Standard-model effective field theory at future e^+e^- colliders

Gauthier Durieux (CP3 – UCLouvain)

Corfu workshop on future accelerators - 24 May 2024

Particle physics landscape

SM's insufficient success. Systematic new-physics explorations towards larger masses.

Taking the SM to higher dimensions

- using established bricks (fields and symmetries)
- extension organised by relevance (dimension)
- including all deformations (theory space coverage)

Isolating subtle patterns of new physics

array of sensitive observables

- precise SM&EFT predictions
- precise measurements
 - \rightarrow correlate deviations

Future e^+e^- colliders provide ideal precision input at electroweak scales.

Precision further blurs the separation between sectors rendering a global, consistent QFT, treatment indispensable.

Higgs and weak bosons

[Higgs@FC '19]

[Higgs@FC '19]

Gauthier Durieux - Corfu workshop on future accelerators - 24 May 2024

[Higgs@FC '19]

Higgs-diboson interplay

 $\cdot \; e^+e^-
ightarrow W^+W^-$ crucial for Higgs precision

 \cdot benefiting from optimal observables

at LEP already

[de Blas, GD, Grojean, Gu, Paul '19] [Opal, L3, ALEPH, DELPHI]

- \cdot sensitivity driven by high energies (240, 365 GeV) requires good forward detector coverage
- also probes Vff couplings [GD, Grojean, Gu, Wang '17] often unduly neglected in diboson

Higgs and electroweak precision

Higgs-electroweak interplay

New EW measurements required for Higgs coupling extraction.

[de Blas, GD, Grojean, Gu, Paul '19]

Higgs-electroweak interplay

Electroweak-Higgs interplay

15 EW parameters (13 Higgs-TGC ones also marginalized over)

Electroweak-Higgs interplay

high-energy Higgs measurements help constraining g_Z^{ee}

Electroweak-Higgs interplay

15 EW parameters (13 Higgs-TGC ones also marginalized over)

high-energy Higgs measurements help constraining g_Z^{ee}

Gauthier Durieux - Corfu workshop on future accelerators - 24 May 2024

Single and triple Higgs couplings

Triple Higgs coupling in proton collisions

In lepton collisions, above 500 GeV

[Barklow et al. '17] [Di Vita et al. '17]

In lepton collisions, above 500 GeV

ILC

- perfect complementarity between 500 GeV and 1 TeV
- \cdot both individual and global 1σ sensitivity $\sim 10\%$

CLIC

- \cdot missing $e^+e^- \rightarrow Zhh$ to constrain positive $\delta\kappa_\lambda$
- · exploiting m_{hh} instead [Contino et al. '13]
- \cdot both individual and global 1σ sensitivity $\sim 10\%$

robust against single Higgs couplings modifications

In lepton collisions, below 500 GeV

- NLO sensitivity (finite and gauge-invariant NLO EW subset)
- \cdot dominated by $e^+e^- \rightarrow hZ$ at threshold

percent effect \times permil hZ precision \rightarrow naive 10% constraint

Gauthier Durieux - Corfu workshop on future accelerators - 24 May 2024

[McCullough '13] [Gorbahn, Haisch '16] [Degrassi et al. '16] [Degrassi et al. '17] [Kribs et al. '17] [Maltoni et al. '17] [Maltoni et al. '17] [Gorbahn, Haisch '19] [Degrassi, Vitti '19] [Degrassi et al. '21] [Haisch, Koole '21]

Single-triple Higgs couplings interplay

Correlations with single-Higgs couplings require two \sqrt{s} . Individual 1σ limit (14%) much tighter than global ones (460, 110, 50%) One energy point already help lifting secondary HL-LHC minimum.

Single-triple Higgs couplings interplay

Correlations with single-Higgs couplings require two \sqrt{s} . Individual 1 σ limit (30%) much tighter than global ones (580, 130, 60%) One energy point already help lifting secondary HL-LHC minimum.

Triple Higgs coupling prospects summary

Higgs@FC WG September 2019

Higgsstrahlung centre-of-mass energy

Back-of-the-envelope calculations! and discussions with Jenny List & ECFA self-coupling focus group

- \cdot ¿optimise/split \sim 240 GeV energy/ies?
- \cdot ¿radiative return from $\sim 365/380$ GeV?
- \cdot ¿even from \sim 240 GeV downwards?

Differential hZ information

Back-of-the-envelope calculations! and discussions with Fabio Maltoni & Xiaoran Zhao

ZZh loop κ_{λ} vertex: $F_a(p_i^2) (\epsilon_1 \cdot \epsilon_2) + F_b(p_i^2) (p_1 \cdot \epsilon_2)(p_2 \cdot \epsilon_1)$ with $F_b/F_a \sim 10^{-2}$ so only $\lesssim 10^{-4}$ differential effect

Gauthier Durieux - Corfu workshop on future accelerators - 24 May 2024

Structurally large $\delta \kappa_{\lambda} / \delta \kappa_{V}$ in BSM [GD, McCullough, Salvioni '21, '22, '22] see also: [Di Luzio, Gröber, Spannowsky '17] [Gupta, Rzehak, Wells '13] [Falkowski, Rattazzi '19] [Logan, Rentala '15] [Chala, Krause, Nardini '18] [etc.]

loop factor (or v^2/M_X^2) allowed dimensionally btw. H^6 and D^2H^4

Structurally large $\delta \kappa_{\lambda} / \delta \kappa_{V}$ in BSM [GD, McCullough, Salvioni '21, '22, '22] see also: [Di Luzio, Gröber, Spannowsky '17] [Gupta, Rzehak, Wells '13] [Falkowski, Rattazzi '19] [Logan, Rentala '15] [Chala, Krause, Nardini '18] [etc.]

loop factor (or v^2/M_X^2) allowed dimensionally btw. H^6 and D^2H^4

Top quark

In lepton collisions, above 350 GeV

Powerful stat. optimal obs. Experimentally and theoretically robust. Two energies required for ttV + ttll.

 \cdot in TeV $^{-2}$, $\Delta\chi^2 = 1$

- · white marks: individual constraints
- /xx: global/individual ratios

In lepton collisions, above 350 GeV

[GD, Perelló, Vos, Zhang '18] [CLICdp '18] [see also Janot '15]

Powerful stat. optimal obs. Experimentally and theoretically robust. Two energies required for ttV + ttll.

- \cdot in TeV⁻², $\Delta \chi^2 = 1$
- · white marks: individual constraints
- \cdot /xx: global/individual ratios

In lepton collisions, above 350 GeV

[GD, Perelló, Vos, Zhang '18] [CLICdp '18] [see also Janot '15]

Powerful stat. optimal obs. Experimentally and theoretically robust. Two energies required for ttV + ttll.

- \cdot in TeV⁻², $\Delta \chi^2 = 1$
- · white marks: individual constraints
- \cdot /xx: global/individual ratios

Four tops in pair production

[Degrande, GD, Maltoni, Mimasu, Vryonidou, Zhang '20] [https://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO]


```
[GD, Matsedonskyi '18]
```

Composite Higgs scenario

- $\cdot 1\sigma$ sensitivities
- fully composite t_R
- \cdot up to $\pm \mathcal{O}(1)$ factors

top is complementary to Higgs in probing natural BSM

Top electroweak couplings below 350 GeV

- · competitive with the HL-LHC (e.g. on the top Yukawa $C_{t\varphi}$)
- \cdot dominated by Higgs measurements (diboson improves with energy)

Global constraints (bars) (12 Higgs + 6 top operators floated)

- \cdot large flat directions with 240 GeV run alone (not shown)
- $\cdot\,$ still improves the HL-LHC combination
- $\cdot\,$ more differential distributions should help

- · competitive with the HL-LHC (e.g. on the top Yukawa $C_{t\varphi}$)
- \cdot dominated by Higgs measurements (diboson improves with energy)

Global constraints (bars) (12 Higgs + 6 top operators floated)

- \cdot large flat directions with 240 GeV run alone (not shown)
- $\cdot\,$ still improves the HL-LHC combination
- $\cdot\,$ more differential distributions should help

[GD, Gu, Vrionidou, Zhang '18] [see also Jung, Lee, Perelló, Tian, Vos '20]

Individual constraints (blobs)

- · competitive with the HL-LHC (e.g. on the top Yukawa $C_{t\omega}$)
- · dominated by Higgs measurements (diboson improves with energy)
- · loops in $e^+e^-
 ightarrow t\bar{t}$ would improve its impact on $C_{t\varphi}$ and C_{tG}

Global constraints (bars) (12 Higgs + 6 top operators floated)

- · large flat directions with 240 GeV run alone (not shown)
- still improves the HL-LHC combination
- more differential distributions should help

Higgs-top interplay

light shades: 12 Higgs op. floated + 6 top op. floated dark shades: 12 Higgs op. floated + 6 top op. $\rightarrow 0$

- · Higgsstr. run: insufficient
- Higgsstr. run \oplus top@HL-LHC: large top contaminations in $\bar{c}_{\gamma\gamma,gg,Z\gamma,ZZ}$
- · Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t}$: large y_t contaminations in various coefficients
- · Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t} \oplus$ top@HL-LHC: top contam. in \bar{c}_{gg} only

Higgs-top interplay

Higgs $@e^+e^-$ helps improving top coupling precision.

Higgs precision is however contaminated by top uncertainties.

Top $@e^+e^-$ is needed to achieve the full potential of Higgs $@e^+e^-$.

Toy model interpretations

Toy model interpretations

see Christophe Grojean (p.28) and Ben Stefanek's talks for additional renormalisation-group running effects

SMEFT at future e^+e^- colliders

It encodes the virtual effects of heavy new physics,

in order to systematically probe small correlated deviations.

It is ideally suited for precision measurements at electroweak scales.

It allows to globally combine widely different measurements,

to account for quantum effects,

which further blur the separation between sectors.

Extras

Future lepton colliders

