Neutrino Physics: Now and at Future Accelerators

Vedran Brdar



Corfu Workshop on Future Accelerators, May 2024

#### Neutrinos & Accelerators

Accelerator Neutrinos (MiniBooNE, NOvA, DUNE...)





#### LHC Neutrinos

#### Neutrinophilic BSM searches at Colliders



#### Corfu Workshop on Future Accelerators, May 2024



MiniBooNE Anomaly

New Physics Searches at DUNE

• Resonances in  $\bar{\nu}_e - e^-$  scattering at FPF

Neutrino Magnetic Moment and Future Colliders

## Anomalies: LSND and MiniBooNE



#### Main Channels for MiniBooNE

- ▶ shower events can be produced by e,  $\gamma$ , collimated  $e^+e^-$  and  $\gamma\gamma$
- ▶ in SM, majority of events relevant for MiniBooNE excess arise from 1) CC  $\nu_e$  events, 2) NC  $\pi^0$  production, 3) NC  $\gamma$  from e.g.  $\Delta(1232)$





#### Employed MC Generators



| Generate | or Tune          | Ref.         | Comments                                                       |
|----------|------------------|--------------|----------------------------------------------------------------|
| NUANCE   | -                | [40]         | the generator used by MiniBooNE                                |
| GiBUU    | _                | [42]         | theory-driven generator                                        |
| NuWro    | _                | [41]         |                                                                |
| GENIE    | G18_01a_02_1     | 11a [39, 44] | GENIE baseline tune; see [44] for naming conventions           |
|          | $G18_01b_02_1$   | l1a          | different FSI implementation compared to G18_01a_02_11a        |
|          | $G18_02a_02_1$   | l1a          | updated res./coh. scattering models compared to G18_01a_02_11a |
|          | $G18_{02b}_{02}$ | l1a          | updated res./coh. scattering models and different FSI          |
|          | G18_10a_02_3     | l1a          | theory-driven configuration; similar to G18_02a                |
|          | $G18\_10b\_02\_$ | l1a          | theory-driven configuration; similar to $G18\_02b$             |

- 1. Make a prediction using NUANCE
- 2. Compare with the prediction obtained by the MiniBooNE collaboration; the differences are compensated by bin-by-bin tuning
- 3. Predict the event sample using GiBUU, NuWro and GENIE using the same cuts as for NUANCE; apply the tuning factors

## Neutral Current $\pi^0$ Production



#### 3+1 Model with eV-scale Sterile Neutrino

$$U^{\text{4flavor}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

$$\sin^2 2 heta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$$



Corfu Workshop on Future Accelerators, May 2024

#### Results: Data-driven backgrounds



| Generator   | Tune                         | $\Delta m_{41}^2 \; [eV^2]$ | $\sin^2 2\theta_{\mu e}$ | Significance |
|-------------|------------------------------|-----------------------------|--------------------------|--------------|
| MB official |                              | 0.25                        | 0.01                     | $4.0\sigma$  |
| NUANCE      | _                            | 0.32                        | 0.0079                   | $4.0\sigma$  |
| NuWro       | -                            | 3.2                         | 0.0016                   | $3.1\sigma$  |
| GENIE       | G18_01a_02_11a               | 0.79                        | 0.00020                  | $4.4\sigma$  |
|             | G18 01b 02 11a               | 0.79                        | 0.0001                   | $3.5\sigma$  |
|             | $G18_02a_02_11a$             | 0.13                        | 0.063                    | $4.0\sigma$  |
|             | G18 02b 02 11a               | 0.13                        | 0.050                    | $3.7\sigma$  |
|             | $G18_{10a}_{02}_{11a}$       | 0.25                        | 0.016                    | $3.5\sigma$  |
|             | $\mathrm{G18\_10b\_02\_11a}$ | 0.40                        | 0.013                    | $4.0\sigma$  |

### Non-oscillatory Explanations of MiniBooNE Anomaly

#### slide from MicroBooNE presentations

## Evolving Theory Landscape

- · Decay of O(keV) Sterile Neutrinos to active neutrinos
  - [13] Dentler, Esteban, Kopp, Machado Phys. Rev. D 101, 115013 (2020)
  - [14] de Gouvêa, Peres, Prakash, Stenico JHEP 07 (2020) 141
- · New resonance matter effects
  - [5] Asaadi, Church, Guenette, Jones, Szelc, PRD 97, 075021 (2018)
- · Mixed O(1eV) sterile oscillations and O(100 MeV) sterile decay
  - [7] Vergani, Kamp, Diaz, Arguelles, Conrad, Shaevitz, Uchida, arXiv:2105.06470
- · Decay of heavy sterile neutrinos produced in beam
  - \_ [4] Gninenko, Phys.Rev.D83:015015,2011
  - [12] Alvarez-Ruso, Saul-Sala, Phys. Rev. D 101, 075045 (2020)
  - [15] Magill, Plestid, Pospelov, Tsai Phys. Rev. D 98, 115015 (2018)
  - [11] Fischer, Hernandez-Cabezudo, Schwetz, PRD 101, 075045 (2020)
- Decay of upscattered heavy sterile neutrinos or new scalars mediated by Z' or more complex higgs sectors
  - [1] Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018)
  - [2] Abdullahi, Hostert, Pascoli, Phys.Lett.B 820 (2021) 136531
  - [3] Ballett, Pascoli, Ross-Lonergan, PRD 99, 071701 (2019)
  - [10] Dutta, Ghosh, Li, PRD 102, 055017 (2020)
  - \_ [6] Abdallah, Gandhi, Roy, Phys. Rev. D 104, 055028 (2021)
- · Decay of axion-like particles
  - [8] Chang, Chen, Ho, Tseng, Phys. Rev. D 104, 015030 (2021)
- A model-independent approach to any new particle
  - [9] Brdar, Fischer, Smirnov, PRD 103, 075008 (2021)



#### Corfu Workshop on Future Accelerators, May 2024

#### First Results from Short-Baseline Neutrino Program





11/32

Corfu Workshop on Future Accelerators, May 2024



MiniBooNE Anomaly

New Physics Searches at DUNE

• Resonances in  $\bar{\nu}_e - e^-$  scattering at FPF

Neutrino Magnetic Moment and Future Colliders

#### DUNE







#### BSM at DUNE: Axion-like Particles (ALPs)



#### production of photons





#### Detection of ALPs



#### Sensitivity



#### Target-less DUNE





Sensitivity



#### Further BSM Scenarios

adopted from Jae Yu

| Process     | Signatures                                                                                                                           | Background                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| ALP         | Scattering: γ+e/ γ+N (n)<br>Decay in flight : γγ                                                                                     | $\nu$ coherent, NC w/ $\pi^0$ , $\nu_e$ CC w/ $\pi^0$ , etc |
| LDM         | χe <sup>-</sup> →χe <sup>-</sup> , χN→N'n                                                                                            | NC w/ $\pi^{0}$ , $\nu_{e}$ CC, QE, RES                     |
| mCP         | Multiple e <sup>-</sup> scatterings                                                                                                  | $v_{e}$ CC w/ $\pi^{0}$                                     |
| Dark Photon | A <b>-</b> →e⁻e⁺, μ⁻μ⁺                                                                                                               | $v$ CC + mis-ID $\pi$ , Accidental overlap of CC            |
| HNL         | $\label{eq:N} \begin{split} N & \rightarrow \nu e^- e^+,  \nu \mu^- \mu^+,  \nu e \mu,  \nu \pi^0, \\ & e \pi,  \mu \pi \end{split}$ | $\nu$ CC + mis-ID $\pi$ , $\nu_{e}$ CC w/ $\pi^{0}$         |
| v trident   | ν <b>→</b> νe⁻e⁺, νμ⁻μ⁺, νeμ                                                                                                         | $\nu_{\mu} N \rightarrow \nu_{\mu} \pi N \Box (\nu CC)$     |
| BDM/ iBDM   | χN→eN                                                                                                                                | $\nu$ coherent, NC w/ $\pi^{0},\nu_{e}$ CC                  |



MiniBooNE Anomaly

New Physics Searches at DUNE

• Resonances in  $\bar{\nu}_e - e^-$  scattering at FPF

Neutrino Magnetic Moment and Future Colliders

#### First Glashow Resonance Event at IceCube



▶  $\bar{\nu}_e$  in the astrophysical flux  $\implies$  way to distinguish  $\nu$  from  $\bar{\nu}$ 

19/32

PeV partially contained events: shower with energy of 6.05 ± 0.72 PeV
 O(PeV) cosmic muon as BKG yields 10<sup>-7</sup> events => rejected at 5σ



Corfu Workshop on Future Accelerators, May 2024

#### **Collider Neutrinos**



 FASER
 *v* is a 1.2 tonne detector located 480 m from the ATLAS interaction point containing emulsion films and tungsten plates



- ► FASERν2 and FLArE (LAr) at FPF
- ▶ 153 ν<sub>µ</sub> charged-current interactions at FASER
   ⇒ first direct observation of ν interactions at a particle collider experiment

20/32



Corfu Workshop on Future Accelerators, May 2024

FASEF

PRI 2023

 $C = 35.4 \text{ fb}^-$ 

Neutrino-like Events

#### "Glashow-like" Events at Low Energies?



#### "Glashow-like" Events at Low Energies?

$$ar{
u}_e e^- o R^-$$



"Glashow-like" Events at Low Energies?

$$\bar{\nu}_{e}e^{-} \rightarrow \text{meson} \rightarrow \text{anything}$$
Breit-Wigner:  $\sigma_{\text{res}} = (2J+1)8\pi \Gamma^{2} \operatorname{Br}_{\text{in}} \operatorname{Br}_{\text{fi}} \frac{s/M^{2}}{(s-M^{2})^{2}+M^{2}\Gamma^{2}}$ 
  
> pseudoscalar mesons:  $\Gamma(\mathfrak{m} \rightarrow \bar{\nu}_{e}e^{-}) = \frac{G_{F}^{2}}{8\pi}f^{2}m_{lep}^{2}M\left(1-\frac{m_{lep}^{2}}{M^{2}}\right)|V_{\text{CKM}}|^{2}$ 
  
> vector mesons:  $\Gamma(\mathfrak{m} \rightarrow \bar{\nu}_{e}e^{-}) = \frac{G_{F}^{2}}{12\pi}f^{2}M^{3}|V_{\text{CKM}}|^{2}$ 
  
 $\bar{\nu}_{e}e^{-} \rightarrow \rho^{-} \rightarrow \pi^{0}\pi^{-}$ 

$$E_{\nu}^{res}(\kappa^{-}) = \frac{(770\text{MeV})^{2}}{2m_{e}} \approx 580 \text{ GeV}$$
  
> alternative calculation using

alternative calculation using  $\langle \pi^{-}(k_1)\pi^{0}(k_2)|V_{\mu}|0\rangle = (k_1 - k_2)_{\mu}F(q^2)$ 

3

PRD 2008

10-3 0.5 1 1.5 (M\_\_\_9)<sup>2</sup>

#### **Event Rates**



| Experiment   | $\rho^-, \pm \Gamma/2$ | $\rho^-, \pm 2\Gamma$ | $K^{-*}, \pm \Gamma/2$ | $K^{-*}, \pm 2\Gamma$ |
|--------------|------------------------|-----------------------|------------------------|-----------------------|
| $FASER\nu$   | 0.3                    | 0.5                   | -                      | -                     |
| $FASER\nu 2$ | 23                     | 37                    | 0.7                    | 3                     |
| FLArE-10     | 11                     | 19                    | 0.3                    | 2                     |
| FLArE-100    | 63                     | 103                   | 2                      | 8                     |
| DeepCore     | 3(1)                   | 5(2)                  | -                      | -                     |
| IceCube      | 8 (40)                 | 17(83)                | -                      | -                     |

$$R_W = \frac{\sigma(\bar{\nu}_e e^- \rightarrow \text{hadrons})}{\sigma(\bar{\nu}_e e^- \rightarrow \bar{\nu}_\mu \mu^-)}$$



$$R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$



#### Corfu Workshop on Future Accelerators, May 2024

## Signature of $\rho^-$ Resonance



cut on E<sub>π<sup>-</sup></sub> + E<sub>π<sup>0</sup></sub> to lie near 580 GeV
 θ<sub>νN</sub> ~ 1/γ<sub>cm</sub> ~ 28 mrad × √600 GeV/E<sub>ν</sub> for deep inelastic scattering
 θ<sub>ππ</sub> = 28 mrad√m<sub>e</sub>/m<sub>N</sub> × √600 GeV/E<sub>ν</sub> =

 $0.7 \text{ mrad} imes \sqrt{600 \text{ GeV}/\text{E}_{
u}}$  for  $ar{
u} - e$  scattering

cut on charged track and photon multiplicity

• reconstruct the invariant mass of the  $\pi^0 \pi^-$  pair,  $m_{\pi\pi}^2 = m_{\pi^0}^2 + m_{\pi^-}^2 + E_{\pi^0} E_{\pi^-} \theta_{\pi\pi}^2$ , and require it to lie within  $\Gamma_{\rho} \sim 150$  MeV of  $m_{\rho} \approx 770$  MeV

► Sweeper Magnet for FASERν2

#### IceCube:

- ▶ large background and difficult to identify  $\pi^-\pi^0$  topology
- ► *S* : *B* ≈ 1 : 100



MiniBooNE Anomaly

New Physics Searches at DUNE

• Resonances in  $\bar{\nu}_e - e^-$  scattering at FPF

Neutrino Magnetic Moment and Future Colliders

#### Magnetic Moment for Massive Neutrinos

$$\mathcal{L} \supset rac{1}{2} \mu_{
u}^{lphaeta} \, ar{
u}_L^{lpha} \sigma^{\mu
u} 
u_R^{eta} F_{\mu
u}$$

• neutrinos are massless in the Standard Model  $\Longrightarrow \mu_{\nu}^{\alpha\beta} = 0$ 

adding ν<sub>R</sub> to the Standard Model generates
 Dirac mass m<sub>ν</sub> ν
 <sup>-</sup> μ<sub>ν</sub> which generates nonzero μ<sub>ν</sub>

$$\mu_{
u}^{\text{diag}} = rac{3eG_Fm_{
u}}{8\sqrt{2}\pi^2} pprox 3 imes 10^{-20} \mu_B \left(rac{m_{
u}}{0.1 \, \mathrm{eV}}
ight)$$

I DE CONTRACTOR DE LA C



for Majorana neutrinos, only non-diagonal elements are nonzero

$$\mu_{\nu}^{ij} = -rac{3eG_F(m_i+m_j)}{16\sqrt{2}\pi^2} \sum_k \ln\left[U_{ki}^* U_{kj}\right] rac{m_k^2}{m_W^2} \lesssim 10^{-23} \mu_B \qquad \mu_B = rac{e}{2m_e}$$

▶ not testable ⇒ more BSM physics required

### Sterile Neutrinos





Minkowski, Mohapatra, Senjanović, Gell-Mann, Ramond, Slansky, Yanagida



$$\mathcal{M} = \begin{pmatrix} 0 & M_D \\ M_D & M_R \end{pmatrix}$$

 $m_{\nu} = -M_D M_R^{-1} M_D^T$  $\theta = M_D / M_R$ 

 $\mathcal{L} \supset \frac{1}{2}\overline{N^{c}}M_{R}N + \overline{L}Y_{\nu}\widetilde{H}N + h.c.$ 





Corfu Workshop on Future Accelerators, May 2024

Active-to-Sterile Neutrino Transition Magnetic Moment

$${\cal L} \supset {1\over 2} \mu_N \, ar 
u_L^lpha \sigma^{\mu
u} N_{m R} F_{\mu
u}$$

Example for a model generating transition magnetic moment:



#### **Collider Probes**



#### Future Colliders



#### Collider Probes of Neutrino Transition Magnetic Moment







Corfu Workshop on Future Accelerators, May 2024

## Summary

Accelerators and colliders are invaluable for the present success and future progress of v physics

#### Some examples....

- Exciting prospects for new physics at near-future experiments such as DUNE (e.g., probing ALPs)
- The MiniBooNE anomaly, scrutinized from both the SM and BSM sides, is being tested at the Short-Baseline Neutrino Program at Fermilab
- ▶  $\mathcal{O}(100)$  resonance events from  $\bar{\nu} e^-$  scattering are expected at proposed FPF detectors
- For neutrinophilic BSM models (e.g., neutrino magnetic moment), unconstrained regions in the parameter space can be tested at future colliders

## BACKUP

#### Charged Current Events

 $\nu_e + n \rightarrow e^- + p$ 



#### Neutral Current Single $\gamma$ Production



Corfu Workshop on Future Accelerators, May 2024

#### Results: Monte Carlo-only predictions



Reconstructed Neutrino Energy Ev [GeV]

| Generator   | Tune                                      | $\Delta m_{41}^2  [eV^2]$ | $sin^2 2\theta_{\mu e}$ | Significance |
|-------------|-------------------------------------------|---------------------------|-------------------------|--------------|
| MB official |                                           | 0.25                      | 0.01                    | $4.0\sigma$  |
| GiBUU       | default                                   | 0.25                      | 0.01                    | $4.6\sigma$  |
|             | $BR(\Delta \rightarrow \gamma) - 2\sigma$ | 0.32                      | 0.0063                  | $4.9\sigma$  |
|             | $BR(\Delta \rightarrow \gamma) + 2\sigma$ | 0.32                      | 0.0050                  | $4.2\sigma$  |
| NUANCE      | _                                         | 0.32                      | 0.0079                  | $4.0\sigma$  |
| NuWro       | _                                         | 3.2                       | 0.0020                  | $3.5\sigma$  |
| GENIE       | G18_01a_02_11a                            | 0.13                      | 0.079                   | $4.3\sigma$  |
|             | G18_01b_02_11a                            | 0.79                      | 0.0001                  | $3.6\sigma$  |
|             | $G18_02a_02_11a$                          | 0.13                      | 0.050                   | $3.5\sigma$  |
|             | G18_02b_02_11a                            | 0.13                      | 0.050                   | $3.5\sigma$  |
|             | G18_10a_02_11a                            | 0.25                      | 0.016                   | $2.9\sigma$  |
|             | $G18_{10b}02_{11a}$                       | 0.40                      | 0.013                   | $3.8\sigma$  |

#### First Results from MicroBooNE





Corfu Workshop on Future Accelerators, May 2024

#### First Results from MicroBooNE

# arXiv:2110.00409 $1\gamma 1p$ $1\gamma 0p$

|                                 | $1\gamma 1p$ | $1\gamma 0p$     |
|---------------------------------|--------------|------------------|
| Unconstr. bkgd.                 | $27.0\pm8.1$ | $165.4 \pm 31.7$ |
| Constr. bkgd.                   | $20.5\pm3.6$ | $145.1 \pm 13.8$ |
| NC $\Delta \rightarrow N\gamma$ | 4.88         | 6.55             |
| LEE $(x_{\rm MB} = 3.18)$       | 15.5         | 20.1             |
| Data                            | 16           | 153              |

| Process                         | $1\gamma 1p$ | $1\gamma 0p$ |
|---------------------------------|--------------|--------------|
| NC $1\pi^0$ Non-Coherent        | 24.0         | 68.1         |
| NC $1\pi^0$ Coherent            | 0.0          | 7.6          |
| $CC \nu_{\mu} 1\pi^{0}$         | 0.5          | 14.0         |
| CC $\nu_e$ and $\bar{\nu}_e$    | 0.4          | 11.1         |
| BNB Other                       | 2.1          | 18.1         |
| Dirt (outside TPC)              | 0.0          | 36.4         |
| Cosmic Ray Data                 | 0.0          | 10.0         |
| Total Background (Unconstr.)    | 27.0         | 165.4        |
| NC $\Delta \rightarrow N\gamma$ | 4.88         | 6.55         |



#### Corfu Workshop on Future Accelerators, May 2024