_b^{FB} 2.382.79-17.219CuW[h] A_b^{FB} 2.352.67-13.620Cqq3[l, l, h, h] R_b 2.282.61-14.521Cqe[h, h, l, l] σ_{had} 2.122.47-16.522Ceu[l, l, h, h] σ_{had} 2.082.41-15.923CHq1[l] R_c 1.941.92.124CHd[l] R_c 1.711.681.825Cqq1[h, h, h, h] R_b 1.61.75-9.426Cqq3[l, l, p, p] R_c 1.431.63-14.28Clu[h, h, h, h] R_c 1.361.59-16.929Clq3[h, h, h, h] R_c 1.321.47-11.430CHd[h] R_b 1.311.291.531Cqu[h, h, h, h] R_c 1.251.24.32Cuu[h, h, h, h] R_c 1.241.41-17.534Ceu[h, h, h, h] R_c 1.221.41-17.534Ceu[h, h, h, h] R_c 1.241.68-16.935Cqq3[h, h, h, h] R_c 1.081.09-0.937Cuu[l, l, h, h] R_c 1.071.27-18.7	16	Clq3[l, l, h, h]	A _b ^{FB}	2.41	2.72	-12.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	CuB[h]	A _b ^{FB}	2.38	2.79	-17.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
22Ceu[l, l, h, h] σ_{had} 2.082.41-15.923CHq1[l]R _c 1.941.92.124CHd[l]R _t 1.711.681.825Cqq1[h, h, h, h]Rb1.61.75-9.426Cqq3[l, l, p, p]R _t 1.491.5-0.727Clq1[h, h, h, h]Rt1.361.59-16.929Clq3[h, h, h, h]Rt1.321.47-11.430CHd[h]Rb1.311.291.531Cqu1[h, h, h, h]Tz1.251.24.32Cuu[h, h, h, h]Rt1.181.38-16.933Cqe[h, h, h, h]Rt1.181.38-16.935Cqq3[h, h, h, h]Rt1.071.27-18.7	20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
24CHd[l] R_{τ} 1.711.681.825Cqq1[h, h, h, h] R_b 1.61.75-9.426Cqq3[l, l, p, p] R_{τ} 1.491.5-0.727Clq1[h, h, h, h] R_{τ} 1.431.63-14.28Clu[h, h, h, h] R_{τ} 1.361.59-16.929Clq3[h, h, h, h] R_{τ} 1.321.47-11.430CHd[h] R_b 1.311.291.531Cqu1[h, h, h, h] Γ_Z 1.251.24.32Cuu[h, h, h, h] R_{τ} 1.21.41-17.534Ceu[h, h, h, h] R_{τ} 1.181.38-16.935Cqq3[h, h, h, h] m_W 1.160.7733.636Clq3[l, l, p, p] σ_{had} 1.081.09-0.937Cuu[l, l, h, h] R_{τ} 1.071.27-18.7	22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
25Cqq1[h, h, h, h] R_b 1.61.75-9.426Cqq3[l, l, p, p] R_{τ} 1.491.5-0.727Clq1[h, h, h, h] R_{τ} 1.431.63-14.28Clu[h, h, h, h] R_{τ} 1.361.59-16.929Clq3[h, h, h, h] R_{τ} 1.321.47-11.430CHd[h] R_b 1.311.291.531Cqu1[h, h, h, h] Γ_Z 1.251.24.32Cuu[h, h, h, h] R_{τ} 1.181.38-16.933Cqe[h, h, h, h] R_{τ} 1.181.38-16.935Cqq3[h, h, h, h] m_W 1.160.7733.636Clq3[l, l, p, p] σ_{had} 1.081.09-0.937Cuu[l, l, h, h] R_{τ} 1.071.27-18.7	23	CHq1[l]	R _c	1.94	1.9	2.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	CHd[l]	Rτ	1.71	1.68	1.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
28Clu[h, h, h, h] R_{τ} 1.361.59-16.929Clq3[h, h, h, h] R_{τ} 1.321.47-11.430CHd[h] R_b 1.311.291.531Cqu1[h, h, h, h] Γ_Z 1.251.24.32Cuu[h, h, h, h] A_b^{FB} 1.2433Cqe[h, h, h, h] R_{τ} 1.21.41-17.534Ceu[h, h, h, h] R_{τ} 1.181.38-16.935Cqq3[h, h, h, h] m_W 1.160.7733.636Clq3[l, l, p, p] σ_{had} 1.081.09-0.937Cuu[l, l, h, h] R_{τ} 1.071.27-18.7	26	Cqq3[l, l, p, p]	Rτ	1.49	1.5	-0.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	CHd[h]	R _b	1.31	1.29	1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	Cqu1[h, h, h, h]		1.25	1.2	4.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	Cuu[h, h, h, h]	A _b ^{FB}	1.24		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	Cqe[h, h, h, h]	Rτ	1.2	1.41	-17.5
36 Clq3[l, l, p, p] σ _{had} 1.08 1.09 -0.9 37 Cuu[l, l, h, h] R _τ 1.07 1.27 -18.7	34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
37 Cuu[l, l, h, h] R _τ 1.07 1.27 -18.7	35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
	36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
38 Cqq3[l, h, h, l] R _τ 0.95 1.26 -32.6	37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
	38	Cqq3[l, h, h, l]	Rτ	0.95	1.26	-32.6

Bounds from the Z-pole

- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.
- Resummation is important, even from $\Lambda_{NP} = 3$ TeV.

$$[\mathcal{C}_{HD}]^{\mathrm{NLL}} \approx \frac{4N_c^2 y_t^4}{(16\pi^2)^2} \,\mathcal{C}_{uu} \log^2\left(\frac{\mu^2}{\Lambda_{\mathrm{NP}}^2}\right)$$

[Allwicher, Cornella, Isidori, BAS, <u>2311.00020</u>] [Allwicher, Isidori, Lizana, Selimovic, BAS, <u>2302.11584</u>]

#	Wilson Coef.	[Obs] _{bound}	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	A _b FB	8.98	8.78	2.2
2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	Rτ	5.56	5.48	1.4
6	cHD	A _b FB	5.05	4.71	6.7
7	Cll[l, p, p, l]	AbFB	4.52	4.52	0.
8	CHl1[h]	Rτ	4.37	4.3	1.6
9	CHl3[h]	Rτ	4.36	4.3	1.4
10	CHe[h]	Rτ	3.76	3.68	2.1
11	CHq1[h]	Γ_{Z}	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	A _b ^{FB}	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	Rτ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	A _b ^{FB}	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	AbFB	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	Rτ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	Rτ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	A _b ^{FB}	1.24		
33	Cqe[h, h, h, h]	Rτ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	R _τ	0.95	1.26	-32.6

Ben A. Stefanek | Status and future accelerator prospects of flavor physics

Current Bounds: Z-pole + Flavor + Direct Searches

Ben A. Stefanek | Status and future accelerator prospects of flavor physics

26

Projection: Tera-Z + Flavor + Direct Searches

Dynamical assumptions to allow for TeV-scale NP

Hypothesis of dominantly third-family NP

down 📕 up 📕 EW 🗧 collider

Third-family NP: Higgs couplings

down EW collider up TeV 10 $\epsilon_{\rm loop} = \frac{1}{16\pi^2}$ • Add one ϵ_H for every Higgs field in the operator. 8 $\epsilon_Q = 0.16$ $\epsilon_L = 0.40$ 6 $\epsilon_{H} = 0.31$ 4 2 0 $\mathcal{C}_{H\ell}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dQ}^{(3)[ii]} = \mathcal{C}_{dQ}^{(3)[ii]}$ $(3)[33]^{-}$

Third-family NP: Flavor alignment

📕 flavor 🔛 EW 🔛 collider

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

 $\mathcal{C}^{[333]}_{eH}$

Tera-Z run will push even this scenario to O(10) TeV!

📕 flavor 🛛 🗧 EW 🔄 collider

 If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem to be mostly coupled to the Higgs and 3rd family. We have shown that room currently remains for 3rd family new physics, and that even without direct Higgs couplings, EWPTs unavoidably give strong bounds on a large class of operators via RG evolution.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem to be mostly coupled to the Higgs and 3rd family. We have shown that room currently remains for 3rd family new physics, and that even without direct Higgs couplings, EWPTs unavoidably give strong bounds on a large class of operators via RG evolution.
- Future machines featuring a tera-Z run plan allow for an exquisite heavy flavor program, in particular B and tau physics. Combining the two gives us an opportunity to probe never before measured rare B decays with final state taus (good place for NP).

Conclusions

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem to be mostly coupled to the Higgs and 3rd family. We have shown that room currently remains for 3rd family new physics, and that even without direct Higgs couplings, EWPTs unavoidably give strong bounds on a large class of operators via RG evolution.
- Future machines featuring a tera-Z run plan allow for an exquisite heavy flavor program, in particular B and tau physics. Combining the two gives us an opportunity to probe never before measured rare B decays with final state taus (good place for NP).
- Because EWPT are much more flavor democratic, not even third family NP can hide. A future tera-Z machine will indirectly probe NP protected by the accidental symmetries of the SM in the 10-100 TeV range.

A final comment...

- $H^{\dagger} \cdot \cdot \cdot \cdot q_{L}^{3} \propto ?$
 - The 'LEP paradox'

Riccardo Barbieri Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN

Alessandro Strumia Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia

Abstract

Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly done at LEP.

 In any case, FCC-ee will set the expectations for FCC-hh, just as LEP did for the LHC.

Ben A. Stefanek | Status and future accelerator prospects of flavor physics

27 Nov 2000

Backup Slides

EWPT are (still) a powerful probe of NP

The 'LEP paradox'
Riccardo Barbieri
Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN
Alessandro Strumia
Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia
Abstract
Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly

27 Nov 2000

done at LEP.

EWPT are (still) a powerful probe of NP

The 'LEP paradox'

Riccardo Barbieri

Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN

Alessandro Strumia

Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia

Abstract

Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly done at LEP.

5 Conclusion

27 Nov 2000

A straight interpretation of the results of the EWPT, mostly performed at LEP in the last decade, gives rise to an apparent paradox. The EWPT indicate both a light Higgs mass $m_h \approx (100 \div 200)$ GeV and a high cut-off, $\Lambda \gtrsim 5$ TeV, with the consequence of a top loop correction to m_h largely exceeding the preferred value of m_h itself. The well known naturalness problem of the Fermi scale has gained a pure 'low energy' aspect. At present, supersymmetry at the Fermi scale is the only way we know of to attach this problem.

EWPT are (still) a powerful probe of NP

The 'LEP paradox'

Riccardo Barbieri

Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN

Alessandro Strumia

Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia

Abstract

Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly done at LEP.

5 Conclusion

27 Nov 2000

A straight interpretation of the results of the EWPT, mostly performed at LEP in the last decade, gives rise to an apparent paradox. The EWPT indicate both a light Higgs mass $m_h \approx (100 \div 200)$ GeV and a high cut-off, $\Lambda \gtrsim 5$ TeV, with the consequence of a top loop correction to m_h largely exceeding the preferred value of m_h itself. The well known naturalness problem of the Fermi scale has gained a pure 'low energy' aspect. At present, supersymmetry at the Fermi scale is the only way we know of to attach this problem. This way of looking at the data may be too naive. As we said, in EWPT the SM with a light Higgs and a large cut-off can at least be faked by a fortuitous cancellation. In any case the point is not to replace direct searches for supersymmetry or for any other kind of new physics. Rather, we wonder if a better theoretical focus on the LEP paradox might be not without useful consequences. Its solution, we think, is bound to give us some surprise, in a way or another.

• To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.
- These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in third-family quarks).

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.
- These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in third-family quarks).

 $C_{Hq}^{(1)[33]}(H^{\dagger}D_{\mu}H)(\bar{q}_{L}^{3}\gamma^{\mu}q_{L}^{3})$ EWPT: $C_{Hq}^{(1)[33]} \lesssim (4 \text{ TeV})^{-2}$

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.
- These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in third-family quarks).

• These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in the third-family).

Both operators are $U(2)^5$ preserving! Difficult for NP to hide once the Higgs is brought into the game!

Collider Constraints on 4Q operators

Class	DoF	$ $ $t\bar{t}$	$t\bar{t}V$	t	tV	$t\bar{t}Q\bar{Q}$	$\begin{array}{c} h \ (\mu_i^f, \\ \text{Run-I}) \end{array}$	$h (\mu_i^f, \operatorname{Run-II})$	h (STXS, Run-II)	VV
2-heavy- 2-light	$\begin{bmatrix} c_{Qq}^{1,8} \\ c_{Qq}^{2} \\ c_{Qq}^{1,1} \\ c_{Q3,8}^{3,8} \\ c_{Qq}^{2} \\ c_{Qq}^{3,8} \\ c_{Qq}^{3,8} \\ c_{Qq}^{4} \\ c_{Qq}^{8} \\ c_{1tq}^{4} \\ c_{tu}^{8} \\ c_{1tu}^{1} \\ c_{Qu}^{8} \\ c_{1td}^{1} \\ c_{Qu}^{8} \\ c_{1td}^{1} \\ c_{Qu}^{8} \\ c_{1td}^{1} \\ c_{Qu}^{8} \\ c_{1td}^{1} \\ c_{Qu}^{1} \\ c_{Qu}^{1} \\ c_{1td}^{1} \\ c_{Qu}^{1} \\ c_{1td}^{2} \\ c_{$	$\left \begin{array}{c} \checkmark \\ (\checkmark) \\ (\land) \\ (\checkmark) \\ (\land) ($	$\left \begin{array}{c} \checkmark \\ (\checkmark) \\ (\land) \\ (\checkmark) \\ (\land) \\ (\land) \\ (\land) \\ (\land) \\ (\checkmark) \\ (\land) ($	(√) ✓	(√) ✓		$ \begin{array}{c} \checkmark \\ (\checkmark) \\ (\land) \\ (\checkmark) \\ (\land) \\ (\checkmark) \\ (\land) \\ (\checkmark) \\ (\land) \\ $	$\begin{array}{c} \checkmark \\ (\checkmark) \\ (\land) \\ (\checkmark) \\ (\land) \\ ($	$\begin{pmatrix} \checkmark \\ (\checkmark) \\ (\checkmark) \\ \checkmark \\ (\checkmark) \\ (\land) $	
4-heavy	$\begin{vmatrix} c_{QQ}^{1} \\ c_{QQ}^{8} \\ c_{Qt}^{1} \\ c_{Qt}^{8} \\ c_{Qt}^{1} \\ c_{tt}^{8} \end{vmatrix}$									
4-lepton	c_{ll}			✓	✓		✓	 ✓ 	√	√
2-fermion +bosonic	$ \begin{array}{c} c_{t\varphi} \\ c_{tG} \\ c_{b\varphi} \\ c_{c\varphi} \\ c_{\tau\varphi} \\ c_{tW} \\ c_{tZ} \\ c_{\varphi Q} \\ c_{\varphi l_{i}} \\ c_{\varphi e} \\ c_{\varphi \mu} \\ c_{\varphi q} \\ c$		✓ ✓ (b) ✓ ✓ ✓ ✓	√ √ √		✓	√ √ √ √ √ (b) √ √ √ √ √ √ √ √ √ √ √ √ √	\[\ldots \] \[\ldots	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ (b) \end{array}$	

[Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang, <u>2105.00006</u>]

Hermitian bi-fermion operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}_{H\ell}^{(1)[33]}$	0.1	0.1	4.4	1.6	4.3	$R_{ au}$	4.3	$R_{ au}$
$\mathcal{C}_{H\ell}^{(1)[ii]}$	0.7	0.7	7.6	3.	7.8	$\sigma_{ m had}$	7.8	$\sigma_{ m had}$
$\mathcal{C}_{H\ell}^{(3)[33]}$	0.7	0.7	4.5	1.7	4.4	$R_{ au}$	4.4	$R_{ au}$
$\mathcal{C}_{H\ell}^{(3)[ii]}$	0.7	0.7	7.7	3.8	7.7	$\sigma_{ m had}$	7.7	$\sigma_{ m had}$
$\mathcal{C}_{He}^{[33]}$	-	-	3.8	1.5	3.7	$R_{ au}$	3.7	$R_{ au}$
$\mathcal{C}_{He}^{[ii]}$	0.9	0.9	6.6	2.7	6.7	$\sigma_{ m had}$	6.7	$\sigma_{ m had}$
$\mathcal{C}_{Hq}^{(1)[33]}$	0.3	5.	3.7	0.1	3.7	Γ_Z	5.1	$B_s \to \mu \mu$
$\mathcal{C}_{Hq}^{(1)[ii]}$	0.5	5.2	1.9	0.5	2.	R_c	5.4	$B_s \to \mu \mu$
$\mathcal{C}_{Hq}^{(3)[33]}$	1.3	5.6	3.5	0.4	3.4	R_b	5.5	$B_s ightarrow \mu \mu$
$\mathcal{C}_{Hq}^{(3)[ii]}$	1.3	5.3	5.6	3.1	5.7	$R_{ au}$	7.7	Γ_Z
$\mathcal{C}_{Hd}^{[33]}$	-	-	1.3	0.2	1.3	R_b	1.3	R_b
${\cal C}_{Hd}^{[ii]}$	-	-	1.7	0.3	1.7	$R_{ au}$	1.7	$R_{ au}$
$\mathcal{C}_{Hu}^{[33]}$	0.6	0.6	3.	0.1	3.1	$A_b^{ m FB}$	3.1	$A_b^{ m FB}$
$\mathcal{C}_{Hu}^{[ii]}$	-	-	2.4	0.3	2.4	$R_{ au}$	2.4	$R_{ au}$

Table 2. Hermitian ψ^2 operators

Non-hermitian bi-fermion operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda^{ m down}_{ m all}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}^{[33]}_{eH}$	-	-	5.1	-	5.1	$H\to\tau\tau$	5.1	$H\to\tau\tau$
$\mathcal{C}^{[33]}_{uH}$	-	-	0.2	-	0.2	$H\to\tau\tau$	0.2	$H\to\tau\tau$
$\mathcal{C}_{dH}^{[33]}$	-	-	3.7	-	3.7	$H \rightarrow bb$	3.7	H ightarrow bb
${\cal C}^{[33]}_{Hud}$	3.2	3.2	0.5	-	3.2	$B \to X_s \gamma$	3.2	$B \to X_s \gamma$
$\mathcal{C}^{[33]}_{eB}$	-	-	0.2	1.2	1.2	$pp \to \tau\tau$	1.2	$pp \rightarrow \tau \tau$
$\mathcal{C}^{[33]}_{uB}$	0.7	0.8	2.4	1.9	2.7	$A_b^{ m FB}$	2.7	$A_b^{ m FB}$
$\mathcal{C}^{[33]}_{dB}$	15.2	74.8	0.4	0.7	15.2	$B \to X_s \gamma$	74.8	$B \to X_s \gamma$
$\mathcal{C}^{[33]}_{eW}$	-	-	1.	1.9	1.8	pp ightarrow au u	1.8	pp ightarrow au u
$\mathcal{C}^{[33]}_{uW}$	0.5	0.9	2.3	3.6	3.7	QuarkDipoles	3.8	QuarkDipoles
$\mathcal{C}_{dW}^{[33]}$	15.7	53.	1.4	0.6	15.7	$B \to X_s \gamma$	53.	$B \to X_s \gamma$
$\mathcal{C}^{[33]}_{uG}$	0.1	0.3	0.5	2.7	2.7	QuarkDipoles	2.7	QuarkDipoles
$\mathcal{C}_{dG}^{[33]}$	4.	25.5	0.3	-	4.	$B \to X_s \gamma$	25.5	$B \to X_s \gamma$

Table 3. Non-hermitian ψ^2 operators

Scalar and Tensor operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda^{ m down}_{ m all}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}^{[3333]}_{\ell edq}$	0.6	_	0.1	1.2	1.1	$pp \to \tau\tau$	1.2	$pp \to \tau\tau$
$\mathcal{C}^{(1)[3333]}_{quqd}$	1.8	5.5	1.7	0.4	2.2	$B \to X_s \gamma$	5.5	$B \to X_s \gamma$
$\mathcal{C}^{(8)[3333]}_{quqd}$	1.	5.1	0.7	0.2	1.	$B \to X_s \gamma$	5.1	$B \to X_s \gamma$
$\mathcal{C}^{(1)[3333]}_{\ell equ}$	-	-	2.1	-	2.1	$H\to\tau\tau$	2.1	$H \to \tau \tau$
$\mathcal{C}^{(3)[3333]}_{\ell equ}$	-	_	0.8	-	0.8	$H\to\tau\tau$	0.8	$H\to\tau\tau$

Table 4. Non-hermitian ψ^4 operators

LLLL vector operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}_{\ell\ell}^{[3333]}$	-	-	0.3	0.2	0.3	$\sigma_{ m had}$	0.3	$\sigma_{ m had}$
$\mathcal{C}_{\ell\ell}^{[ii33]}$	-	-	0.8	3.4	3.3	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	3.3	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{\ell\ell}^{[i33i]}$	-	-	3.3	3.3	4.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	4.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{\ell\ell}^{[iijj]}$	-	-	0.9	4.4	4.4	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	4.4	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{\ell\ell}^{[ijji]}$	-	-	4.5	4.4	4.9	$A_b^{ m FB}$	4.9	$A_b^{ m FB}$
$\mathcal{C}_{qq}^{(1)[3333]}$	1.	7.8	1.6	1.1	1.7	Γ_Z	7.6	$ C_{Bs} $
$\mathcal{C}_{qq}^{(1)[ii33]}$	1.3	11.2	0.9	1.5	1.7	FourQuarksTop	11.3	$ C_{Bs} $
$\mathcal{C}_{qq}^{(1)[i33i]}$	2.5	11.3	0.7	1.6	2.6	$B_s o \mu \mu$	11.3	$ C_{Bs} $
$\mathcal{C}_{qq}^{(1)[iijj]}$	0.9	8.1	0.4	-	0.9	$\operatorname{Im}(C_D)$	8.1	$ C_{Bs} $
$\mathcal{C}_{qq}^{(1)[ijji]}$	1.1	8.1	0.5	-	1.	$\operatorname{Im}(C_D)$	8.1	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[3333]}$	1.	8.2	1.2	1.1	1.5	m_W	8.2	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[ii33]}$	1.8	11.5	2.3	2.1	3.	R_b	11.3	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[i33i]}$	2.6	11.2	0.9	2.4	3.1	$B_s o \mu \mu$	11.3	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[iijj]}$	1.	7.9	1.5	0.2	1.5	$R_{ au}$	7.9	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[ijji]}$	1.1	8.	0.9	0.1	1.2	$K^+ \to \pi^+ \nu \bar{\nu}$	8.	$ C_{Bs} $
$\mathcal{C}_{\ell q}^{(1)[3333]}$	0.1	1.7	1.4	1.	1.4	$R_{ au}$	1.6	$K^+ o \pi^+ \nu \bar{ u}$
$\mathcal{C}_{\ell q}^{(1)[ii33]}$	0.4	5.	2.5	1.5	2.5	$\sigma_{ m had}$	5.1	$B_s \to \mu \mu$
$\mathcal{C}_{\ell q}^{(1)[33ii]}$	-	1.6	0.3	3.4	3.4	$pp \to \tau\tau$	3.4	$pp \to \tau\tau$
$\mathcal{C}_{\ell q}^{(1)[iijj]}$	0.5	5.	0.5	5.4	5.4	$pp ightarrow \mu \mu$	5.6	$pp ightarrow \mu \mu$
$\mathcal{C}_{\ell q}^{(3)[3333]}$	0.7	1.5	1.4	1.	1.6	$R_{ au}$	1.6	$K^+ o \pi^+ \nu \bar{\nu}$
$\mathcal{C}_{\ell q}^{(3)[ii33]}$	0.7	5.1	2.4	1.5	2.5	$A_b^{ m FB}$	5.	$B_s o \mu \mu$
$\mathcal{C}_{\ell q}^{(3)[33ii]}$	0.1	1.4	2.	8.6	8.8	pp ightarrow au u	8.7	pp ightarrow au u
$\mathcal{C}_{\ell q}^{(3)[iijj]}$	0.5	5.1	2.1	22.5	22.5	$pp ightarrow \mu u$	23.7	$pp ightarrow \mu u$

Table 5. Four-fermion $(\bar{L}L)(\bar{L}L)$ terms

RRRR vector operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}_{ee}^{[3333]}$	-	-	0.3	0.2	0.3	$R_{ au}$	0.3	$R_{ au}$
$\mathcal{C}_{ee}^{[ii33]}$	-	-	0.7	3.2	3.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	3.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{ee}^{[iijj]}$	-	-	0.8	4.2	4.2	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	4.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}^{[3333]}_{uu}$	0.4	0.4	1.2	0.8	1.3	$A_b^{ m FB}$	1.3	$A_b^{ m FB}$
$\mathcal{C}_{uu}^{[ii33]}$	0.1	0.1	1.1	1.3	1.4	FourQuarksTop	1.4	FourQuarksTop
$\mathcal{C}_{uu}^{[i33i]}$	-	-	0.5	1.3	1.4	FourQuarksTop	1.4	FourQuarksTop
$\mathcal{C}^{[iijj]}_{uu}$	-	-	0.3	-	0.3	$R_{ au}$	0.3	$R_{ au}$
$\mathcal{C}_{uu}^{[ijji]}$	-	-	0.3	-	0.3	$R_{ au}$	0.3	$R_{ au}$
$\mathcal{C}_{dd}^{[3333]}$	-	-	-	-	-	R_b	-	R_b
$\mathcal{C}_{dd}^{[ii33]}$	-	-	0.1	-	0.1	$R_{ au}$	0.1	$R_{ au}$
$\mathcal{C}_{dd}^{[i33i]}$	-	-	-	-	-	Γ_Z	-	Γ_Z
$\mathcal{C}_{dd}^{[iijj]}$	-	-	0.2	-	0.2	$R_{ au}$	0.2	$R_{ au}$
$\mathcal{C}_{dd}^{[ijji]}$	-	-	0.1	-	0.1	$R_{ au}$	0.1	$R_{ au}$
$\mathcal{C}^{[3333]}_{eu}$	-	-	1.2	0.4	1.2	$R_{ au}$	1.2	$R_{ au}$
$\mathcal{C}^{[ii33]}_{eu}$	0.9	0.9	2.1	0.7	2.2	$\sigma_{ m had}$	2.2	$\sigma_{ m had}$
$\mathcal{C}^{[33ii]}_{eu}$	-	-	0.3	2.8	2.8	$pp \to \tau\tau$	2.8	$pp \to \tau\tau$
$\mathcal{C}^{[iijj]}_{eu}$	-	-	0.6	7.4	7.4	$pp \to ee$	7.4	$pp \rightarrow ee$
$\mathcal{C}_{ed}^{[3333]}$	-	-	0.2	1.	1.	$pp \to \tau\tau$	1.	$pp \to \tau\tau$
$\mathcal{C}_{ed}^{[ii33]}$	-	-	0.3	1.5	1.5	$pp \to \mu \mu$	1.5	$pp ightarrow \mu \mu$
$\mathcal{C}_{ed}^{[33ii]}$	-	-	0.2	2.8	2.8	$pp \to \tau\tau$	2.8	$pp \to \tau\tau$
$\mathcal{C}_{ed}^{[iijj]}$	-	-	0.4	4.4	4.4	$pp \to \mu \mu$	4.4	$pp ightarrow \mu\mu$
$\mathcal{C}_{ud}^{(1)[3333]}$	0.1	0.1	0.4	0.3	0.4	R_b	0.4	R_b
$\mathcal{C}_{ud}^{(1)[ii33]}$	-	-	0.1	-	0.1	$R_{ au}$	0.1	$R_{ au}$
$\mathcal{C}_{ud}^{(1)[33ii]}$	-	-	0.5	1.2	1.2	FourQuarksTop	1.2	FourQuarksTop
$\mathcal{C}_{ud}^{(1)[iijj]}$	-	-	0.2	-	0.2	$R_{ au}$	0.2	$R_{ au}$
$\mathcal{C}_{ud}^{(8)[3333]}$	0.1	0.1	-	0.2	0.2	FourQuarksBottom	0.2	FourQuarksBottom
$\mathcal{C}_{ud}^{(8)[ii33]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{ud}^{(8)[33ii]}$	-	-	0.1	0.7	0.7	FourQuarksTop	0.7	FourQuarksTop
$\mathcal{C}_{ud}^{(8)[iijj]}$	-	-	-	-	-	-	-	-

Table 6. Four-fermion $(\bar{R}R)(\bar{R}R)$ terms

LLRR vector operators

coeff.	$\Lambda_{\mathrm{flav.}}^{\mathrm{down}}$	$\Lambda^{\mathrm{up}}_{\mathrm{flav.}}$	$\Lambda_{\rm EW}$	$\Lambda_{\rm coll.}$	$\Lambda^{ m down}_{ m all}$	Obs.	$\Lambda^{\rm up}_{\rm all}$	Obs.
$\mathcal{C}^{[3333]}_{\ell e}$	-	-	0.2	0.1	0.2	$A_{ au}$	0.2	A_{τ}
$\mathcal{C}^{[ii33]}_{\ell e}$	-	-	0.4	2.	1.9	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	1.9	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$
$\mathcal{C}_{\ell e}^{[33ii]}$	-	-	0.3	1.9	2.	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	2.	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{\ell e}^{[iijj]}$	-	-	0.5	3.8	3.8	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	3.8	$(e^+e^- \rightarrow \mu^+\mu^-)_{\rm FB}$
$\mathcal{C}^{[3333]}_{\ell u}$	0.1	0.1	1.4	0.4	1.3	$R_{ au}$	1.3	R_{τ}
$\mathcal{C}^{[ii33]}_{\ell u}$	0.7	0.7	2.4	0.8	2.3	$\sigma_{ m had}$	2.3	$\sigma_{ m had}$
$\mathcal{C}^{[33ii]}_{\ell u}$	-	-	0.4	3.1	3.1	$pp \to \tau\tau$	3.1	$pp \to \tau\tau$
$\mathcal{C}^{[iijj]}_{\ell u}$	-	-	0.7	5.2	5.2	$pp \to \mu \mu$	5.2	$pp ightarrow \mu \mu$
$\mathcal{C}_{\ell d}^{[3333]}$	-	-	0.2	1.	1.	$pp \to \tau\tau$	1.	$pp \to \tau\tau$
$\mathcal{C}_{\ell d}^{[ii33]}$	-	-	0.3	1.5	1.5	$pp ightarrow \mu \mu$	1.5	$pp ightarrow \mu \mu$
$\mathcal{C}_{\ell d}^{[33ii]}$	-	-	0.3	3.	3.	$pp \to \tau\tau$	3.	$pp \to \tau\tau$
$\mathcal{C}_{\ell d}^{[iijj]}$	-	-	0.5	4.7	4.7	$pp ightarrow \mu \mu$	4.7	$pp ightarrow \mu \mu$
$\mathcal{C}_{eq}^{[3333]}$	-	0.3	1.2	1.	1.3	$R_{ au}$	1.2	$R_{ au}$
$\mathcal{C}_{eq}^{[ii33]}$	0.6	6.7	2.1	1.5	2.2	$\sigma_{ m had}$	6.7	$B_s ightarrow \mu \mu$
$\mathcal{C}_{eq}^{[33ii]}$	-	0.3	0.2	3.7	3.7	$pp \to \tau\tau$	3.7	$pp \to \tau\tau$
$\mathcal{C}_{eq}^{[iijj]}$	-	-	0.4	6.	6.	$pp ightarrow \mu \mu$	6.	$pp ightarrow \mu \mu$
$\mathcal{C}_{qu}^{(1)[3333]}$	0.3	1.8	1.2	0.6	1.3	Γ_Z	1.7	$B_s ightarrow \mu \mu$
$\mathcal{C}_{qu}^{(1)[ii33]}$	0.3	1.8	0.6	1.6	1.6	FourQuarksTop	2.1	$B_s \to \mu \mu$
$\mathcal{C}_{qu}^{(1)[33ii]}$	-	0.6	0.8	1.4	1.4	FourQuarksTop	1.2	FourQuarksTop
$\mathcal{C}_{qu}^{(1)[iijj]}$	-	0.6	0.2	-	0.2	$R_{ au}$	0.6	$ C_{Bd} $
${\cal C}_{qu}^{(8)[3333]}$	0.2	0.7	0.1	0.4	0.4	FourQuarksTop	0.7	$ C_{Bs} $
$\mathcal{C}_{qu}^{(8)[ii33]}$	0.3	0.7	0.1	1.2	1.2	FourQuarksTop	1.2	FourQuarksTop
$\mathcal{C}_{qu}^{(8)[33ii]}$	-	0.1	0.2	0.8	0.8	FourQuarksTop	0.8	FourQuarksTop
$\mathcal{C}_{qu}^{(8)[iijj]}$	-	0.1	-	-	-	$R_{ au}$	0.1	$C_9^{ m U}$
${\cal C}_{qd}^{(1)[3333]}$	0.2	0.3	0.4	0.3	0.3	R_b	0.3	R_b
$\mathcal{C}_{qd}^{(1)[ii33]}$	-	0.3	0.1	-	-	$R_{ au}$	0.3	$B_s ightarrow \mu \mu$
$\mathcal{C}_{qd}^{(1)[33ii]}$	-	0.4	0.6	1.3	1.2	FourQuarksTop	1.1	FourQuarksTop
$\mathcal{C}_{qd}^{(1)[iijj]}$	-	0.4	0.2	-	0.2	$R_{ au}$	0.4	$B_s ightarrow \mu \mu$
$\mathcal{C}_{qd}^{(8)[3333]}$	-	-	-	0.2	0.2	FourQuarksBottom	0.2	FourQuarksBottom
$\mathcal{C}_{qd}^{(8)[ii33]}$	0.1	-	-	-	0.1	$B \to X_s \gamma$	-	$B \to X_s \gamma$
$\mathcal{C}_{qd}^{(8)[33ii]}$	-	-	0.1	0.7	0.7	FourQuarksTop	0.7	FourQuarksTop
$\mathcal{C}_{qd}^{(8)[iijj]}$	-	-	-	-	-	$R_{ au}$	-	$ C_{Bs} $

Table 7. Four-fermion $(\bar{L}L)(\bar{R}R)$ terms

Bosonic operators

coeff.	$\Lambda_{\mathrm{flav.}}^{\mathrm{down}}$	$\Lambda^{\mathrm{up}}_{\mathrm{flav.}}$	$\Lambda_{\rm EW}$	$\Lambda_{ m coll.}$	$\Lambda_{\mathrm{all}}^{\mathrm{down}}$	Obs.	$\Lambda^{\rm up}_{\rm all}$	Obs.
\mathcal{C}_{H}	-	-	-	-	-	-	-	-
$\mathcal{C}_{H\square}$	0.2	0.2	0.6	0.1	0.6	$A_b^{ m FB}$	0.6	$A_b^{ m FB}$
\mathcal{C}_{HD}	0.5	0.5	5.1	-	5.	$A_b^{ m FB}$	5.	$A_b^{ m FB}$
\mathcal{C}_{HG}	0.8	0.8	0.4	-	0.9	$B \to X_s \gamma$	0.9	$B \to X_s \gamma$
\mathcal{C}_{HB}	0.5	0.5	0.9	-	0.9	$A_b^{ m FB}$	0.9	$A_b^{ m FB}$
\mathcal{C}_{HW}	0.7	0.7	0.9	-	1.	$A_b^{ m FB}$	1.	$A_b^{ m FB}$
\mathcal{C}_{HWB}	1.	1.	9.	-	9.	$A_b^{ m FB}$	9.	$A_b^{ m FB}$
\mathcal{C}_G	1.1	1.1	0.1	-	1.1	$B \to X_s \gamma$	1.1	$B \to X_s \gamma$
\mathcal{C}_W	0.3	0.3	0.9	-	0.9	$A_b^{ m FB}$	0.9	$A_b^{ m FB}$

Table 8. CP-conserving bosonic operators