Future of solid state detectors within DRD3 collaboration

Dimitris Varouchas (IJCLab-Orsay, CNRS/IN2P3),

With special thanks to (random order): Claudia Gemme, Giovanni Calderini, Sally Seidel, Nicolo Cortiglia, Michael Moll

Material mostly stolen from the various DRD3 kick-off meetings

European Strategy for Part

- Strategy established in 2006
- $1st$ update in 2013 to evaluate HL-LHC upgrades
- 2nd update in 2020-2021 to propose post HL-LHC strategy
	- A ~200 page **report/roadmap** was then published
	- *" Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an e+ e- Higgs and electroweak factory as a possible first stage.*
	- *The success of particle physics experiments relies on innovative instrumentation and state-of-the-art infrastructures.*
	- *Detector R&D programmes and associated infrastructures should be supported at CERN, national institutes, laboratories and universities.*

• *Organised by ECFA, a roadmap should be developed by the community to balance the detector R&D efforts in Europe and its partners. "*

ECFA detector R&D ro

Five time-periods are defined from now until > 2045

- Requirements for the future detectors
	- **Excellent time and space resolution in high occupancy environment**
	- **Radiation hard** components
	- High event rate: detectors with **super fast response** are needed

ECFA detector R&D roadmap

- Roadmap was approved by ECFA in November 2021
	- Overview of **future accelerators/colliders** (EIC, ILC, CLIC, FCC, Muon collider) with their timelines
	- **9 Task forces were formed** with respect to the **most urgent Detector R&D**, that are now **evolving to collaborations** in each domain
	- Within the community, they are identified as **Detector R&D Themes (DRDTs)**

ECFA detector R&D roadmap

- Roadmap was approved by ECFA in Nov
	- **Overview of future accelerators/cd**
	- **9 Task forces were formed** with re **collaborations** in each domain
	- **Within the community, they are identified as AD Themas Community, they are identified as a D**

Solid state detectors in a nutshell

- **Initial development** of solid state detectors **began** in the **1950s**
- **First use** of solid-state detectors in HEP in the **1960s** at **SLAC**
	- To **measure** the **energy** of **protons** and **other charged particles** in 1961 (W. Panofsky)
	- **Silicon detector** to measure **electron – proton elastic scattering** in 1966
		- First solid proof of the advantages of this type of detectors: high resolution, compact size
- **1970s** technology of solid state detectors **continue to improve** and integrated into various experiments for **vertexing, tracking and measuring energy of particles**
- Notable establishment thanks to **Fermilab** and **CERN** experiments the following decades until nowadays
- Revolution in particle detection
	- **Improved spatial and energy resolution:** more precise measurements and particles identification
	- **Compactness:** smaller and more manageable detectors
	- **Fast response:** strengthen ability of to handle high event rates (eg hadron colliders)

Solid state detectors in a nutshell

- Applications in HEP
	- **Tracking detectors:** reconstructions of the trajectories of charged particles. This information is crucial for identifying particles
	- **Vertex detectors:** placed close to the interaction point to precisely determine the positions of particle collisions, which helps in identifying short-lived particles and mitigating pile-up
	- **Calorimeters:** (more recent) applications to measure the energy of particles by absorbing them and measuring the total charge created
- Types of solid-state detectors

Two main applications in collider detectors

- **Silicon strip detectors:** thin strips of silicon, each acting as individual detector element, widely used for tracking
- **Silicon pixel detectors:** grid of microscopic pixelated regions, each acting as detector. Higher resolution compared to strips, used for vertexing close to interaction point and tracking
- Charged-Coupled Devices (CCDs): used in imaging applications (commercial digital cameras), can be used for low energy particle detection
- Silicon Drift Detectors (SDDs): high resolution energy measurements, usually in X-ray spectroscopy

ECFA Roadmap TF#3: what do experiments need?

Vertex detector^{2]}

Tracker51

Calorimeter⁶

Time of fligh

 > 2045

- **Detector Readiness Matrix: a graphical** representation highlighting **where significant R&D is required** with its respective **timeline**
- **Colour coding** represents the **potential impact on the intended physics programme** at the experiment
	- E.g.: Red dot "⦁" means that absence of the proposed R&D would compromise the main motivation for the experiment as a whole
- **TF#3 ECFA Recommendations: 4 main areas of research** have been identified

- This nice (but difficult-to-read) table complements table from previous slide showing the **required values of the future detectors specifications,** as a function of **time** and **facility**
- Therefore, this table **provides quantitative targets for the R&D**

- This nice (but difficult-to-read) table complements table from previous slide showing the **required values of the future detectors specifications,** as a function of **time** and **facility**
- Therefore, this table **provides quantitative targets for the R&D**

"Technical" Start Date of Facility (This means, where the 2035 < 2030 2030-2035 2040-2045 > 2045 dates are not known, the earliest technically feasible start 2040 date is indicated - such that detector R&D readiness is not VA62/Klever 2025 ATLAS/CMS (2 LS4) the delaving factor) ALICE LS3¹⁾ LHCb $(\gtrsim$ LS4 $)^{10}$ Muon Collider Panda 2025 Belle II 2026 CBM 2025 ALICE₃ FCC-hh FCC-eh $\mathsf{ILC}^{2)}$ FCC-ee CLIC²⁾ LHeC Ξ Position precision σ_{hit} $\lesssim 5$ $\lesssim 10$ $\lesssim 15$ \lesssim 3 \simeq 5 \lesssim 3 \lesssim 3 $\lesssim 5$ $\simeq 5$ \simeq 3 \lesssim 3 \lesssim 3 \simeq 7 $\simeq 5$ (um) X/X₀ (%/layer) ≤ 0.1 $\simeq 0.5$ \approx 0.5 | \leq 0.1 | \approx 0.05 | \approx 0.05 | $\simeq 1$ $\simeq 0.05$ | $\lesssim 0.1$ | $\simeq 0.05$ | $\simeq 0.05$ | $\lesssim 0.2$ | $\simeq 1$ ≤ 0.1 ≤ 0.2 DRDT 3.1
DRDT 3.4 MAPS
Planar/3D/Passive CMOS
LGADs Power (mW/cm²) $\simeq 60$ \simeq 20 \simeq 20 \simeq 20 \simeq 20 \simeq 20 \simeq 50 Vertex Detector³⁾ $\simeq 6$ Rates (GHz/cm²) $\simeq 0.1$ \simeq 1 $\lesssim 0.1$ $\lesssim 0.1$ ≤ 0.1 $\simeq 0.1$ $\simeq 0.05$ $\simeq 0.05$ \simeq 5 \simeq 30 $\simeq 0.1$ Wafers area (")⁴⁾ 12 12 12 12 12 12 DRDT
3.2 10 $\lesssim 0.05$ 100 25 ≤ 0.05 \lesssim 0.05 25 25 500 25 \simeq 5 $\lesssim 0.02$ 25 $\lesssim 0.02$ Timing precision $\sigma_{\rm r}$ (ns) 5 Radiation tolerance NIEL **DRDT3.3** $\simeq 6$ \simeq 2 $\simeq 10^2$ (x 10^{16} neg/cm²) Radiation tolerance TID \simeq 1 $\simeq 0.5$ \simeq 30 Position precision o_{hit} $\simeq 6$ $\simeq 5$ $\simeq 6$ $\simeq 6$ $\simeq 6$ \simeq 7 $~^{\simeq}~10$ $\simeq 6$ $\simeq 6$ (μm) X/X_0 (%/layer) $\simeq 1$ $\simeq 1$ $\simeq 1$ $\simeq 1$ \simeq 1 $\simeq 1$ $\simeq 1$ ≤ 2 $\simeq 1$ DRDT 3.1
DRDT 3.4 MAPS
Planar/3D/Passive CMOS
LGADs \lesssim 100 \simeq 100 \lesssim 100 $\lesssim 100$ ≤ 100 ≤ 150 Power ($mW/cm²$) $\simeq 0.16$ Tracker⁶⁾ Rates (GHz/cm²) Wafers area (")⁴⁾ 12 12 12 12 12 12 12 DRDT
3.2 25 ≤ 25 25 25 $\lesssim 0.1$ $\lesssim 0.02$ 25 $\lesssim 0.02$ Timing precision $\sigma_{\rm r}$ (ns)⁵ $\lesssim 0.1$ $\lesssim 0.1$ Radiation tolerance NIEL **DRDT3.3** $\simeq 0.3$ \lesssim 1 (x 10^{16} neg/cm²) Radiation tolerance TID $\simeq 0.25$ $\lesssim 1$ (Grad) DRDT
3.2 ≤ 0.05 ≤ 0.05 ≤ 0.05 $\lesssim 0.02$ $\lesssim 0.02$ Timing precision $\sigma_{\rm t}$ (ns)⁵ lanar/3D/Passiv
CMOS LGADs Calorimeter⁷⁾ MAPS **Radiation tolerance NIEL DRDT 3.3** $\gtrsim 10^2$ (x 10 16 neg/cm²) Radiation tolerance TID \simeq 50 (Grad) DRDT
3.2 $\simeq 0.02$ $\simeq 0.02$ ≤ 0.03 $\simeq 0.02$ $\simeq 0.02$ $\lesssim 0.01$ $\lesssim 0.01$ $\simeq 0.02$ Timing precision $\sigma_{\rm t}$ (ns) MAPS **Radiation tolerance NIEL** $3.\overline{3}$ $\simeq 10^2$ (x 10 $^{\rm 16}$ neg/cm $^{\rm 2)}$ 22.05.2024 Workshop on Future Acceleration to the standard on the capacity of $\frac{1}{2}$ \frac

Position resolution 5-10 μm

ECFA Roadmap TF#3 ⇒ DRD3

- DRD3 collaboration goal two-fold
	- Realization of the strategic R&D defined by the TF#3 in the ECFA ro **solve well-defined problems** of (near-) **future experiments**
	- Promoting **blue-sky R&D**: explore **new ideas** and **techniques** that **might be of use** in the **future**

DRD3 working group structure

- WG1 Monolithic CMOS sensors
- WG2 Sensors for tracking and calorimetry
- WG3 Radiation damage and extreme fluences
- WG4 Simulation
- WG5 Characterization techniques, facilities
- WG6 Wide bandgap and innovative sensor materials
- WG7 Interconnect and device fabrication
- WG8 Dissemination and outreach

22.05.2024 Workshop on Future Accelerators 11

What detection technologies will be used?

WG 2: Hybrid sensor technologies

WG 3: Radiation Damage & Extreme Fluences

Requirements of strategic R&D

- The **obvious metric** for R&D is **space** and **time resolution**; the highest precision, the better
- **Improving resolution** is getting very **complex** in advanced R&D, therefore **more parameters** should be taken into **consideration**
	- Material budget, power, event rates, occupancy, radiation hardness, cost
	- Interplay with electronics: capacitance, resistivity, characteristics of signal and noise, etc

Requirements of strategic R&D

- Requirements vary from application to application
- A good example of this is timing resolution
	- **Time of Flight (TOF)** systems, require **the best possible accuracy** (5-10 ps)
	- **Large 4D-tracking systems** might need relatively lower time accuracy (50-100 ps)
	- **4D-tracking systems** that **use timing** in their **tracking pattern recognition** require high single hit timing accuracy (5-10 ps)
- Detectors for **hadron colliders** require **ultra-fast timing** to deal with **pileup** and **high event rate**; they should **achieve unprecedented radiation hardness**

Must happen or main physics goals cannot be met the Important to meet several physics goals the Desirable to enhance physics reach R&D needs being met

Requirements of strategic R&D

- Requirements vary from application to application
- A good example of this is timing resolution
	- **Time of Flight (TOF)** systems, require **the best possible**
- **accuracy accuracy (5-10 ps) •** Experiments requirements guide our R&D goals
- I will present in the following an example from ATLAS • **4D-tracking systems** that **use timing** in their **tracking** (LS4? LS5?)
- There are many many more:
	- CMS tracker (LS4? LS5?)
	- LHCb VELO (LS4)
- ALICE (LS4)
	- EPIC detector at Electron-Ion Collider (to operate in 2030s)
		- ILC/CLIC
	- should **achieve unprecedented radiation hardness** • Belle-2 vertex detector (medium term ~2027, long term beyond 2032)
		- Etc…

Asia City **POSTOR**
CAY CO

DRD'

TRISLATI
LAS & CARSI
SOC **CALE LSQV**

2040

Must happen or main physics goals cannot be met **the important to meet several physics goals** Desirable to enhance physics reach **O**R&D needs being met

ATLAS ITK for HL-L

- **ATLAS** is planning **All-silicon inner** $(4000 fb^{-1})$ during
	- Composed by
	- Improved pile-
	- Similar trackin current ATLAS
- As described in foreseen at γ ha
	- The **replacem** to large fluene
	- Thus, innermo
- (Similar replace tracker as well)

ATLAS ITk for HL-LHC

- **Pixel-ITk** is composed by 3 parts
	- Outer barrel, Outer End-cap and **Inner System**

• **Inner system**

- 2 barrel layers and 2x44 disks in the end-cap
- Layer-0: 3D sensors (25x100 μm² in the barrel and 50x50 μm² in the end-cap); most innermost layer: 33-34 mm from the beam pipe
- Layer-1: 100 μ m thick planar sensors (50x50 μ m²)
- Pretty large detector, \sim 2.4 m² of active area, larger than the current Run3 ATLAS pixel detector (\sim 1.9 m²)

Workshop on Future

- It is the full inner system that is planned to be replaced after about half lifetime (**LS4**? **LS5?**)
	- Similar requirements as the current systems, but
 Pixel ITk

	budget and timing will be attempted
 Pixel ITk
 $\begin{bmatrix}\n\vdots \\
	\frac{1}{2} & 450 \\
	\vdots \\
	400\n\end{bmatrix}$
 Pixel ITk
 Pixel ITk improvements in terms of pixel size, material budget and timing will be attempted
	- **Monolithic sensors** might be an **alternative**, need to make sure radiation is not an issue (ongoing R&D)
	- **This upgrade** will be a **preliminary step** for **future hadrons colliders**

WG 2: Hybrid sensor technologies

WG 3: Radiation Damage & Extreme Fluences

Need for radiation hardness studies

Radiation damage studies

- **HL-LHC upgrades**: LGADs, 3D, planar sensors will continue to **need regular irradiations** up to **6 x** 10^{16} n_{eq}/cm^2 (10^{15} n_{eq}/cm^2 is the fluence by the end of Run 3).
- New efforts in **high-granularity calorimetry**, applications for **LHCb upstream tracker**, **Electron-Ion Collider** will need **radiation testing** and **radiation damage modelling**
- **Later upgrades** (FCC, CLIC, Muon Collider) need **radiation damage studies already now**, for hybrid sensors, monolithic CMOS, ASICs. Calls are made already for facilities (PS protons, reactor neutrons) able to provide up to 10^{18} n_{eq}/cm^2
- TCAD/MC/GEANT4/… **simulations** are an **active field of research atm** for the new structures and need benchmark data

Radiation damage studies

• Motivations for **technology transfer beyond HEP**, eg medical imaging, dosimetry, nuclear safety and security – **require rigorous radiation validation**

• Data are urgently needed; **test beam combined** with **dedicated data collected by the LHC** experiments for **leakage current** and **depletion**.

• Need to understand the **limit of validity of the current Hamburg Model** and **best directions** in **radiation defects modelling**

Radiation damage st

Summary

- **DRD3 collaboration**: European strategy towards **solid state** experiments
	- Realization of the **strategic R&D** as outlined by the Task Force 3 (TF
	-

- **R&D targets** to ensure the physic goals of future experiments
	- Improve (by a lot) **radiation hardness** to unprecedented levels
	- Improve space and time resolution to deal with very high occupan
	- Keep the **size** and the **cost** of detectors **as low as possible**
	- **Sustainability, environmental** impact to be taken (seriously) in con
- Come and join; effort is only starting now https://drd3.web.

Backup

Sustainability

- Need to ensure that the advancements in technology and infrastructure development in HEP align with global efforts to mitigate climate change and reduce environmental impact
- Areas of consideration
	- **Energy efficiency**
		- Energy-Efficient Cooling Systems: R&D for development of new cooling technologies that are more energyefficient for use in particle detectors and associated electronics
		- Sustainable computing: Develop new energy-efficient data centers and computing resources for processing the vast amounts of data generated by HEP experiments
	- **Materials and manufacturing:** Use recycling materials where possible and choose materials that have a lower environmental impact during their lifecycle, from extraction and processing to disposal
	- **Lifecycle management:** planning for the reuse, recycling, or safe disposal of materials and components used in detectors already put into initial design
		- Certain materials used in detectors, such as silicon, can be recycled and reused in new detectors.
	- **Reduced CO2 emissions:** optimize transportation logistics, reducing travel through virtual collaboration tools, and using renewable energy sources where feasible
- In general, adopt more stringent environmental standards and certifications for the design of future projects and facilities in every possible aspect

Pixel sensors

Planar:

Various design detail left up to vendor :

- p-stop vs. p-spray insulation
- Polysilicon bias or punch-through
- Guard-ring geometry

Requirements defined on performance

 $50 \mu m$

- **High radiation tolerance**
- Lower bias voltage

LHC timeline including HL-LHC

- **HL-LHC** phase currently scheduled to start in **2029**
- **Data taking foreseen up to ~2040**
	- Instantaneous luminosity to increase from 2 to \sim 7.5 \times 10³⁴ cm⁻²s⁻¹ : very high detector occupancy
	- Pile-up increase to \sim 200, from \sim 60 currently
	- Estimated integrated luminosity at the end of HL-LHC: 3000-4000 fb-1, **factor of 15-20 increase wrt present statistics**

DRD3 Collaboration

- DRD3 collaboration goal two-fold
	- **Realization of the strategic developments outlined by the Task** Force 3 (TF3) in the ECFA road map
	- Promoting blue-sky R&D in the field of solid-state detectors

ECFA recommendations for this Work Package

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

• Develop innovative 2D-materials that can offer high radiation hardness and operate at room temperature.

Radiation damage studies

- New materials are under exploration $-$ wide bandgap semiconductors, may reduce cooling requirements. New efforts in SiC, GaN, CdTe, CIGS, GaO, GaAs, diamond, silicon- and polymerbased conformal detectors. New or extended parametrized models for these materials are needed.
- Ongoing work to understand how fundamental material properties effective dopant concentrations, carrier lifetimes, etc. - evolve with dose
- Motivations for tech transfer beyond HEP, eg medical imaging, dosimetry, nuclear safety and security – require rigorous radiation validation
- Data are urgently needed; test beam combined with dedicated data collected by the LHC experiments for leakage current and depletion.
- Need to understand the limit of validity of the current Hamburg Model and best directions in radiation defects modeling