

Electroweak Physics

current status and prospects from the experiment side

Riccardo Bellan Università di Torino and INFN

On behalf of the $\mathbf{ATLAS},\,\mathbf{CMS}$ and \mathbf{LHCb} Collaborations

Corfu 2024: Workshop on Future Accelerators

Κέρκνρα, Ελλάδα, 19 May - 26 May 2024

- What does that mean?
- The Standard model is *not a self contained theory*, because it needs experimental inputs to be quantitatively predictive: particle masses, strength couplings, mixing angles (depending on the choice).
 - there are **relations** that can be exploited to **verify the consistency of the theory** (see later).
- Therefore, we need to make more and more precise measurements:
 - to improve our predictions;
 - to **test** the SM over key **observables**, such as cross sections and asymmetries... don't need to stress that the devil (hopefully?) is in the details;
 - is there new physics? Are we really able to predict/interpret all experimental results? Is our picture complete or do we miss some pieces?

Experimental inputs to our theory

The **mixing angle** and the **interaction strengths** relations

 $W^+\beta$

```
ig_{W}^{2}[2g_{\alpha\beta}g_{\mu\nu} - g_{\alpha\mu}g_{\beta\nu} - g_{\alpha\nu}g_{\beta\mu}]g_{W} = \frac{e}{\sin\theta_{W}}
```


Reminder: g is the strength of the couplings between the isotriplet of vector field $W_{\mu}{}^{i}$ and the weak isospin current, while g'/2 is the strength between the single vector field B_{μ} and the hypercharge current.

 $-i\frac{g}{\cos\theta_W}\gamma^{\mu}\frac{1}{2}$ $c_V^f = T_f^3$ $c_A^f = T_f^3,$

Since $e=g\sin\theta_w=g'\cos\theta_w$ once 2 parameters are fixed the others are determined.

The couplings with the Higgs field depends on g, m_W , and the masses of the particle that interact with it. \rightarrow the masses of the fermions cannot be determined in the theory.

R.Bellan

24^{th} May $2024 - \mathbb{EW}$ - \mathbb{EXP}

$$\frac{m_W}{m_Z} = \cos \theta_W \Rightarrow \sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2} \qquad \qquad \frac{c_V^f}{c_A^f} = 1 - 2\frac{Q_f}{T_f^3} \sin^2 \theta_W \qquad \qquad \frac{G_F}{\sqrt{2}} = \frac{g^2}{8m_W^2} = \frac{\pi \alpha_{QED}}{2m_W^2 \sin^2 \theta_W}$$

• From the *EWSB* we also have the relations:

$$\frac{G_F}{\sqrt{2}} = \frac{1}{2v^2} \qquad m_Z = \frac{1}{2}v\sqrt{g^2 + g'^2} \qquad m_W = \frac{1}{2}vg \qquad m_H^2 = 2v^2\lambda$$

• Therefore, excluding the fermion masses (and the CKM matrix), the theory depends on 4 inputs. The natural choice would be $\{g,g',v,\lambda\}$, but the one that minimizes the parametric uncertainty is $\{\alpha_{QED}, G_F, m_Z, m_H\}$. The above relations (with radiative corrections) can be used as predictions to test the theory.

We will

- go through the most recent measurement at LHC of the **predictions** of the Electroweak part of the Standard Model.
- go through the most recent measurement at LHC of <u>key-</u> process cross sections:
 - hold the key to <u>test the couplings</u>;
 - pave the road for the complete <u>understanding of the EWSB</u>;
 - <u>constraints on anomalous couplings</u>/Effective Field Theories (EFT) operators.

Studies of EW predictions

W mass measurement

<u>Reanalysis</u> of ATLAS data used for the 2017 m_W measurement. Use the decay in the electron and muon channels and exploit the sensitivity of p_T^{ℓ} and m_T to the m_W and Γ_W variations.

 \rightarrow signal MC templates for a range of m_W- Γ_W values, reweighted to the Breit-Wigner parameterisation of the W mass.

arXiv:2403.15085

IN EN

Background is composed by

I) **Z**, **W** $\rightarrow \tau \mathbf{v}$, **di-bosons**, **top processes**: estimated using *simulations*, account for 6.4% (μ channel) and 3.1% (e channel) of the total search region.

II) multijet events: estimated from data, accounts for 1.2% of the signal region.

Multi m_W and Γ_W measurements done fitting separately p_T^{ℓ} and m_T distributions for each leptonic category (flavour, charge, 3 pseudorapidity bins).

N mass measurement

 $m_W = 80366.5 \pm 9.8(\text{stat.}) \pm 12.5(\text{syst.}) \text{ MeV}$ $\Gamma_W = 2202 \pm 32(\text{stat.}) \pm 34(\text{syst.}) \text{ MeV}$

R.Bellan

 m_t [GeV]

The LHCb coll. measured the m_W through a simultaneous fit of the q/p_T distribution of the muons from Ws, and the ϕ^* distribution of the Z boson, which is used as a proxy, properly tuned, of the p_T of the W.

W mass measurement

Measurement of $\sin^2\theta_W$ CMS-SMP-2022-010

Measurement done by CMS using **di-muon and di-electron events**, collected at 13 TeV (137 fb⁻¹), as a function of **dilepton's mass and rapidity**.

$$\sin^2 \theta_{eff}^{\ell} \quad \text{Relates to} \quad \sin^2 \theta_W \quad \text{through} \quad \frac{\widetilde{c}_V^{\,\ell}}{\widetilde{c}_A^{\,f}} = 1 - 4 |Q_f| \sin^2 \theta_{eff}^{f} \quad \text{Hav} \\ \text{A constraints} \quad \text{A constraints} \\ \text{Or equivalently,} \quad \sin^2 \theta_{eff}^{\ell} = k \left(m_Z \right) \sin^2 \theta_W \quad \text{for all } t = 0$$

Having had absorbed in the V-A couplings the radiative corrections.

Angular (weighted) Forward-Backward asymmetry is sensitive to $sin^2\theta_{\rm eff}$

We can write the cross section as 16π d σ $\frac{7}{7}$

$$\frac{16\pi}{3\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta\,\mathrm{d}\phi} = 1 + \cos^2\theta + \sum_{i=0}^{\prime} A_i f_i(\theta,\phi)$$

The only term that survive at the integration && subtraction of the F-B cross sections is A_4 (which multiply $\cos \theta$)

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F - \sigma_B} = \frac{3}{8} A_4$$

The function f_i are combination of sin&cos of θ and ϕ . To obtain the FB asymmetry we integrate x section over the solid angle separating $\cos(\theta) > 0$ (F) and $\cos(\theta) < 0$ (B).

The $\sigma_{\rm F}, \sigma_{\rm B}$ are measured in the Collin-Sopper (CS) r.f.

$$\cos\theta_{\rm CS} = \frac{2\left(P_1^+ P_2^- - P_1^- P_2^+\right)}{\sqrt{m_{\ell\ell}^2 (m_{\ell\ell}^2 + p_{{\rm T},\ell\ell}^2)}} \frac{y_{\ell\ell}}{|y_{\ell\ell}|} \qquad \qquad P_i^{\pm} = \left(E_i \pm p_{z,i}\right)/\sqrt{2}$$

$$\label{eq:general} \begin{split} &\sin^2\!\theta_{\rm eff} \mbox{ is obtained fitting } \mathbf{A}^{W}{}_{\rm FB}, \mbox{ } \mathbf{A}_4 \mbox{ or } \mathbf{cos} \theta_{\rm CS}, \\ & \mbox{floating } \mathbf{sin}^2 \theta_{\rm eff} \end{split}$$

Measurement done dividing the dilepton events in **different categories**: dimuon $(\mu\mu)$, central dielectron (ee), central-forwar ECAL dielectron (eg) and central-forward HCAL dielectron (eh).

Measurement of $\sin^2\theta_{W}$ _{CMS-SMP-2022-010}

This is the most precise measurement at hadron colliders!! (the quoted value refers to CT18Z PDF and A_{FB} based measurement)

First observation of this process in p-p collisions (both ATLAS and CMS observed in nuclei collisions for $m_{\tau\tau} \lesssim 20$ GeV).

The process is a **purely QED** and depend on the $\gamma \tau \tau$ vertex, which is a **function of** \mathbf{g}_{τ} $\Gamma^{\mu} = \gamma^{\mu} F_1 \left(q^2\right) + \frac{\sigma^{\mu\nu} q_{\nu}}{2m} \left[iF_2 \left(q^2\right) + F_3 \left(q^2\right) \gamma_5\right]$ $\downarrow \rightarrow F_3 \left(0\right) = -\frac{2m}{e} d_{\ell}$ $\downarrow \rightarrow F_2 \left(0\right) = a_{\ell} \equiv (g_{\ell} - 2)/2$

The anomalous electromagnetic moment a_{τ} is expected to be 0.00117721(5) while the anomalous electric dipole d_{τ} is $-7.3 \cdot 10^{-38}$ ecm

 \rightarrow set limits on deviations from what predicted by the SM

 τ -decay categories events: $e\mu$, $e\tau_h$, $\mu\tau_h$ (the most sensitive) and $\tau_h\tau_h$.

 $24^{ ext{th}} ext{ May } 2024 - \mathbb{EW} ext{-}\mathbb{EXP}$

$pp ightarrow p^{(*)} \gamma \gamma \ p^{(*)} ightarrow p^{(*)} aut{ttp}^{(*)}_{ ext{CMS-SMP-2023-005}}$

CMS *Preliminary* 138 fb⁻¹ (13 TeV)

We can **set limits** on possible anomalies

Parametrize δa_{τ} and δd_{τ} using SMEFT dim-6 operators:

$$\mathcal{L}_{\text{BSM}} = \frac{C_{\tau B}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R H B_{\mu\nu} + \frac{C_{\tau W}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R \sigma^i H W^i_{\mu\nu} + \text{h.c.}$$

That translates in a modification of the $\gamma \tau \tau$ vertex:

$$V_{\tau\tau\gamma} = ie\gamma^{\mu} - \frac{v\sqrt{2}}{\Lambda^2} \left[\operatorname{Re}\left[C_{\tau\gamma}\right] + \operatorname{Im}\left[C_{\tau\gamma}\right]i\gamma_5 \right] \sigma^{\mu\nu}q_{\nu}$$

Which induces variations of a_{τ} and d_{τ} :

$$\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re}\left[C_{\tau\gamma}\right] \qquad \qquad \delta d_{\tau} = \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Im}\left[C_{\tau\gamma}\right]$$

with
$$C_{\tau\gamma} = \left(cos\theta_W C_{\tau B} - sin\theta_W C_{\tau W} \right)$$

R.Bellan

Studies of EW key processes

Stairway to Heaven

Standard Model cross sections successfully tested over 11 orders of magnitude.

- We discovered the Higgs boson.
- Still we have to understand in detail the Electroweak
 Symmetry Breaking
 Mechanism (EWSB), make
 precision measurements and
 observe rare processes.

Overview of CMS cross section results

It is a <u>long journey</u>, but several milestones have been posed and we are on the road to study the most intimate part of the Standard Model!!

R.Bellan

 24^{th} May $2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

The measurements are in **agreement** with SM **predictions** calculated at NNLO in $\alpha_{\rm s}$, NNLL accuracy and NLO electroweak accuracy.

Result in **agreement** with the most precise **measurement** from LEP and the SM **prediction** based on 3 neutrino generations.

Multiboson production is important

- Test of the non-Abelian gauge structure of the Electroweak theory of the Standard Model
- Test of standard model couplings
 - In vector boson scattering processes, the unitarity is preserved via Higgs contributions, if not the cross section rise as a function of the invariant mass of the $V_L V_L$ system
 - Test the couplings between the Higgs and gauge bosons
- Search for **new physics**
 - Through **resonances**, if the new particle mass is accessible w/ LHC energies
 - Through **deviations**, if the energy scale of new physics is higher than those reachable at the LHC

 W^+

W

Physics Reports 532 (2013) 119-244

 24^{th} May $2024 - \mathbb{EW}$ - \mathbb{EXP}

• Triple gauge couplings (TGC)

• Quartic gauge couplings (QGC)

Parametrization of new physics: Anomalous Gauge Couplings

Traditional parametrization for diboson production (assuming CP conservation, Lorentz invariance, $U_{QED}(1)$ gauge invariance)

and from SU(2) invariance

$$\begin{split} \delta g_1^Z &= \delta \kappa^Z + \frac{s_W^2}{c_W^2} \delta \kappa^\gamma \\ \lambda^\gamma &= \lambda^Z \end{split}$$

Annals Phys. 335 (2013) 21-32

R.Bellan

We can add to the SM lagrangian a series of dimension > 4 operators with a "new physics" cutoff Λ : $\mathcal{L} = \mathcal{L}_{SM} + \sum_{l=1}^{l} \frac{C_k^d}{\Lambda^{d-4}} \mathcal{O}_k^d$

d.k

JHEP10(2010)085

Parametrization of new physics: SM Effective Field Theory (SMEFT

d.k

We can add to the SM lagrangian a series of dimension > 4 C_k^d operators with a "new physics" cutoff Λ : $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{C_k^d}{\Lambda^{d-4}} \mathcal{O}_k^d$

For example, for d = 6, we can have operators like

$1:X^3$		$2:H^6$			$3 : H^{4}$	D^2	$5:\psi^2H^3+{\rm h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H ($H^{\dagger}H)^3$	$Q_{H\square}$	$(H^{\dagger}H$	$H)\Box(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$\left(H^{\dagger}D_{\mu}H\right)$	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$						Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$								
$4:X^2H^2$		6	$\delta:\psi^2 XH$	+ h.c.	- h.c.		$7:\psi^2H^2D$		
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} \epsilon)$	$(e_r)\tau^I HW$	$I = \mu \nu$	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftarrow{1}$	$\overrightarrow{\mathcal{D}}_{\mu}H)(\overline{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu i}$	$(e_r)HB_{\mu\nu}$	v	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_{\mu}H)(\bar{l}_{p} au^{I}\gamma^{\mu}l_{r})$	
Q_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A u_r) \widetilde{H} C$	$G^A_{\mu u}$	Q_{He}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} \imath$	$(\iota_r) \tau^I \widetilde{H} W$	$^{7I}_{\mu u}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu})$	$(u_r)\widetilde{H} B_\mu$	ν	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p} au^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A d_r) H G$	$\sigma^A_{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} a)$	$(l_r)\tau^I H W$	$^{TI}_{\mu u}$	Q_{Hd}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{H\widetilde{W}B}$	$H^{\dagger} au^{I} H \widetilde{W}^{I}_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu i})$	$(d_r)HB_{\mu}$	ν	Q_{Hud} + h.c.	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$	

R.Bellan

24^{th} May $2024 - \mathbb{EW}$ - \mathbb{EXP}

Parametrization of new physics: SM Effective Field Theory (SMEFT

We can add to the SM lagrangian a series of dimension > 4 C_k^d operators with a "new physics" cutoff Λ : $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{C_k^d}{\Lambda^{d-4}} \mathcal{O}_k^d$ d,k

For example, for d = 6, we can have operators like

$1: X^{3}$		$2:H^6$		$3:H^4D^2$			$5:\psi^2H^3+{ m h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$	$(H^{\dagger}H$	$(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu}H)$	$\left(H^{\dagger}D_{\mu}H\right) ^{st}$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$								
$4: X^2 H^2$			$6:\psi^2 XH + h.c.$			$7:\psi^2H^2D$			
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} \epsilon$	$(e_r)\tau^I HW$	-I μν	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftarrow{l}$	$\overrightarrow{D}_{\mu}H)(\overline{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu i})$	$(e_r)HB_{\mu}$	ν	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T$	$(r^A u_r) \widetilde{H} C$	$G^A_{\mu u}$	Q_{He}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{e}_p\gamma^{\mu}e_r)$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u$	$(u_r) \tau^I \widetilde{H} W$	$^{TI}_{\mu u}$	$Q_{Hq}^{\left(1 ight)}$	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu})$	$(u_r)\widetilde{H} B_\mu$	ν	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p} au^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$\left \left(\bar{q}_p \sigma^{\mu\nu} T \right) \right $	$(r^A d_r) H C$		Q_{Hu}	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	

 $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$

 $(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$

 Q_{dW}

 Q_{dB}

In case we truncate the series to d = 6, then we have a simple relation with the aTGC view

$$\delta \kappa^{\lambda} = -\frac{v^2}{\Lambda^2} \frac{c_W}{s_W} C_{HWB}, \quad \lambda^Z = \frac{v}{\Lambda^2} 3M_W C_W$$

The EFT is more general and in present days is the preferred framework for the interpretation of the experimental results

R.Bellan

 Q_{HWB}

 $Q_{H\widetilde{W}B}$

 $H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$

 $H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$

 $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$

 $i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$

 Q_{Hd}

 Q_{Hud} + h.c.

TGC, where to find them

Can be probed in:

single boson production, especially in the VBF channel,diboson production, inclusive and VBS,triboson production.

QGC, where to find them

Now things become nastier, because QGC are one order higher in EW with respect to TGC, therefore processes mediated by a QGC can also mediated by one or more TGC. Processes particularly sensitive to them are:

diboson production via VBS and central exclusive production;

triboson production

An overview on diboson measurements

Similarly for ATLAS, see ATL-PHYS-PUB-2023-039 fig. 9

R.Bellan

 24^{th} May $2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

 φ

INEN

 $pp \rightarrow W^+W^- \rightarrow \mu \nu_\mu e \nu_e$ cms-smp-2024-001

First measurement of opposite-sign WW production at $\sqrt{s} = 13.6$ TeV ($\mathscr{L}=34.8$ fb⁻¹) Max likelihood fit on different event categories defined by flavour and charge of the leptons,

number of jets, and b-tagging

R.Bellan

 24^{th} May $2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

 $pp \rightarrow W^+W^- \rightarrow \mu \nu_\mu e \nu_e$ cms-smp-2024-001

First measurement of opposite-sign WW production at $\sqrt{s} = 13.6$ TeV ($\mathscr{L}=34.8$ fb⁻¹) Max likelihood fit on different event categories defined by flavour and charge of the leptons, number of jets, and b-tagging

 $24^{\mathrm{th}} \mathrm{May} \ 2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

 $pp \rightarrow Z\gamma \rightarrow \nu\nu\gamma$

Fisico

CMS-SMP-2022-009

Ţ N EN

$pp \rightarrow Zy \rightarrow vvy$

90 10 *m*_{µµ} [GeV]

 φ

I N EN

The measurement results are presented as unfolded normalised differential crosssections for the **3 observables**: the *invariant mass of the positively charged lepton and the photon*, the *angular distance between the photon and the closer of the two leptons*, and the *transverse momentum of the photon*.

 $Z \rightarrow \ell \ell \gamma$

In the analysis' paper is also reported the first observation of $\mathbf{Z} \to \ell \ell \gamma \gamma$, with the corresponding differential cross sections.

 $pp \rightarrow ZZ \rightarrow 4 \ (\ell = e, \mu)$

R.Bellan

24^{th} May $2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

 24^{th} May $2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

ල 10¹²

section

Total production cross

10^{1*}

L M L

E

104 ,

10³

10² E

10¹

 10°

Ē

2

10⁵

δ

 $pp \rightarrow W$

 $pp \rightarrow Z/\gamma^*$

 $pp \rightarrow t\overline{t}$ $pp \rightarrow ta$

IN EN

VBS, an introduction

ud -> ud W⁺W⁻ -> ud μ ν c s∼

Cross Section (pb)

The longitudinally polarized vector bosons (V_L) are coupled to the Higgs and they are the ones sensitive to the EWSB. The behavior of the V_LV_L cross section only can give information on the scale at which the symmetry breaks.

If the cancellation of the **Higgs diagrams is not complete**, then we expect a \mathbf{g}_{HVV} coupling smaller than the SM. The $\mathbf{V}_{L}\mathbf{V}_{L}$ will keep growing with \sqrt{s} , up to the the new resonance, or more generally to the **new physics scale** Λ . Suppose the Higgs-WW coupling is $\sqrt{\delta}$ of the SM value, then the amplitudes become $iM^{gauge} = -i\frac{g^2}{2} u + O((E/mu)^0)$

$$i\mathcal{M}^{\text{gauge}} = -i\frac{g^2}{4m_W^2} u + \mathcal{O}((E/m_W)^0)$$
$$i\mathcal{M}^{\text{higgs}} = i\frac{g^2}{4m_W^2} u \,\delta + \mathcal{O}((E/m_W)^0)$$
$$i\mathcal{M}^{\text{all}} = -i\frac{g^2}{4m_W^2} u(1-\delta) + \mathcal{O}((E/m_W)^0)$$

VBS, an introduction

Experimentally we should design search regions, and/or develop new techniques, to enhance V_LV_L scattering with respect to V_TV_T and V_LV_T and measure the cross sections at the highest m_{VV} as possible. Contextually, we shall measure precisely the HVV couplings.

R.Bellan

Using the full Run 2 data ($\mathscr{L}=140$ fb⁻¹) it was possible to get evidence (4.3 σ) of the production of longitudinally polarized vector bosons and study the CP properties of the ZZ events MC templates generated at LO, but employed a three-steps re-weighting method to **incorporate QCD and EW corrections** calculated at fixed order with MoCANLO

Use a BDT to separate $Z_L Z_L$ wrt $Z_T Z_X$, trained over *lepton and boson angular variables*, then via profile binned maximum-likelihood of the BDT shape extract $Z_L Z_L$ $\stackrel{\text{provide integration}}{=} 0.22$

 24^{th} May $2024 - \mathbb{EW}$ - \mathbb{EXP}

⁴⁷

INFN

ATLAS-ST $ightarrow \mathrm{Z}_{\mathrm{L}}\mathrm{Z}_{\mathrm{L}}
ightarrow 4$ ($\ell = \mathrm{e}, \mu$)

(2023) 107

		Pre-fit	Post-fit
ZZ	$Z_{\rm L}Z_{\rm L}$	189.3 ± 8.7	220 ± 54
	$Z_{\rm T}Z_{\rm L}$	710 ± 29	711 ± 29
	$Z_{\mathrm{T}}Z_{\mathrm{T}}$	2170 ± 120	2147 ± 60
	Interference	33.7 ± 2.8	33.4 ± 2.7
Non-prompt		18.7 ± 7.1	18.5 ± 7.0
	Others	20.0 ± 3.7	19.9 ± 3.7
Total		3140 ± 150	3149 ± 57
Data		3149	3149

 $\sigma_{Z_{\rm L}Z_{\rm L}}^{\rm obs.} = 2.45 \pm 0.56 (\text{stat.}) \pm 0.21 (\text{syst.}) \,\text{fb} = 2.45 \pm 0.60 \,\text{fb}.$ $\sigma_{Z_{\rm L}Z_{\rm L}}^{\rm pred.}$ $= 2.10 \pm 0.09 \, \text{fb}$ (NLO QCD and EW)

-

R.Bellan

 24^{th} May $2024 - \mathbb{EW}$ - \mathbb{EXP}

Study the **two vector boson with longitudinal polarization** in two p_T^Z regions: 100-200 GeV \rightarrow observation at 5.3 σ and >200 GeV \rightarrow measurement at 1.6 σ . For both regions $p_T^{WZ} > 70$ GeV.

Additionally, study of the *Radiation Amplitude Zero (RAZ) effect* in three p_T^{WZ} bins < 20, 40 or 70 GeV.

Most recent results on VBS

Full Run 2 data ($\mathscr{L}=139~{\rm fb}^{-1}$) analysis in fully leptonic channel (e,µ). Measured the EW and inclusive WWjj cross sections: $\sigma_{EW} = 2.92 \pm 0.22$ (stat.) ± 0.19 (syst.) fb. Measured the *differential cross section* for both EW and inclusive processes. Some discrepancies found with respect to the MC predictions.

CMS corresponding measurement Phys. Lett. B 809 (2020) 135710

R.Bellan

 24^{th} May $2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

ATLAS-STDM-2018-32 JHEP 12 (2023) 107

Constrain anomalous quartic gauge couplings via dim-8 EFT operators

R.Bellan

 $24^{\text{th}} \text{ May } 2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

IN EN

Measure differential cross sections for the *inclusive* WZjj and \mathbf{EW} WZjj productions and **extract the EW component by means of a BDT**

CMS corresponding measurement Phys. Lett. B 809 (2020) 135710

R.Bellan

 $24^{\text{th}} \text{ May } 2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

Fisica

INEN

 $pp \rightarrow W^+W^-jj$

Observed in the different-flavour dilepton channel, measuring a fiducial cross section of 2.7 ± 0.5 fb. To disentangle the signal from the large top quark production background a neural network has been

 φ

arXiv:2403.04869

INEN

 φ

IN EN

The largest uncertainties are the from the data (~12%) and simulation (~8%) sample size, followed by theoretical uncertainties on the top background and signal (~6% each)

R.Bellan

 $24^{\text{th}} \text{ May } 2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

arXiv:2403.02809

Use a BDT to extract the **EW signal from the inclusive Wyjj production** and measure the differential cross section of key **observables**, especially new ones **sensitive to CP**

Use m_{W_Y} as observable to put limits on dim-8 operators: f_{T0}/Λ^4 up to f_{T7}/Λ^4 and f_{M0}/Λ^4 up to f_{M7}/Λ^4

CMS corresponding measurement Phys. Lett. B 811 (2020) 135988

R.Bellan

Triboson production

First observation of the WWy production

- Search for it in **opposite-sign and different flavor** WW lepton decay

Bin in $\mathbf{m}_{lly} - \mathbf{m}_T$ and (0,1) jet category to increase the significance

R.Bellan

 $24^{\mathrm{th}} \mathrm{May} \ 2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

INEN

 $\sigma_{\rm WW\gamma}=6.0\,\pm\,0.8~{\rm (stat)}\,\pm\,0.7~{\rm (syst)}\,\pm\,0.6$ (modeling) fb

With an observed (expected) significance of 5.6 (4.7) σ

 24^{th} May $2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

ĪNĒN

Prospects for HL-LHC and FA

ATLAS and CMS in Phase-2

Extending the **eta coverage** there is a gain of the order of 30% in each type of uncertainty (can access larger x).

R.Bellan

24^{th} May $2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

ATLAS and CMS have performed projections of analysis sensitivities for measuring the cross sections of leptonic and semi-leptonic decays of several VBS diboson processes: WW, WZ, and ZZ. In general, the uncertainties on the cross sections are expected to ranges from 3 to 10% (for $ZZ \rightarrow 4\ell$), by the end of the HL-LHC data taking.

Reaching an evidence of V_LV_L at HL-LHC will be very though, however, history of particle physics thought us that projections were pessimistic, as they did not consider **improvements in techniques, better description of the detector, etc.** Also, combination between ATLAS and CMS should be considered.

Perspective at future accelerators

 $\mu^+\mu^-$ and e^+e^- colliders have similar physics for VBS production, and are **superior** in term of parton luminosity (Φ) with respect to **pp**.

For VBS Z_LZ_L to reach the same significance level (~2 σ) as HL-LHC with 4 ab⁻¹ of collected data, a $\mu\mu$ collider requires $\sqrt{s} = 6$ TeV; 5 σ discovery can instead be reached with 3 ab⁻¹ of data and $\sqrt{s} = 14$ TeV [PRD.104.093003].

 $\mu: W_T W_T$

 $\mu: W_0 W_T$

 μ : W_0W_0

op: $W_T W_T$

 $pp: W_0 W_T$

 $pp: W_0W_0$

0.8

Conclusions

Fisco Pueros

- Many new interesting results from LHC in the last 2-3 months
 - More are yet to come!
- Run 2 data exploited at maximum, but still there are analyses that can be performed
 - More precise measurements and very rare processes to be found
- Run 3 data analyses are underway, but important benchmarks have been presented
- HL-LHC and FA represent an unique opportunity to dig deeper in the EW sector of our core theory

Standard Model Theory Rules

Instructions to directly access the analysis page

CMS

- For publications

http://cms-results.web.cern.ch/cms-results/public-results/publications/AAA-BB-CCC/index.html

- For PAS

http://cms-results.web.cern.ch/cms-results/public-results/publications/AAA-BB-CCC/index.html

Analyzed the W $\rightarrow \mu\nu$ events taken in 2016 ($\sqrt{s} = 13$ TeV, $\mathscr{L}=1.7$ fb⁻¹)

Use the curvature of the muon track (q/p_T) , which is sensitive to m_W

Coefficients A_5 - A_7 are small, as they are second-order in α_s , while A_3 particularly influence q/p_T

 $24^{\mathrm{th}} \mathrm{May} \ 2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

Measurement of $\sin^2\theta_{W}$ CMS-SMP-2022-010

Measured the τ polarization in pp \rightarrow Z \rightarrow $\tau\tau$ events @ 13 TeV

 τ polarization in $Z \rightarrow \tau \tau$

• Events classified in **11 categories**

The polarization $(= -A_{\tau})$ depends on the ratio of the vector and axial-vector couplings and is used to **determine the weak mixing angle** independently of the production process of the Z resonance

$$\sin^2 \theta_W^{eff} = 0.2319 \pm 0.0019$$

CMS-SMP-2018-010

JHEP 01 (2024) 101

 φ

INFN

It can be used to explore H couplings to light quarks (u,d,s,c)

Process	σ upper limits obs. (exp.) [fb]	$\kappa_{\rm q}$ limits obs. (exp.) at 95% CL	$\overline{\kappa}_{q}$ limits obs. (exp.) at 95% CL
$u\overline{u} ightarrow H + \gamma ightarrow e \mu u_e u_\mu \gamma$	85 (67)	$ \kappa_{\rm u} \le 16000 \ (13000)$	$\left \overline{\kappa}_{\mathrm{u}}\right \leq 7.5 \ (6.1)$
$d\overline{d} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	72 (58)	$ \kappa_{ m d} \le 17000$ (14000)	$ \overline{\kappa}_{\mathrm{d}} \leq 16.6 \ (14.7)$
$s\overline{s} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	68 (49)	$ \kappa_{ m s} \leq 1700$ (1300)	$ \overline{\kappa}_{ m s} \leq$ 32.8 (25.2)
$c\overline{c} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	87 (67)	$ \kappa_{ m c} \le 200$ (110)	$ \overline{\kappa}_{ m c} \leq 45.4$ (25.0)

Search for $W^{\pm}W^{\pm}$ scattering in final state with a τ and either a μ or an e (plus MET)

[±]jj → τυℓυji

Statistical uncertainty dominates, but total systematic uncertainty is of the same order

SMP-22-008

 φ_{A}

INEN

R.Bellan

 $24^{\mathrm{th}} \mathrm{May} \ 2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

The predictions for the kinematic observables describing the final state differ significantly in some regions of phase space between bare electrons and bare muons. Dressed lepton definition minimises the differences between electrons and muons.

 $Z \rightarrow \ell \ell \gamma$

$pp \rightarrow ZZ + jets$

138 fb⁻¹ (13 TeV

Measurements in the fully leptonic (μ,e) decay channels with the full Run 2 data Z pair associated to jets are among the rarest processes observed at LHC (σ ~1 fb!)

Measurements of the full 4 leptons spectrum

 \rightarrow includes H and Z decays

Very important for keeping under control the irreducible background of vector boson scattering and triboson productions Extracted **differential distribution** of **several observables**

CMS Preliminary

$24^{\mathrm{th}} \mathrm{May} \ 2024 - \mathbb{EW}$ - \mathbb{EXP}

	Fiducial phase space	Total lepton phase space
Muon selection	Bare, $p_{\rm T} > 5$ GeV, $ \eta < 2.5$	Born
Electron selection	Dressed, $p_{\rm T} > 7$ GeV, $ \eta < 2.47$	Born
Four-lepton signature	≥ 2 SFOC pairs	≥ 2 SFOC pairs
Lepton kinematics	$p_{\rm T}>27/10~{\rm GeV}$	
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.05$	
Low-mass $\ell^+\ell^-$ veto	$m_{ij} > 5 \mathrm{GeV}$	$m_{ij} > 5 \text{ GeV}$
Z mass window	$66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$	$66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$
ZZ on-shell	$m_{4l} > 180 \ GeV$. ,

Process	$q\bar{q} \rightarrow ZZ$	$gg \rightarrow ZZ$	EW $qq \rightarrow ZZ + 2j$	$t \overline{t} Z$	VVV	Reducible	Total	Data
Yield	515 ± 50	74 ± 44	4.7 ± 1.0	5.5 ± 0.8	2.1 ± 0.2	25.4 ± 8.1	626 ± 88	625

Source	Relative uncertainty $(\%)$
Data statistical uncertainty	4.2
MC statistical uncertainty	0.3
Luminosity	2.2
Lepton momentum	0.2
Lepton efficiency	3.7
Background	1.6
Theoretical uncertainty	1.0
Total	6.3

Optimal Observable (OO_{Txy,1Txy,3}) built up using angles defined in the previous slide, where $T_{yz,1(3)} = \sin \phi_{1(3)} \cos \theta_{1(3)}$

	Interference only		Full		
an i oc parameter	Expected	Observed	Expected	Observed	
f_Z^4	[-0.16, 0.16]	[-0.12, 0.20]	[-0.013, 0.012]	[-0.012, 0.012]	
f_{γ}^4	[-0.30, 0.30]	[-0.34, 0.28]	[-0.015, 0.015]	[-0.015, 0.015]	

arXiv:2403.15296

ATLAS-STDM-2018-32 JHEP 12 (2023) 107

gg

Top quark results in Run 3_{TOP-22-012}

First measurement of the top quark pair production cross section in proton-proton collisions at 13.6 TeV, with 1.21 fb⁻¹ of data from 2022

Higgs Couplings

INEN

Nature 607 (2022) 60-68

Still missing somes, but we are **under way**. $k_{\rm e} < 240 \; ({\rm HIG}{-}21{-}015) \; k_{\rm c}$ $< 47 \; ({\rm HIG}{-}21{-}12)$ @ 95 C.L.

Recently studied **Higgs anomalous couplings** from its production and decay in the WW channel (eµ final state). Used several categories: ggFusion, EWK VBS, and HV associated production

Coupling	Observed	Expected
$\mathcal{C}_{H\square}$	$-0.76^{+1.43}_{-3.43}$	$0.0^{+1.37}_{-1.84}$
c_{HD}	$\textbf{-}0.12^{+0.93}_{-0.32}$	$0.0\substack{+0.43 \\ -0.30}$
c_{HW}	$0.08\substack{+0.43 \\ -0.87}$	$0.0\substack{+0.37 \\ -0.48}$
$c_{\rm HWB}$	$0.17\substack{+0.88 \\ -1.79}$	$0.0\substack{+0.77 \\ -0.96}$
$c_{\rm HB}$	$0.03\substack{+0.13 \\ -0.26}$	$0.0\substack{+0.11 \\ -0.14}$
$\mathcal{C}_{H\tilde{W}}$	$\textbf{-}0.26^{+0.67}_{-0.50}$	$0.0\substack{+0.48 \\ -0.52}$
$\mathcal{C}_{H \tilde{W} B}$	$-0.54^{+1.37}_{-1.03}$	$0.0\substack{+0.99 \\ -1.07}$
$\mathcal{C}_{H ilde{B}}$	$-0.08\substack{+0.20\\-0.15}$	$0.0\substack{+0.15 \\ -0.16}$

R.Bellan

 $24^{\text{th}} \text{ May } 2024 - \mathbb{EW}\text{-}\mathbb{EXP}$

	ATLAS <i>m_W</i> 2017	ATLAS m_W 2023	Effect on	Effect on
Statistical interpretation	χ^2 fit with stat-only	Profile max. likelihood (ML) fit -	central value	e uncertainty
	uncertainties,	for the first time in context of		
	systematics added	m_W measurements; O(1000) NPs	-16.3 MeV	\checkmark
	aposteriori	reduced to ~200 NPs with PCA		
Baseline PDF	CT10	CT18	+4.6 MeV	\uparrow
Electroweak theory unc.	Evaluated at truth level Evaluated at detector level			\uparrow
Multijet background	2023: Systematic shape variations using PCA, new transfer			
	function from CR to SR		+1.9 MeV	\checkmark
Detector calibration	Unchanged			Good
EW and top background	Unchanged			compatibility
				een partionity

W mass measurement

Source	Size [MeV]
Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5
Experimental total	10
Momentum scale and resolution modelling	7
Muon ID, trigger and tracking efficiency	6
Isolation efficiency	4
QCD background	2
Statistical	23
Total	32

W mass measurement

Science 376 (2022) 6589, 170-176

- Full Run II Tevatron data
- Most precise m_W measurement to date (even than combinations)
- Significant systematics reduction using cosmic data:
 - Tracking detector alignment & drift model
 - Uniformity of the EM calo response and resolution model
- Custom detector response simulation (not full simulation unlike LHC experiments)
- Six m_W values from template fits to m_T , $p_T{}^{\ell}$, $p_T{}^{\nu}$ distributions in e and μ channels
 - Technique similar to 2017 ATLAS first measurement

Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
p_{T}^{Z} model	1.8
$p_{\mathrm{T}}^W/p_{\mathrm{T}}^Z$ model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4

 $m_W = 80' 435.5 \pm 6.4 (stat) \pm 6.9 (syst) MeV = 80' 435.5 \pm 9.4 MeV$

W mass compatibility check

Few key points in SMEFT

The effective field theory reveals high energy physics through precise measurements at low energies. Its validity is for $E \ll \Lambda$.

from Lagrangian ...

The effective field theory reveals high energy physics through precise measurements at low energies. Its validity is for $E \ll \Lambda$.

It allows us to **compute precise** $\underline{cross \ sections}$ starting from the $\underline{lagrangian}$

from Lagrangian ... $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{m=1}^{N_6} \frac{c_m}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{m=1}^{N_8} \frac{\mathcal{O}_i^{(8)}}{\Lambda^2} + \cdots + \sum_{m=1}^{N_8} \frac{\mathcal{O}_i^{(6)}}{\Lambda^2} + \cdots + \sum_{m=1}^{N_8} \frac{\mathcal{O}_i^{(8)}}{\Lambda^2} + \cdots + \sum_{m=1}^{N_8} \frac{\mathcal{O}_i^{(8)}}{\Lambda^2} + \cdots + \sum_{m=1}^{N_8} \frac{\mathcal{O}_i^{(6)}}{\Lambda^2} + \cdots + \sum_{m=1}^{N_8} \frac{\mathcal{O}_i$

The quadratic dim 6 cross section contains both pure (i.e., m=n) and mixed contributions.

When considering dim 6 quadratic term one should include the dim 8 linear term, unless the measurement is proven to be insensitive to the addition of the dim 6 quadratic term.

R.Bellan