Positron Sources for future lepton colliders

- Strategy
- Positron polarization
- Source reqirements
- Status ILC positron source
- Upgrade for HALHF
- Conclusion

Future Accelerators@Corfu, May 2024

Gudrid Moortgat-Pick

1

What is the current status of HEP?

- One Higgs particle discovered in 2012
 - strongly consistent with Standard Model (SM) predictions
- Few excesses around.....(e.g. a light scalar at about 95 GeV)
 - but not (yet) confirmed discoveries
- Still strong motivation for Beyond SM (BSM) physics
 - Dark Matter, Gravitational Waves, Baryon-Asymmetry, etc.
- However, scale of new physics window still unclear
 -the research field might be in great danger
 - ➡Therefore, high precision and/or high energy in specific areas needed and additional tools complementary to (HL)LHC analyses required to identify the promising windows
- But in a responsible, sustainable manner, i.e.
 - stageable, tuneable, shortest as possible lepton collider(s) with polarized beams and new imminent technologies mandatory

Mature e+e- collider design(s) with sane polarization!

Future Accelerators@Corfu, May 2024

(Reasonable) strategy (or Plan 'B')...?

Proposal:

- build a Linear Collider, upgradeable to HALHF
- 'in parallel' to HL-LHC and FCC-hh !

would cover precision & energy frontier simultaneously and provide new (and more sustainable(?)) technologies !

Immediate (a.s.a.p.!) need for e+e- collider for

- Higgs high precision measurements
- Top quark high precision measurements
- Electroweak high precision measurements
- Opening new windows to BSM physics, CP-violating effects,...
 →√s=Z-pole, WW,250, 350, ≥500 GeV with polarized beams

Required features

- In order to reveal the structure of the underlying (new) physics:
 - * high energy desirable to reach the scale of new physics
 - * high luminosity needed to get sufficient statistics
 - * high level of experimental flexibility needed
 - high precision measurements needed to get access to the quantum structure
- ⇒ Spin and polarization physics is important
 - access to quantum properties, structure of couplings, etc.

Exploit polarized beams !

.....what did we learn from the past?

Future Accelerators@Corfu, May 2024

Remember the past: physics gain of polarized beams

- Past experience:
 - excellent e- polarization ~78% at SLC:
 - led to best single measurement of sin²θ=0.23098±0.00026 on basis of L~10³⁰ cm⁻²s⁻¹ (~600000 Z's)
- Compare with results from unpolarized beams at LEP:
 sin²θ=0.23221±0.00029 but with L~2x10³¹cm⁻²s⁻¹ (~ 17 million Z's)
- Polarization essential for suppression of systematics
- can even compensate order of magnitude in luminosity for specific observables!

Polarized e- sources well under control, why also polarized e+ required.....?

Future Accelerators@Corfu, May 2024

Statistical arguments

Effective polarization

$$P_{eff} := (P_{e^-} - P_{e^+})/(1 - P_{e^-} P_{e^+})$$

= $(\# LR - \# RL)/(\# LR + \# RL)$

• Fraction of colliding particles $\mathcal{L}_{eff}/\mathcal{L} := \frac{1}{2}(1 - P_{e^-}P_{e^+}) = (\#LR + \#RL)/(\#all)$

 \Rightarrow Enhancing of \mathcal{L}_{eff} with $P(e^{-})$ and $P(e^{+})!$

Future Accelerators@Corfu, May 2024

- Important issue: measuring amount of polarization
 - **limiting systematic** uncertainty for high statistics measurements
 - Compton polarimeters (up- /downstream): envisaged uncertainties of ΔP/P=0.25%
- Advantage of adding positron polarization:
 - Substantial enhancement of eff. luminosity and eff. polarization
 - new independent observables
 - handling of limiting systematics and access to in-situ measurements: ΔP/P=0.1% achievable!
 - allows exploitation of transversely-polarized beams!
 see talk G. Weiglein
- Physics impact: Higgs-Physics, WW/Z/top-Physics, New Physics !

Literature: polarized e+e- beams at a LC (only a few examples)

- LCC-Physics Group: 'The role of positron polarization for the initial 250 GeV stage of ILC', arXiv: 1801.02840
- G. Moortgat-Pick et al. (~85 authors) : `Pol. positrons and electrons at the LC', Phys. Rept. 460 (2008), hep-ph/0507011
- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, ...
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)
- T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24,....

Future Accelerators@Corfu, May 2024

- Important issue: measuring amount of polarization
 - limiting systematic uncertainty for high statistics measurements
 - Compton polarimeters (up-/downstream): envisaged uncertainties of AP/P=0.25%
- Higher effective luminosity (higher fraction of collisions)

L_{eff}/L=1-P_{e-} P_{e+}

- G. Moortgat-Pick et al. (~85 authors) : Pol. positrons and electrons at the LC', Phys. Rept. 460 (2008), hep-ph/050/011
- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, ...
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)
- T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24,....

Future Accelerators@Corfu, May 2024

- Important issue: measuring amount of polarization
 - **limiting systematic** uncertainty for high statistics measurements
 - Compton polarimeters (up- /downstream): envisaged uncertainties of ΔP/P=0.25%
- Advantage of adding positron polarization:
 - Substantial enhancement of eff. luminosity and eff. polarization
 - new independent observables
 - handling of limiting systematics and access to in-situ measurements: ΔP/P=0.1% achievable!
 - allows exploitation of transversely-polarized beams!
 see talk G. Weiglein
- Physics impact: Higgs-Physics, WW/Z/top-Physics, New Physics !

Literature: polarized e+e- beams at a LC (only a few examples)

- LCC-Physics Group: 'The role of positron polarization for the initial 250 GeV stage of ILC', arXiv: 1801.02840
- G. Moortgat-Pick et al. (~85 authors) : `Pol. positrons and electrons at the LC', Phys. Rept. 460 (2008), hep-ph/0507011
- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, ...
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)
- T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24,....

Future Accelerators@Corfu, May 2024

- Important issue: measuring amount of polarization
 - limiting systematic uncertainty for high statistics measurements

 - Higher precision and better control of systematics
 - $\Rightarrow \Delta A_{LR}/A_{LR} \sim \Delta P_{eff}/P_{eff}$
 - ➡ (90%,60%): P_{eff}=97%

 $\Delta A_{LR}/A_{LR}$ =0.27 'gain factor ~3'

 $\Delta A_{LR}/A_{LR} = 0.5$ 'gain factor ~2'

- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, …
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)
- T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24,....

Future Accelerators@Corfu, May 2024

- Important issue: measuring amount of polarization
 - **limiting systematic** uncertainty for high statistics measurements
 - Compton polarimeters (up- /downstream): envisaged uncertainties of ΔP/P=0.25%
- Advantage of adding positron polarization:
 - Substantial enhancement of eff. luminosity and eff. polarization
 - new independent observables
 - handling of limiting systematics and access to in-situ measurements: ΔP/P=0.1% achievable!
 - allows exploitation of transversely-polarized beams!
 see talk G. Weiglein
- Physics impact: Higgs-Physics, WW/Z/top-Physics, New Physics !

Literature: polarized e+e- beams at a LC (only a few examples)

- LCC-Physics Group: 'The role of positron polarization for the initial 250 GeV stage of ILC', arXiv: 1801.02840
- G. Moortgat-Pick et al. (~85 authors) : `Pol. positrons and electrons at the LC', Phys. Rept. 460 (2008), hep-ph/0507011
- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, ...
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)
- T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24,....

Future Accelerators@Corfu, May 2024

Most mature LC design: ILC

• The polarized e+ source scheme

• ILC e+ beam parameters (nominal luminosity)

Number of positrons per bunch at IP	2×10 ¹⁰	
Number of bunches per pulse	1312	
Repetition rate	5 Hz	That's about a
Positrons per second at IP	1.3×10 ¹⁴	factor 100 more
		compared to SEC:

Required positron yield: Y = 1.5e+/e- at damping ring

Overview positron requirements

	rep rate/Hz	#bunch/pulse	#e+/bunch	#e+/pulse	#e+/s
SLC	120	1	5x10 ¹⁰	5x10 ¹⁰	6x10 ¹²
ILC/Tesla	5	1312	2x10 ¹⁰	2.6x10 ¹³	1.3x10 ¹⁴
CEPC	100	1	2x10 ¹⁰	2x10 ¹⁰	2x10 ¹²
CLIC	50	312	4 x10 ⁹	1.2x10 ¹²	6x10 ¹³
HALHF	10000	1	2-3x10 ¹⁰	2-3x10 ¹⁰	2-3x10 ¹⁴

Undulator technology - Status

- Parameters
 - Undulator period, $\lambda_U = 11.5$ mm
 - Undulator strength K \leq 0.92 (B \leq 0.86T); K ~ B· λ_U
 - Undulator aperture 5.85mm
- 4m prototype built and tested (UK)
 - Cryomodule, contains 2 undulator modules of 1.75m length each

- ILC TDR (2013):
 - Max 231m active undulator length available (132 undulator modules in 66 cryomodules]
- Quadrupoles every $\overline{3}$ cryomodules \rightarrow total length of undulator system is 320m

Progress since TDR

- Detailed ILC undulator simulations performed:
 - realistic fields, masks and power deposition, misalignments
- Undulator operation: experience with long undulators
 - XFEL: 91 undulators with 5m length each
 - energy loss due to particle loss negligible small (unmeasurable)
 - beam alignment up to 10-20 microns for 200 m (undulator length), remeasured every 6 months
 - during beam operation: beam trajectory controlled better than 3 micron with both slow and fast feedback systems
- Stable operation and alignment experience
 - Beam requirements at XFEL more challenging than at ILC due to FEL requests of photons
 - Tolerances of IIC undulator more relaxed than for XFEL!
- Result: no operation&alignment issues for ILC undulator

K. Alharbi, PhD 2022 S. Riemann, GMP

> W. Decking/XFEL LCWS21

The positron target

- Is located ~240m downstream the undulator end
- 62 kW photon beam ⇔ about few 10¹⁶ photons/second
- Only few % of the photon beam power is deposited in the target

The positron target

- Photon beam hits wheel at 1m diameter, spinning in vacuum with 2000rpm (100m/s tangential speed) → distribute the heat load
 - One pulse with1312 (2625) bunches occupies ~7 (~10)cm
 - Every ~7-8sec load at same target position
 - in 5000h roughly 2.5×10⁶ load cycles at same
- ILC250, GigaZ: E(e-) = 125GeV
 - Photon energy is O(7.5 MeV);
 - target thickness of 7mm to optimize deposition and e+ yield
- Target cooling

- S. Riemann, P.Sievers
- T⁴ radiation from spinning wheel to stationary water cooled cooler
 - Peak temp in wheel ~550°C for ILC250, 1312bunches/pulse
 ~500°C for GigaZ, 1312bunches/pulse

assuming the wheel is a full Ti alloy disk (~simple design solution).

Target

Capture+

preacc.

Cooling of the target wheel

- Few kW heat deposition can be removed with thermal radiation:
 - heat radiates from spinning target to a stationary water-cooled cooler

$$P \sim \sigma \epsilon A \left(T_{radiator}^4 - T_{cool}^4 \right)$$

 ϵ = effective emissivity

- Ti alloys have low thermal conductivity $(\lambda = 0.06 0.15 \text{ K/cm/s})$
 - heat propagation ~ 0.5cm in 7sec (load cycle)
 - heat accumulates in the rim near to beam path

Side view cutout e+ target

Temperature distribution in target

Average temperature in Ti6Al4V wheel as function of radius r for different surface emissivity of target and cooler (Cu); Target wheel assumed as disk

Studies (FLUKA, ANSYS) show that such spinning disk stands heat and stress load

Future Accelerators@Corfu, May 2024

Future Accelerators@Corfu, May 2024

Towards the rotating wheel

Drive and bearings

- Radiation cooling allows <u>magnetic bearings</u>
 - A standard component to support elements rotating in vacuum.
 - The axis is «floating» in a magnetic field, provided by permanent or electro magnets
 - Allows long time operation at high rotation speed without maintenance
 - Among other things, magnetic bearings are used as Fermi-choppers in Neutron Physics and Spallation Sources
- For the specific ILC-application, a technical specification of the required performance and boundary conditions has to be negotiated with the supplier.
 - Specification to be done based on simulation studies
 - Negotations with industrial producer ongoing

P.Sievers, G. Yakopov

Fermi-Choppers für BRISP Copyright: Prof. Dr. Pilgrim, Philipps-Universität Marburg

Towards the rotating wheel

Ongoing drawings and

G. Yakopov 2024

- Within ITN initiative: manufacturing drawings at Uni&DESY
- Ongoing discussion with industrial producer of magnetic bearings

Progress since TDR: Target material tests Mainz Microtron (MAMI): electron-beam on ILC target materials, generating cyclic load with same/ even higher PEDD at target than expected at ILC

- analyze target materials via scanning as well as synchrotron diffraction methods
- advantage of synchrotron diffraction: both surface as well as structure of targets with several mm thickness can be precisely studied
- Analysis via Synchrotron diffraction: x-rays of 87.1 keV with different beams size

Results of diffraction method:

- Phase transitions between α and β -phase in Ti-alloy observed
- only for 'cw-mode target' phase transition significant
- In addition: dilatometer measurements
- synchrotron diffraction at PETRAIII: detailed surface analyses and different angle resolution incl. det. of phase parameter

Result: ILC undulator target will stand the load !

Target before and after radiation:

 $\alpha(002)$

22

T. Lengler

OMD Design: Pulsed Solenoid

'Baseline': Pulsed Solenoid

- Yield of e+ (OMD&capture Linac): 1.64-1.81 Fukuda-san, 2021
- Within ITN initiative: manufacturing drawings at DESY
 G. Yakopov 2023
- Planned: prototype tests

M. Mentink, C, Tenholt, G. Loisch, 2021

OMD Design: Pulsed Solenoid

'Baseline': Pulsed Solenoid

- Yield of e+ (OMD&capture Linac): 1.64-1.81 Fukuda-san, 2021
- Within ITN initiative: manufacturing drawings at DESY G. Yakopov 2023
- Planned: prototype tests @ CERN

C. Tenholt 2021

	Beamloss Power			Positron Yield		
	@dogleg	@booster	@EC	@DR	@capture (Z <7mm)	@DR
QWT	0.677 kW	0.014 kW	4.01 kW - 5.56 kW	13.15 kW - 14.3 kW	1.07	~1.1
Pulse solenoid w/o shield	0.927 kW	0.055 kW	5.86 kW - 7.93 kW	17.39 kW - 16.01 kW	1.81	1.91
Pulse solenoid with shield	0.871 kW	0.064 kW	5.58 kW - 7.90 kW	17.73 kW - 16.24 kW	1.64	1.74

Future Accelerators@Corfu, May 2024

Solenoid construction@Uni&DESY&CERN G. Yakopov, 2023

Possible mechanical design

- Solenoid coil
 - Tapered winding
 - 7 planar windings with interconnections
 - Conductor cooled from inside
- Metal supports to hold coil
- Support rods insulated from support bridges
 - ► Washers e.g. of SiN ceramics
- Magnetic shielding cut at support locations
 - Influence on field to be determined
 - Main shielding to target unaffected

Future Accelerators@Corfu, May 2024

rods Metal support bridges Solenoid coil Ceramic washers Metal support ro Metal support bridges

Insulated ,support

20.0

20.0

OMD Design: Plasma Lens

'Future': Plasma Lenses

- increases e+ yield but increases load at target only slightly
- advantages in matching aspect ۲
- downscaled prototype designed and produced

30.0

Electric current lo [kA]

12.5

Formela, Hamann, Loisch

15.0

17.5

Future Accelerators@Corfu, May 2024

Gudrid Moortgat-Pick

2.5

5.0

0.0

see IPAC 24

OMD Design: Plasma Lens

Formela, Hamann, Loisch

Prototype design

- Principle: lens is pressed in between mounts with threaded rods and sealed with O-rings
- Mounts made out of PEEK
- Electrodes made out of copper
- Plasma lens made out of sapphire block

Produced plasma

Finished Prototype

Ingoing current measured

Future Accelerators@Corfu, May 2024

HALHF Design

B. Foster, R. D'Arcy, C.A. Lindstrom

Positron Source:

• Conventional e+ source with up to 31 GeV e- drive beam

- needs RF

• Undulator-based source: mature for ILC parameters

- 'sustainable' double-use of electron drive beam
- higher physics potential

Future Accelerators@Corfu, May 2024

Status and Strategy

- Undulator-based positron source:
 - ➡ ILC e+ source is mature: electron drive beam is 125 GeV
 - however, 31 GeV as e- drive beam not suitable to get intense undulator photon beam
 - ⇒drive beam 500 GeV possible, should be optimized

Ushakov ea 1301.1222

- Re-cycle ILC simulatons:
 - start with helical undulator with for 500 GeV ILC parameters (K-value, length, period)
- Proposed strategy: use 500 GeV e- beam for e+ undulator
 - optimize undulator
 - synergies with ILC R&D (pulsed solenoid, plasma lens, target wheel)

Reminder: Positron requirements

	rep rate/Hz	#bunch/pulse	#e+/bunch	#e+/pulse	#e+/s
SLC	120	1	5x10 ¹⁰	5x10 ¹⁰	6x10 ¹²
ILC/Tesla	5	1312	2x10 ¹⁰	2.6x10 ¹³	1.3x10 ¹⁴
CEPC	100	1	2x10 ¹⁰	2x10 ¹⁰	2x10 ¹²
CLIC	50	312	4 x10 ⁹	1.2x10 ¹²	6x10 ¹³
HALHF	10000	1	2-3x10 ¹⁰	2-3x10 ¹⁰	2-3x10 ¹⁴

➡ Similar e+ request as ILC

➡ Adaption of ILC e+ source for HALHF reasonable and efficient!

Future Accelerators@Corfu, May 2024

Some basics: just as an overview

Basic formula for photon spectrum of Helical Undulator given by Kincaid (1978) [3]:

Khaled Alharbi

$$\frac{dW}{d\omega} = \frac{N_p q^2 K^2 r}{\epsilon_0 C} \sum_{n=1}^{\infty} \left(J'_n (x_n)^2 + \left(\frac{a_n}{K} - \frac{n}{x_n}\right) J_n (x_n)^2 \right) u(a_n)^2$$

$$N_p = period number, \ n = harmonic number, \ r = \frac{\omega}{2\gamma^2 \omega_0}, \ a_n = \frac{n}{r} - 1 - K^2, \ x_n = 2Kra_n, \ J_n = \text{Bessel function}$$

$$K \text{ is the deflection, } K = 0.0934 \ B_o \lambda_u.$$

$$\lambda_u \text{ is the undulator period.}$$

$$B_o \text{ is B-field on axis.}$$

$$L_u \text{ is the undulator active length} = N_p \lambda_u.$$

The relationship between the energy of the electron beam (E_e) and the 1st harmonic cutoff energies of the photon spectrum (E_1):

The upper half of the energy spectrum at any order n is emitted into a cone of angle:

$$\theta \approx \frac{1}{\gamma} \sqrt{1 + K^2}$$
, γ is Lorentz factor.

Future Accelerators@Corfu, May 2024

Gudrid Moortgat-Pick

 $E_1 \propto \frac{E_e^2}{\lambda (1 + K^2)}$

Undulator with E(e-)=500 GeV

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

Three possibilities:

Ushakov ea 1301.1222

1.Use ILC undulator parameters (K=0.92, period λ=11,5 mm)

Yield and **Polarization**

Undulator length

⇒ >1.5 yield achievable with shorter length but low P(e+)~5%

not acceptable by physics

Future Accelerators@Corfu, May 2024

Undulator with E(e-)=500 GeV

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

Ushakov ea 1301.1222

- **Three possibilities:**
- 2.Use new undulator parameters
 - ⇒ e.g. lower K
 - would result in higher polarization

but

- ➡ factor 4 higher energy deposition in target
- additionally reduced photon spot size
- (probably) technically not acceptable

Undulator with E(e-)=500 GeV

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

Three possibilities:

Ushakov ea 1301.1222

- 3. Use new undulator parameters
 - \Rightarrow e.g. higher K = 2.5, period λ=43 mm
 - ➡ leads to more higher harmonics, higher yield,

higher γ_{ave} energy and higher energy spread

Iarger γ spot size

→ e+ capture more difficult....but more know-how (PS, PL) now! ³⁴ Future Accelerators@Corfu, May 2024 Gudrid Moortgat-Pick

Polarization@Und_{E(e-)=500} GeV

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

• Apply photon collimator:

Ushakov ea 1301.1222

- High P(e+) achievable: ~54%
- stick to this undulator parameters: capture& target issues

Deposited Energy & Target Stress

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

- So far: FLUKA and ANSYS simulation done 'only'
 - ➡ for ILC e- beam
 - ➡ for rotating target wheel with 100 m/s ('ILC target')
 - Results: Stress is ~25% tensile yield stress and 44% of fatigue stress of Ti-alloy target (but done without centrifugal forces of wheel and superposition effects)....but should be safe (for ILC e- beam)!

Simulations have now to be redone for HALHF e- beam !

Ushakov ea

1301.1222

HALHF outline?

Goals: implement undulator with L=176m, K=2.5, λ =43 mm and collimator aperture R_c = 0.9 mm

- Similar as for ILC set-up..... undulator at 'end-of-the-linac'
 - ➡ e- emittance growth was a few % and energy loss 3-4 GeV
 - starting point for e+: target = rotating wheel

OMD = pulsed solenoid / Plasma

Perfect combination of mature new and known technologies !

Future Accelerators@Corfu, May 2024

Gudrid Moortgat-Pick

e- BDS

Conclusions

Polarized positron sources@ILC from GigaZ to >500 GeV:

- Simulatneous e+ polarization allows best control of systematics, higher statistics, best physics results
- ILC undulator-based source mature and feasible
- prototype work on pulsed solenoid and rotating wheel ongoing
- New technology for future OMD: plasma lens under tests
- HALHF plans (few km for e[±] beam acceleration):
 - new technology (PWA) in combination with SRF
 - allows upgrade to higher energies in short tunnels
 - adapt e⁺-based undulator parameters for HALHF e- beams

Polarized positron source for future LC optimize physics and involve and combine new technologies!

Future Accelerators@Corfu, May 2024

Polarization measurement

- Compton polarimeters: up- and downstream
 - envisaged uncertainties of ΔP/P=0.25% (at polarimeters!)
 - But that's is not enough for IP!
- Use collision data to derive luminosity-weighted polarization
 - single W, WW, ZZ, Z, etc.: combined fit

 $P_{e^{\pm}}^{-} = -\left|P_{e^{\pm}}\right| + \frac{1}{2}\delta_{e^{\pm}} \qquad \qquad P_{e^{\pm}}^{+} = -\left|P_{e^{\pm}}\right| + \frac{1}{2}\delta_{e^{\pm}}$

• helicity reversal is important

Karl, List,1703.00214

- non-perfect helicity-reversal can be compensated
- 0.1% accuracy in $\Delta P/P$ is achievable at IP!
- NOT achievable without Pe+!

Remember: even if no Pe+ (SLC! dedicated experiment at SLACs Endstation A), the $P_{e+}\sim 0.0007$ had to be derived a posteriori for physics reason!

Future Accelerators@Corfu, May 2024

Two schemes of polarization generation for RD

Scheme 1: self-polarization in the Colliders (FCC EPOL, arXiv:1909.12245)

• Z-pole: >20 hour to reach 10% polarization

Insert Page...

- 10 asymmetric wigglers switched on to reduce to 1~2 hours
- Incompatible with high luminosity (increase in U₀, energy spread) -> 1~2 hours dead time for physics at each fill
- ~144 pilot bunches dedicated for RD measurements
- W: ~2 hour to reach 10% polarization
 - ~12 pilot bunches, wigglers not needed

Scheme 2: Injection of polarized beams

- Polarized beams from the source
 - Polarized e- gun: > 85% polarization
 - e+ damping ring(1.1 GeV -> 1.98 GeV) : > 40%
 polarization after 10 min store
- Polarization loss in the Booster is small requiring no additional hardware (Chen et al, PRAB 26, 051003, 2023)
- No dead time for physics at each fill

Undulator: Simulation (field errors, alignment)

- Misalignments:
 - beam spot increases slightly, yield decreases slightly (see A.Ushakov, AWLC18)
- Realistic undulator with B field (K) and period (λ) errors
 - Results consistent with previous works
 - provides beam size, polarization, target load
- Synchrotron radiation deposit in undulator walls
 - Masks protect wall to levels below 1W/m
 - ILC250: power deposition in 'last' mask near undulator exit: ~300W

Alharbi, Thesis 23 S. Riemann

- Result: Masks substantial but sufficient in all cases!
- Studied for ILC250, ILC350, ILC500 and GigaZ !

Future Accelerators@Corfu, May 2024

GigaZ operation

• Parameters for GigaZ operation Yokoya-san, 1908.08212

Parameters	e ⁺ production	collision	Unit
Final beam energy	125	45.6	GeV
Average accelerating gradient	31.5	8.76	MV/m
Peak power per cavity	189	77.2	kW
Beam pulse length	0.727	0.727	ms
RF pulse length	1.65	1.06	ms
Repetition rate	3.7	3.7	Hz

Incident power at undulator walls: Compare GigaZ and ILC250
 power deposition in wall without masks

Incident power at GigaZ below /comparable with ILC250
 Mask protection will also be sufficient for GigaZ running

Future Accelerators@Corfu, May 2024