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European Strategy for Particle Physics

e Strategy established in 2006
e 1stupdate in 2013 to evaluate HL-LHC upgrades
e 2" ypdate in 2020-2021 to propose post HL-LHC strategy

A ~200 page report/roadmap was then published

“Europe, together with its international partners, should investigate the
technical and financial feasibility of a future hadron collider at CERN with a
centre-of-mass energy of at least 100 TeV and with an e+ e- Higgs and
electroweak factory as a possible first stage.

The success of particle physics experiments relies on innovative instrumentation
and state-of-the-art infrastructures.

Detector R&D programmes and associated infrastructures should be supported
at CERN, national institutes, laboratories and universities.

Organised by ECFA, a roadmap should be developed by the community to
balance the detector R&D efforts in Europe and its partners. “
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ECFA detector R&D roadmap

* Five time-periods are defined from now until > 2045 Indicative timeline out to 2041 for (HL)-LHC Schedule
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* Requirements for the future detectors

* Excellent time and space resolution in high occupancy environment
e Radiation hard components
* High event rate: detectors with super fast response are needed
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 Roadmap was approved by ECFA in November 2021
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Overview of future accelerators/colliders (EIC, ILC, CLIC, FCC, Muon collider) with their timelines
9 Task forces were formed with respect to the most urgent Detector R&D, that are now evolving to

collaborations in each domain
Within the community, they are identified as Detector R&D Themes (DRDTs)

Workshop on Future Accelerators
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Solid state detectors in a nutshell

 Initial development of solid state detectors began in the 1950s

* First use of solid-state detectors in HEP in the 1960s at SLAC
* To measure the energy of protons and other charged particles in 1961 (W. Panofsky)
 Silicon detector to measure electron — proton elastic scattering in 1966
* First solid proof of the advantages of this type of detectors: high resolution, compact size

e 1970s technology of solid state detectors continue to improve and integrated into various experiments for
vertexing, tracking and measuring energy of particles

* Notable establishment thanks to Fermilab and CERN experiments the following decades until nowadays
e Revolution in particle detection
* Improved spatial and energy resolution: more precise measurements and particles identification

 Compactness: smaller and more manageable detectors
* Fast response: strengthen ability of to handle high event rates (eg hadron colliders)
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Solid state detectors in a nutshell

* Applications in HEP

Tracking detectors: reconstructions of the trajectories of charged particles. This information is crucial for
identifying particles

Vertex detectors: placed close to the interaction point to precisely determine the positions of particle
collisions, which helps in identifying short-lived particles and mitigating pile-up

Calorimeters: (more recent) applications to measure the energy of particles by absorbing them and
measuring the total charge created

* Types of solid-state detectors Two main applications in collider detectors

22.05.2024

Silicon strip detectors: thin strips of silicon, each acting as individual detector element, widely used for
tracking

Silicon pixel detectors: grid of microscopic pixelated regions, each acting as detector. Higher resolution
compared to strips, used for vertexing close to interaction point and tracking

Charged-Coupled Devices (CCDs): used in imaging applications (commercial digital cameras), can be used
for low energy particle detection

Silicon Drift Detectors (SDDs): high resolution energy measurements, usually in X-ray spectroscopy

Workshop on Future Accelerators



ECFA Roadmap TF#3: what do experiments need?

* Detector Readiness Matrix: a graphical \
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complements table from previous slide
showing the required values of the
future detectors specifications, as a

function of time and facility

* Therefore, this table provides

guantitative targets for the R&D
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* This nice (but difficult-to-read) table
complements table from previous slide
showing the required values of the
future detectors specifications, as a

function of time and facility

* Therefore, this table provides

guantitative targets for the R&D
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ECFA Roadmap TF#3 = DRD3 Collaboration

 DRD3 collaboration goal two-fold

* Realization of the strategic R&D defined by the TF#3 in the ECFA road map: develop technologies that
solve well-defined problems of (near-) future experiments

* Promoting blue-sky R&D: explore new ideas and
techniques that might be of use in the future B \g s
R 6

 DRD3 working group structure
e WG1 Monolithic CMOS sensors

e WG2 Sensors for tracking and calorimetry

e WG3 Radiation damage and extreme fluences
e WG4 Simulation
e WG5 Characterization techniques, facilities

e WG6 Wide bandgap and innovative sensor materials

e WGT Interconnect and device fabrication

e WGS Dissemination and outreach
22.05.2024 Workshop on Future Accelerators 11


https://drd3.web.cern.ch/institutes

What detection technologies will be used?

WG 1
) pixel sensors &
s _ . . o readout
! — g Hybrid Monolithic electronics
(~Sensor "] ’ - ’ contained on a
single silicon
substrate
Low-gain (LGADs) No gain Low-gain (LGADs) No gain
Standard Resistive read- Planar BiCMOS CMOS BiCMOS CMOS
read-out out S|/D|amond (SiGe) (SiGe)

22.05.2024
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WG 2: Hybrid sensor technologies
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Requirements of strategic R&D

 The obvious metric for R&D is space and time

resolution; the highest precision, the better .
detector?
* Improving resolution is getting very complex
in advanced R&D, therefore more parameters
should be taken into consideration
* Material budget, power, event rates, occupancy,
radiation hardness, cost
* Interplay with electronics: capacitance, resistivity, =~ “""
characteristics of signal and noise, etc

. Must happen or main physics goals cannot be met . Important to meet several physics goals

22.05.2024 Workshop on Future Accelerators
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* A good example of this is timing resolution

Time of Flight (TOF) systems, require the best possible
accuracy (5-10 ps)

Large 4D-tracking systems might need relatively lower
time accuracy (50-100 ps)

4D-tracking systems that use timing in their tracking
pattern recognition require high single hit timing accuracy
(5-10 ps)

e Detectors for hadron colliders require ultra-fast
timing to deal with pileup and high event rate; they
should achieve unprecedented radiation hardness

22.05.2024 Workshop on Future Accelerators

Requirements of strategic R&D

* Requirements vary from application to application
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Requirements of strategic R&D

* Requirements vary from application to application . g
o des 8 &
e e . §§§59‘7§§j’”09 ow90$0§§&
* A good example of this is timing resolution AR ASALAMMALLE
° . T N . h ' am s . : h ° 030 2030-2035 2040 2040-2045 >2045

. EXperimentS reqUirementS gUide our R&D gOaIS Indicative timeline out to 2041  for (HL)-LHC Schedule

* | will present in the following an example from ATLAS
(LS4? LS57?)

 There are many many more:

CMS tracker (LS4? LS57?)
LHCb VELO (LS4)

CERN DG 2024 New Year Qresentatidn to
personnel

ALICE (LS4) : .
EPIC detector at Electron-lon Collider (to operate in 2030s) e T T ===
ILC/CLIC

Belle-2 vertex detector (medium term ~2027, long term beyond
2032)

Etc...

Run6 |

T

. Must happen or main physics goals cannot be met @ Important to meet several physics goals Desirable to enhance physics reach @ R&D needs being met
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ATLAS ITk for HL-LHC

STRIP END-CAPs

STRIP BARREL

e ATLAS is planning to install a completely new
All-silicon inner tracker for the HL-LHC phase

(4000 fb') during LS3 (2026-2028)

* Composed by Pixels and Strips

* Improved pile-up suppression in the forward region
e Similar tracking efficiency and pr resolution wrt
current ATLAS tracker, but at pile-up of 200

A A * As described in the TDR, partial replacement is

foreseen at ~half lifetime (2000 fb)
* The replacement involves the areas more exposed
to large fluences and doses
e Thus, innermost Pixel layers
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

ATLAS ITk for HL-LHC

* Pixel-ITk is composed by 3 parts
e Quter barrel, Outer End-cap and Inner System

* Inner system
* 2 barrel layers and 2x44 disks in the end-cap
* Layer-0: 3D sensors (25x100 pm? in the barrel and 50x50 um? in the end-cap); most innermost layer: 33-34 mm from
the beam pipe
* Layer-1: 100um thick planar sensors (50x50 pm? )
* Pretty large detector, ~2.4 m? of active area, larger than the current Run3 ATLAS pixel detector (~1.9 m?)

* |tis the full inner system that is planned to be replaced after about half lifetime (LS4? LS57?)

e Similar requirements as the current systems, but
improvements in terms of pixel size, material
budget and timing will be attempted

* Monolithic sensors might be an alternative, need to Outer End-cap

make sure radiation is not an issue (ongoing R&D) - . 1I/l/"=3'0
| E

Pixel ITk

T
Simulation Preliminary Tk Layout: 23-00-03
n=20

* This upgrade will be a preliminary step for future
hadrons colliders
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WG 3: Radiation Damage & Extreme Fluences

22.05.2024 Workshop on Future Accelerators 19



Need for radiation hardness studies

- Technology need and timeline evaluated during ECFA roadmap process 3
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Figure 3.1: Schematic timeline of categories of experiments employing solid state sensors
together with DRDTs and R&D tasks. The colour coding is linked not to the inten-
sity of the required effort but to the potential impact on the physies programme of the
experiment: Must happen or main physics goals cannot be met (red, largest dot): Im-
portant to meet several physics goals (orange, large dot); Desirable to enhance physics
reach (yellow, medium dot); R&D needs being met (green, small dot); No further R&D
required or not applicable (blank).
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LHCb (= LS4)
6x10"®n.,/cm?, 10 MGy

ATLAS & CMS (2 LS4)
6x10'°n,,/cm2, 5 MGy
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Radiation damage studies

* HL-LHC upgrades: LGADs, 3D, planar sensors will continue to need regular irradiations up to 6 x
10'® n.,/cm? (10* n,,/cm?is the fluence by the end of Run 3).

* New efforts in high-granularity calorimetry, applications for LHCb upstream tracker, Electron-
lon Collider will need radiation testing and radiation damage modelling

» Later upgrades (FCC, CLIC, Muon Collider) need radiation damage studies already now, for
hybrid sensors, monolithic CMOS, ASICs. Calls are made already for facilities (PS protons,

reactor neutrons) able to provide up to 10*® n,,/cm?

« TCAD/MC/GEANTA4/... simulations are an active field of research atm for the new structures
and need benchmark data

22.05.2024 Workshop on Future Accelerators 21



Radiation damage studies

* Motivations for technology transfer beyond HEP, eg medical imaging, dosimetry, nuclear safety
and security — require rigorous radiation validation

* Data are urgently needed; test beam combined with dedicated data collected by the LHC
experiments for leakage current and depletion.

* Need to understand the limit of validity of the current Hamburg Model and best directions in
radiation defects modelling
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Radiation damage studies

 The Hamburg Model has
worked remarkably well but it is
reaching its limit

Leakage Current at 0 - [mA/cm?]
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* Higher fluence data are needed
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Yellow report: Radiation effects in the LHC experiments: Impact on detector performance and operation

CERN-2021-001
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https://cds.cern.ch/record/2764325/
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Summary

 DRD3 collaboration: European strategy towards solid state detectors R&D for future

experiments
* Realization of the strategic R&D as outlined by the Task Force 3 (TF3) in the ECFA road map
* Promoting blue-sky R&D in the field of solid-state detectors
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<2030 2030-2035 2035-2040 2040-2045 >2045

LHC LS3 LHC LS4 Large Accelerator Based Facility/Experiment Earliest Feasible Start Dates

 R&D targets to ensure the physic goals of future experiments

* Improve (by a lot) radiation hardness to unprecedented levels

* Improve space and time resolution to deal with very high occupancy and pile-up
* Keep the size and the cost of detectors as low as possible

* Sustainability, environmental impact to be taken (seriously) in consideration

* Come and join; effort is only starting now https://drd3.web.cern.ch

22.05.2024 Workshop on Future Accelerators 24



https://drd3.web.cern.ch/

22.05.2024 Workshop on Future Accelerators 25



Sustainability

 Need to ensure that the advancements in technology and infrastructure development in HEP
align with global efforts to mitigate climate change and reduce environmental impact

 Areas of consideration

* Energy efficiency
* Energy-Efficient Cooling Systems: R&D for development of new cooling technologies that are more energy-

efficient for use in particle detectors and associated electronics
e Sustainable computing: Develop new energy-efficient data centers and computing resources for processing

the vast amounts of data generated by HEP experiments
e Materials and manufacturing: Use recycling materials where possible and choose materials that have

a lower environmental impact during their lifecycle, from extraction and processing to disposal
* Lifecycle management: planning for the reuse, recycling, or safe disposal of materials and

components used in detectors already put into initial design
* Certain materials used in detectors, such as silicon, can be recycled and reused in new detectors.

* Reduced CO2 emissions: optimize transportation logistics, reducing travel through virtual
collaboration tools, and using renewable energy sources where feasible
* |n general, adopt more stringent environmental standards and certifications for the design of

future projects and facilities in every possible aspect
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Sensors

Two types of sensors:

Planar:

Various design detail left up to vendor :
* p-stop vs. p-spray insulation
 Polysilicon bias or punch-through

* Guard-ring geometry

Requirements defined on performance
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Inner system uses 3D sensors
* High radiation tolerance

* Lower bias voltage
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Saverio D’Auria, ICHEP2022
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https://agenda.infn.it/event/28874/contributions/169067/attachments/94132/129092/Dauria_AtlasI_TKPixelDetectorOverview.pdf

LHC timeline including HL-LHC

EYETS 136Tev  BMEAR 13.6 - 14 TeV
13 TeV energy
Diodes Consolidation
splice consolidation cryolimit LIU Installation

7 TeV 8 TeV button collimators interaction inner triplet HL-LHC
_—— R2E project reglons Civil Eng. P1-P5 pilot beam radlatlon limit installation

2012 2013 2014 2015 2016 2018 2019 2020 # 2022 2023 2024 2025 2026 2027 2028 2029 Illllllw
MS

5 to 7.5 x nominal Lumi

ATLAS-C
experiment upgrade phase 1 ATLAS - CMS
2 x non@inal Lumi

beam pipes 3 " HL upgrade
nominal Lumi w ALICE - LHCb

75% nominal Lumi | /_ upgrade
integrated [EEUURLN
m luminosity V{3

HL-LHC TECHNICAL EQUIPMENT: We are here

DESIGN STUDY L PROTOTYPES / CONSTRUCTION ’ INSTALLATION & COMM. “H PHYSICS

e HL-LHC phase currently scheduled to start in 2029
e Data taking foreseen up to ~2040

* Instantaneous luminosity to increase from 2 to ~7.5 x 1034 cm2s! : very high detector occupancy
* Pile-up increase to ~200, from ~60 currently

e Estimated integrated luminosity at the end of HL-LHC: 3000-4000 fb-1, factor of 15-20 increase wrt present statistics
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DRD3 Collabora

 DRD3 collaboration goal two-fold

* Realization of the strategic developments outlined by the Task
Force 3 (TF3) in the ECFA road map
* Promoting blue-sky R&D in the field of solid-state detectors
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Strategic/Targeted R&D projects
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Secretariat/administration

Speakers committee

Resource coordinator
/Project office

Cross-DRD coordination

Steering committee:
DRD3 management + CB
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*—————————————————

ECFA recommendations for this Work Package

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) &

DETECTOR COMMUNITY THEMES (DCTs)

2030-  2035- 2040-
2035 2040 2045

DRDT 3.1 Achieve full integration of sensing and microelectronics in monolithic 4 ® & 9 >
CMOS pixel sensors

DRDT3.2 Develop solid state sensors with 4D-capabilities for tracking and —e——e—e— >

<2030 > 2045
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DRDT3.3 Extend capabilities of solid state sensors to operate at extreme & L > |
T e P i i e i i
DRDT 3.4 Develop full 3D-interconnection technologies for solid state devices — m——@e———————— -
N inparticlephvSiCS . _ o o e e e e e e e e e e e e e e e e e e e e A

DRDT 3.3 - Sensors for extreme fluences.

e Develop simulation models based on microscopically measured point and cluster
defects (instead of a model based on “effective trap levels”);

e Measure the properties of silicon sensors in the fluence range 1x10° Negq em ™2 to r—- === === ===== =
1x10'® neqg cm=2. Map the limit of 3D sensors and evolve their design to cope with * These :
the highest possible fluences; . I

recommendations :
|
|
|
|

directions of the group

e Explore the use of WBG semiconductors as radiation detectors at high fluences;

e Develop innovative 2D-materials that can offer high radiation hardness and operate

|
|
|
|
I 1
I |
I [
|
e Optimise the simulation models with the measurements at high fluence; : .
b ¢ | ' | define the R&D
I |
I |
|
|
|
|
at room temperature. |
|
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Radiation damage studies

 New materials are under exploration — wide bandgap semiconductors, may reduce cooling
requirements. New efforts in SiC, GaN, CdTe, CIGS, GaO, GaAs, diamond, silicon- and polymer-
based conformal detectors. New or extended parametrized models for these materials are
needed.

* Ongoing work to understand how fundamental material properties — effective dopant
concentrations, carrier lifetimes, etc. - evolve with dose

* Motivations for tech transfer beyond HEP, eg medical imaging, dosimetry, nuclear safety and
security — require rigorous radiation validation

* Data are urgently needed; test beam combined with dedicated data collected by the LHC
experiments for leakage current and depletion.

* Need to understand the limit of validity of the current Hamburg Model and best directions in
radiation defects modeling
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