Electroweak physics at future colliders

Fulvio Piccinini

Corfu2024 Workshop on Future Accelerators

Mon Repos, Corfù, 19-26 May 2024

• The origin of precision electroweak physics in high energy dates back to the electroweak tests of the Standard Model at LEP/SLC at scales from M_Z up to \sim 200 GeV

• precision $\mathcal{O}(0.1\%)$ measurements of the processes $e^+e^- \rightarrow f\bar{f}$

• $\mathcal{O}(1\%)$ for the processes $e^+e^- \rightarrow WW/ZZ \rightarrow 4$ fermions

F. Piccinini (INFN, Pavia)

LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

The power of precision physics

• just including one-loop corrections we gain **sensitivity to high** mass d.o.f.

• "indirect" evidence of top quark, before 1995, from a best-fit to Z-peak data, assuming the validity of SM, (χ^2 depends on $G_F m_t^2$)

the same could be said about m_H

 however, dependence on m_H is only logarithmic because of custodial symmetry

LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

2022: Higgs @LHC

 $x_F \frac{m_F}{\sqrt{W_V}}$ or $\sqrt{K_V} \frac{m_V}{\sqrt{W_V}}$ ATLAS Run 2 $\mathbf{\overline{\Phi}} \kappa_c = \kappa_r$ κ. is a free parameter SM prediction 10-2 10-3 a н 10-4 κ_F or κ_V 1.4 1.2 0.8 10-1 10² 10 1 Particle mass [GeV]

CMS Coll., Nature 607 (2022) 7917

ATLAS Coll., Nature 607 (2022) 7917

Two key SM parameters for electroweak physics

• *M_W*

- $\sin^2 \vartheta^\ell_{eff}$
- opportunity of testing the SM internal consistency
 - calculate them with very high perturbative precision in the SM in terms of precisely known quantities: α , G_{μ} , M_Z , m_f , M_H , $\alpha_s(M_Z)$, $(\Delta \alpha)_h$

• perform <u>direct</u> determinations of both M_W and $\sin^2 \vartheta^{\ell}_{eff}$ through **Drell-Yan** processes

NC u(d) \bar{z}/γ^* $\bar{u}(\bar{d})$ l^-

$$M_W^2 = \frac{M_Z^2}{2} \left\{ 1 + \left[1 - \frac{4\pi\alpha}{\sqrt{2}G_\mu M_Z^2} \left(1 + \Delta r \right) \right]^{1/2} \right\}$$
$$M_W^2 = 80.358 \pm 0.009 \text{GeV}$$

FCC-ee CDR, Vol. 2, 2018

• one loop $\mathcal{O}(\alpha)$ calculation

A. Sirlin, PRD22 (1980) 971

- two loop $\mathcal{O}(\alpha \alpha_s)$
- three loop $\mathcal{O}(\alpha \alpha_s^2)$

A. Djouadi, C. Verzegnassi, PLB195 (1987) 265

L. Avdeev et al., PLB336 (1994) 560;

K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, PLB351 (1995) 331; PRL75 (1995) 3394

• $\mathcal{O}(\alpha^2)$ for large top / Higgs mass

R. Barbieri et al., PLB288 (1992) 95; NPB409 (1993) 105

G. Degrassi, P. Gambino, A. Vicini, PLB383 (1996) 219

A. Freitas et al., PLB495 (2000) 338; NPB632 (2002) 189 M. Awramik, M. Czakon, PLB568 (2003) 48; PRL89 (2002) 241801 A. Onishchenko, O. Veretin, PLB551 (2003) 111; M. Awramik et al., PRD68 (2003) 053004

G. Degrassi, P. Gambino, P.P. Giardino, JHEP 1505 (2015) 154

F. Piccinini (INFN, Pavia)

• exact $\mathcal{O}(\alpha^2)$

Electroweak Physics at Future Accelerators

24 May 2024 8/28

$$\sin^2 \vartheta_{eff}^l = \frac{1}{4} \left(1 - \operatorname{Re} \frac{g_v}{g_a} \right), \qquad \operatorname{Zl}\bar{l} \operatorname{vertex} \sim \bar{l} \gamma^{\mu} (g_v - g_a \gamma_5) l Z_{\mu}$$

- measured at Z peak: 0.23153 ± 0.00016
- uncertainty in the SM calculations: ~ 0.00007
 - at one loop $\mathcal{O}(\alpha)$

A. Sirlin, PRD22, (1980) 971, W.J. Marciano, A. Sirlin, PRD22 (1980) 2695

G. Degrassi, A. Sirlin, NPB352 (1991) 352, P. Gambino and A. Sirlin, PRD49 (1994) 1160

• at higher orders:

• $\mathcal{O}(\alpha \alpha_s)$

A. Djouadi, C. Verzegnassi, PLB195 (1987) 265 B. Kiehl, NPB353 (1991) 567; B. Kniehl, A. Sirlin, NPB371 (1992) 141, PRD47 (1993) 883

A. Djouadi, P. Gambino, PRD49 (1994) 3499

• $\mathcal{O}(\alpha \alpha_s^2)$

L. Avdeev et al., PLB336 (1994) 560;

Chetyrkin, Kühn, Steinhauser, PLB351 (1995) 331; PRL75 (1995) 3394; NPB482 (1996) 213

• $\mathcal{O}(\alpha \alpha_s^3)$

Y. Schröder, M. Steinhauser, PLB622 (2005) 124;

K.G. Chetyrkin et al., hep=ph/0605201; R. Boughezal, M. Czakon, hep-ph/0606232

O(α²) for large Higgs / top mass

G. Degrassi, P. Gambino, A. Sirlin, PLB394 (1997) 188 M. Awramik, M. Czakon, A. Freitas, JHEP0611 (2006) 048

• exact $\mathcal{O}(\alpha^2)$

W. Hollik, U. Meier, S. Uccirati, NPB731 (2005) 213; I. Dubovik et al., arXiv:1906.08815

J. de Blas et al., (Azzi, Farry, Nason, Tricoli, Zeppenfeld Eds.)

CERN-LPCC-2018-03, arXiv:1902.04070

not including the latest CDF ${\cal M}_W$ measurement

• a direct (independent) determination is of great importance

F. Piccinini (INFN, Pavia)

J. de Blas et al., (Azzi, Farry, Nason, Tricoli, Zeppenfeld Eds.)

CERN-LPCC-2018-03, arXiv:1902.04070

not including the latest CDF ${\cal M}_W$ measurement

• a direct (independent) determination is of great importance

F. Piccinini (INFN, Pavia)

relevant observables

• *M*_W

- M_T^W mainly sensitive to QED FSR
- p_{\perp}^{ℓ} sensitive to both QCD ISR and QED FSR
- $\sin^2 \vartheta^\ell_{eff}$
 - integrating over the azimuthal angle the general parameterization of production and decay of a spin-one vector in terms of angular coefficients,

$$\frac{d\sigma}{dq_T^2 \, dy \, d\cos\vartheta} = \frac{3}{8} \frac{d\sigma^{\text{unpol.}}}{dq_T^2 \, dy \, d\cos\vartheta} \left\{ 1 + \cos^2\vartheta + \frac{1}{2}A_0(1 - 3\cos^2\vartheta) + A_4\cos\vartheta \right\}$$

$$\downarrow$$

$$A_{FB}(M, y) = \frac{\sigma^+(M, y) - \sigma^-(M, y)}{\sigma^+(M, y) + \sigma^-(M, y)} = \frac{3}{8}A_4(M, y)$$

crucial common ingredients

- p_{\perp}^Z , p_{\perp}^W (and their ratio), mainly sensitive to ISR QCD and different parton luminositites
- reliable PDF's determinations

• large $p_{\perp} \ (\gtrsim 20 \text{ GeV})$, where pert. th. is reliable

- small p_{\perp} ($\lesssim 20~{
 m GeV}$): ~90% of the cross section
 - resummation of $\log\left(\frac{M_V}{q_\perp}\right)$ is needed
 - sensitivity to the non-perturbative model of the MC Evt Gen

The challenges at the LHC

Farry, Lupton, Pili, Vesterinen, arXiv:1902.04323

by A. Vicini

• control of shapes below 1% scale for $\Delta M_W \sim 10 - 20$ MeV

Strong challenges to theoretical data description

- combined resummation of QCD and QED contributions
- perturbative contributions at least at NNLO QCD and mixed QCD-EW, on top of NLO EW

$$d\sigma = d\sigma_0 + d\sigma_{\alpha_s} + d\sigma_\alpha + d\sigma_{\alpha_s^2} + d\sigma_{\alpha\alpha_s} + d\sigma_{\alpha_s^3} + d\sigma_{\alpha^2} + \dots$$

a history of > 40 years of calculations

from the first NLO QCD calculation (1979)

Altarelli, Ells, Martinelli, 1979

to N3LO QCD

Duhr, Mistlberger, 2022

to the complete mixed NNLO $\mathcal{O}(\alpha \alpha_s)$

Bonciani et al., 2021,2022; Armadillo et al., 2024, Buccioni et al., 2022

- accurate MC generation tools matched to the matrix elements
- control of uncertainties from PDF's

F. Piccinini (INFN, Pavia)

ongoing work within the "precision subgroup" of the LHC EWWG

two main activities

- p_{\perp}^W , p_{\perp}^Z
 - collecting recent progress with different resummation techniques
 - benchmarking numbers by independent groups
- QED/EW issues and their uncertainties, bearing in mind that $\Delta A_{FB} \sim 10^{-4} \Longrightarrow \Delta \sin^2 \vartheta_{eff}^{\ell} \sim 2 \cdot 10^{-4}$ (for inclusive event selection)
 - effect of γ -induced processes
 - quantitative assessment of QED initial-final intereference effects, with benchmarking by different groups
 - input parameter schemes, critical comparisons between different options
 - numerical benchmarking on all the above items among several groups and codes

Another mixing angle: $\sin^2 \theta_W \overline{\text{MS}}$ running

Erler, Ramsey Musolf, PRD72 (2005) 073003

Zhao, Deshpande, Huang, Kumar, Riordan, arXiv:1612.06927

sensitivity at HL-LHC

Amoroso, Chiesa, Del Pio, Lipka, FP, arXiv:2302.10782

- interesting possibility to study the running up to the TeV energy scale at HL-HC
 - in this regime electroweak Sudakov corrections enter the game and their effects should be studied in detail, in order to avoid reabsorbing them in the running

F. Piccinini (INFN, Pavia)

Looking at future H/T/EW factories

- revisit LEP physics with unprecedented statistics
 - at Z pole (~ 0.1% at LEP1)
 - at WW threshold (~ 1% at LEP2)

- · explore for the first time at a leptonic collider
 - *ZH* threshold
 - $t\bar{t}$ threshold

Intrinsic uncertainties

Quantity	FCC-ee	-ee Current intrinsic error		Projected intrinsic error	
M_W [MeV]	$0.5 - 1^{\ddagger}$	4	$(\alpha^3, \alpha^2 \alpha_s)$	1	
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	0.6	4.5	$(\alpha^3, \alpha^2 \alpha_s)$	1.5	
$\Gamma_Z [\text{MeV}]$	0.1	0.4	$(\alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$	0.15	
$R_b \ [10^{-5}]$	6	11	$(\alpha^3, \alpha^2 \alpha_s)$	5	
$R_l \ [10^{-3}]$	1	6	$(\alpha^3, \alpha^2 \alpha_s)$	1.5	

A. Freitas, S. Heinemeyer et al., arXiv:1906.05379

- with present and conceivable loop technology, the intrinsic th. uncertainties will be at the same level of the experimental errors
- new calculation methods under investigation

see e.g. talk by J. Usovitsch at FCC-ee 2024 Physics Workshop, Annecy

Parametric uncertainties on EWPO assuming

- $\,\delta M_Z \sim 0.1~{
 m MeV}\,$ from FCC-ee scan around the z-peak
- $\delta m_t \sim 50~{
 m MeV}$ from the $tar{t}$ FCC-ee scan, using recent NNNLO QCD predictions

M. Beneke et al., Phys. Rev. Lett. 115 (2015) 192001

- and assuming $\delta \alpha_s \sim 10^{-4}$ for the mass translation
- $\delta lpha_s(M_Z) \sim 2 imes 10^{-4}$ induced by the intrinsic $\delta R_l = 1.5 imes 10^{-3}$
- $\delta(\Delta \alpha) \sim 5 \times 10^{-5}$
 - from the present $\delta(\Delta \alpha) \sim 1 \times 10^{-4}$ (F. Jegerlehner, Davier et al., T. Teubner et al.) conceivable with dispersion relation techniques with new data from BESIII and Belle II
 - considering the possibility of direct measurement at FCC-ee using two off-peak points for A_{FB}(µ⁺µ⁻)

Quantity	FCC-ee	future parametric unc.	Main source
M_W [MeV]	1 - 1.5	1(0.6)	$\delta(\Delta \alpha)$
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	0.6	2(1)	$\delta(\Delta \alpha)$
$\Gamma_Z [MeV]$	0.1	0.1	$\delta \alpha_s$
$R_b \ [10^{-5}]$	6	< 1	$\delta \alpha_s$
$R_{\ell} \ [10^{-3}]$	1	1.3	$\delta \alpha_s$

P. Janot, JHEP 1602 (2016) 053

• Th. uncertainties dominated by $\delta \alpha_s$ and $\delta(\Delta \alpha)$

F. Piccinini (INFN, Pavia)

The projection of the $m_t - m_W$ dependence

FCC-ee CDR vol 2

What about primary observables at Z pole?

LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

th. uncertainty should be pushed down by at least a factor of 10 on cross sections and even more on A_{FB} w.r.t LEP

- improved description of ISR QED radiation and IF interference (non-factorizable effects larger than the required precision, contrary to LEP precision)
 - recent progress in electron PDF's at NLL Bertone, Cacciari, Frixione, Stagnitto, 2021-2022
- sensible procedure for extracting EWPO in presence of higher order corrections (beyond one loop)

Blondel, Gluza, Jadach, Janot, Riemann (Eds), CERN-2019-003

- at least complete NNLO accuracy in $e^+e^- \rightarrow f\bar{f}$
- expansion of the amplitude for $e^+e^-\to f\bar{f}$ around the complex pole $s_0=M_Z^2-i\Gamma_Z M_Z$

 $\mathcal{M} = \frac{R}{s - s_0} + S + S'(s - s_0)$ $R \rightarrow \text{known@NNLO} + \text{leading higher order}$ $S \rightarrow \text{known@NLO}$ $S' \rightarrow \text{known@(N)LO}$

- EWPO extraction: $\rightarrow Z f \bar{f}$ vertex at N3LO and leading N4LO
- new simulation tools implementing consistently the perturbative matrix elements and resummation methods

- improved description of ISR QED radiation and IF interference (non-factorizable effects larger than the required precision, contrary to LEP precision)
 - recent progress in electron PDF's at NLL Bertone, Cacciari, Frixione, Stagnitto, 2021-2022
- sensible procedure for extracting EWPO in presence of higher order corrections (beyond one loop)

Blondel, Gluza, Jadach, Janot, Riemann (Eds), CERN-2019-003

- at least complete NNLO accuracy in $e^+e^- \rightarrow f\bar{f}$
- expansion of the amplitude for $e^+e^-\to f\bar{f}$ around the complex pole $s_0=M_Z^2-i\Gamma_Z M_Z$

$$\mathcal{M} = \frac{R}{s - s_0} + S + S'(s - s_0)$$

$$R \rightarrow \text{known@NNLO} + \text{leading higher orders}$$

$$S \rightarrow \text{known@NLO}$$

$$S' \rightarrow \text{known@(N)LO}$$

- EWPO extraction: $\rightarrow Z f \bar{f}$ vertex at N3LO and leading N4LO
- new simulation tools implementing consistently the perturbative matrix elements and resummation methods

- improved description of ISR QED radiation and IF interference (non-factorizable effects larger than the required precision, contrary to LEP precision)
 - recent progress in electron PDF's at NLL Bertone, Cacciari, Frixione, Stagnitto, 2021-2022
- sensible procedure for extracting EWPO in presence of higher order corrections (beyond one loop)

Blondel, Gluza, Jadach, Janot, Riemann (Eds), CERN-2019-003

- at least complete NNLO accuracy in $e^+e^- \rightarrow f\bar{f}$
- expansion of the amplitude for $e^+e^-\to f\bar{f}$ around the complex pole $s_0=M_Z^2-i\Gamma_Z M_Z$

$$\mathcal{M} = \frac{R}{s - s_0} + S + S'(s - s_0)$$

$$R \rightarrow \text{known@NNLO} + \text{leading higher orders}$$

$$S \rightarrow \text{known@NLO}$$

$$S' \rightarrow \text{known@(N)LO}$$

- EWPO extraction: $\rightarrow Z f \bar{f}$ vertex at N3LO and leading N4LO
- new simulation tools implementing consistently the perturbative matrix elements and resummation methods

- improved description of ISR QED radiation and IF interference (non-factorizable effects larger than the required precision, contrary to LEP precision)
 - recent progress in electron PDF's at NLL Bertone, Cacciari, Frixione, Stagnitto, 2021-2022
- sensible procedure for extracting EWPO in presence of higher order corrections (beyond one loop)

Blondel, Gluza, Jadach, Janot, Riemann (Eds), CERN-2019-003

- at least complete NNLO accuracy in $e^+e^- \rightarrow f\bar{f}$
- expansion of the amplitude for $e^+e^-\to f\bar{f}$ around the complex pole $s_0=M_Z^2-i\Gamma_Z M_Z$

$$\mathcal{M} = \frac{R}{s - s_0} + S + S'(s - s_0)$$

$$R \rightarrow \text{known@NNLO} + \text{leading higher orders}$$

$$S \rightarrow \text{known@NLO}$$

$$S' \rightarrow \text{known@(N)LO}$$

- EWPO extraction: $\rightarrow Z f \bar{f}$ vertex at N3LO and leading N4LO
- new simulation tools implementing consistently the perturbative matrix elements and resummation methods

The recent case of luminosity at LEP

Several key measurements at an e^+e^- machine depend on L, e.g.

- σ_Z^0 , the *Z* peak cross section
- light neutrino species from radiative return $(e^+e^- \rightarrow \nu \bar{\nu} \gamma)$
- Γ_Z from the line-shape of $e^+e^- \to f\bar{f}$
- M_W and Γ_W from line-shape of $e^+e^- \rightarrow W^+W^-$ close to threshold
- total cross section for $e^+e^- \rightarrow HZ \Longrightarrow HZZ$ coupling and total Γ_H

The recent case of luminosity at LEP

Several key measurements at an e^+e^- machine depend on L, e.g.

- σ_Z^0 , the Z peak cross section
- light neutrino species from radiative return $(e^+e^- \rightarrow \nu \bar{\nu} \gamma)$
- Γ_Z from the line-shape of $e^+e^- \to f\bar{f}$
- M_W and Γ_W from line-shape of $e^+e^- \rightarrow W^+W^-$ close to threshold
- total cross section for $e^+e^- \rightarrow HZ \Longrightarrow HZZ$ coupling and total Γ_H

The recent case of N_{ν} from Γ_{Z}^{inv} at LEP Z peak (LEP)

assuming lepton universality

(

$$N_{\nu} \left(\frac{\Gamma_{\nu\bar{\nu}}}{\Gamma_{ll}}\right)_{\rm SM} = \sqrt{\frac{12\pi R_l^0}{\sigma_{\rm had}^0 m_Z^2}} - R_l^0 - (3+\delta_{\tau})$$

 $N_{
u} = 2.9840 \pm 0.0082$

$$\delta N_{\nu} \simeq 10.5 \frac{\delta n_{\text{had}}}{n_{\text{had}}} \oplus 3.0 \frac{\delta n_{\text{lept}}}{n_{\text{lept}}} \oplus 7.5 \frac{\delta \mathcal{L}}{\mathcal{L}}$$

 $\frac{\delta \mathcal{L}}{\mathcal{L}} = 0.061\% \Longrightarrow \delta N_{\nu} = 0.0046$

ADLO, SLD and LEPEWWG, Phys. Rept. 427 (2006) 257, hep-ex/0509008

2σ away from SM: hint for BSM? Right handed neutrinos?

The recent case of N_{ν} from Γ_{Z}^{inv} at LEP Z peak (LEP)

assuming lepton universality

$$N_{\nu} \left(\frac{\Gamma_{\nu\bar{\nu}}}{\Gamma_{ll}}\right)_{\rm SM} = \sqrt{\frac{12\pi R_l^0}{\sigma_{\rm had}^0 m_Z^2}} - R_l^0 - (3+\delta_{\tau})$$

 $N_{
u} = 2.9840 \pm 0.0082$

$$\delta N_{\nu} \simeq 10.5 \frac{\delta n_{\text{had}}}{n_{\text{had}}} \oplus 3.0 \frac{\delta n_{\text{lept}}}{n_{\text{lept}}} \oplus 7.5 \frac{\delta \mathcal{L}}{\mathcal{L}}$$

 $\frac{\delta \mathcal{L}}{\mathcal{L}} = 0.061\% \Longrightarrow \delta N_{\nu} = 0.0046$

ADLO, SLD and LEPEWWG, Phys. Rept. 427 (2006) 257, hep-ex/0509008

2σ away from SM: hint for BSM? Right handed neutrinos?

F. Piccinini (INFN, Pavia)

Beam-beam effects studied in detail recently

G. Voutsinas, E. Perez, M. Dam, P. Janot, arXiv:1908.01704

• systematics bias on the acceptance due to e.m. beam-beam interactions \implies underestimate of luminosity by $\sim 0.1\%$

• together with an update on Bhabha cross sections \implies Luminosity

P. Janot, S. Jadach, arXiv:1912.02067

 $N_{\nu}{=}2.9963\pm0.0074$

${f WW}$ threshold: ${f e^+e^-} ightarrow 4$ fermions

- first NLO exact calculation completed in 2005 for $WW \rightarrow 4f$
 - th. accuracy $\lesssim 1\%$ A. Denner et al., PLB612 (2005) 223; NPB 724 (2005) 247
- at present $e^+e^- \rightarrow 4f$ cross sections @NLO accuracy can be calculated with automated tools
- NNLO enhanced contributions because of Coulomb photon effects calculated by means of EFT methods

M. Beneke et al., NPB 792 (2008) 89; S. Actis et al., NPB807 (2009) 1

• th. accuracy $\sim 0.5\%$ $\Delta M_W \sim 3 \text{ MeV}$

Summary and outlook

- Electroweak physics, together with its interplay with flavour and Higgs will be a central theme at future accelerators
- at the (HL-)LHC, electroweak physics will play an important role as precision physics at the electroweak scale as well as in the asymptotic regime of high scales, where Sudakov logarithms become dominant
- In addition to M_W and $\sin^2 \theta_{eff}^{\ell}$, also the running of the weak mixing angle could be tested for the first time at $\mathcal{O}(\text{TeV})$ scales
- the run at $\sqrt{s} \sim M_Z$ of future e^+e^- colliders will require a true jump in precision in the theoretical predictions, with new calculation methods
- At the same time, the luminosity at the Z-peak should reach the target precision of at least 10^{-4} or better