Precision at Future Colliders

Università di Firenze and INFN Firenze

Giuliano Panico

Workshop on Future Accelerators — Corfu — 24/5/2024

Fundamental physics at colliders

The main goal of the collider program is to deepen our knowledge of fundamental physics

In practical terms, this means **testing the SM**

looking for its possible failures **- Somework** evidence of **New Physics** (BSM)

Testing the SM

Complementarity

devising different strategies to test the SM predictions and to cover different types of new physics

Optimality

improve and optimize the new-physics probes to achieve better sensitivity

How to look for new physics

Direct searches:

look for signals of production of new particles

- resonant effects in kinematic distributions
- "bump" on top of a smooth SM background (that can be often extracted from the data)

How to look for new physics

Direct searches:

look for signals of production of new particles

- resonant effects in kinematic distributions
- "bump" on top of a smooth SM background (that can be often extracted from the data)

- new particle must be resonantly produced and must decay to reconstructable final state
- limited by collider energy range

How to look for new physics

Direct searches:

look for signals of production of new particles

- resonant effects in kinematic distributions
- "bump" on top of a smooth SM background (that can be often extracted from the data)

Looking for the tail: Indirect searches

even if we can not directly produce the new particles, we can test their indirect effects

► LEP data at 200 GeV tested new particles with masses up to 3 TeV !

Tails are "universal"

Indirect searches have important advantages

"universality"

- deviations from SM exhibit small number of behaviors dictated by symmetries
- simple parametrization in terms of EFT operators

"model independence"

• captures a huge class of new-physics models

"ubiquity"

- deviations are present also in channels with non-resonant new physics production
- can often be seen also in channels where the final state can not be fully reconstructed

The challenges of indirect searches

Performing indirect searches is a challenging task that requires several key ingredients

- ‣ Accurate theoretical knowledge of the SM and BSM predictions (i.e. small theoretical systematic uncertainty)
	- mangeporter and the compare theoretical expectation with the experimental data
- ‣ Accurate experimental measurements (i.e. small experimental systematic and statistical uncertainty)

in many cases we expect small deviations with respect to the SM

‣ Use of effective search strategies and optimized statistical analysis

Precision measurements at Lepton Colliders

Precision at lepton colliders

Precision measurements at lepton colliders have a long and successful history

example: oblique parameters at LEP

✦ 0.1% precision possible thanks to very low systematic errors

Precision at lepton colliders

Precision measurements at lepton colliders have a long and successful history

example: oblique parameters at LEP

- ✦ 0.1% precision possible thanks to very low systematic errors
- \triangleleft can probe new physics at the TeV scale

Precision at lepton colliders 0.024 0.025 0.012 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.0 No ThPar+Intr Unc. 0*.*039 0*.*022 0*.*01 0*.*011 0*.*0091 0*.*0041 0*.*0019

Future e+e[−] lepton colliders can significantly improve the reach H Consistency of electroweak precision data

◆ Bounds on oblique paranReteres with telecome.

→ Bounds on oblique paranReteres with telecomers one order of magnitude strong exp. projections

Precision at lepton colliders

Indirect probes of new physics can test high energy scales

 HL -LHC: $\Lambda \sim 10$ TeV *O*(1)

ILC - CepC: $\Lambda \sim 20 \text{ TeV}$ $C_{PDC}: A \sim 20 \text{ TeV}$ *O*(1) ^f*^e* [0*.*017*,*0*.*005] [0*.*028*,*0*.*009]

FCC_{ee}: $\Lambda \sim 30 \text{ TeV}$ $FCC_{22}: A \approx 30 TeV$ *O*(3) ^f*^q* [0*.*011*,*0*.*016] [0*.*179*,*0*.*007]

[[]see also talk by Durieux]

10 where *O* induces an energy-growing deformation. The improvement on the *O*⁶ operator simply follows from

Precision at lepton colliders

Indirect probes of new physics can test high energy scales HL -LHC : $\Lambda \sim 10 \text{ TeV}$ ILC - CepC: $\Lambda \sim 20 \text{ TeV}$ FCC_{ee}: $\Lambda \sim 30 \text{ TeV}$ M u $C_{10 TeV}$: $\Lambda \sim 50 - 100 \text{ TeV}$

[see also talk by Buttazzo]

Precision vs direct searches

Precision measurements are competitive with direct detection reach Minimal (Millicharged

 $\chi \sim (1, n,$

Example: Minimal/Accidental dark matter $\lambda = 0$

New EW multiplets at the TeV scale

- accidentally stable (no renormalizable $χ$ SM SM interactions)
- viable DM candidates

 $RS = Real Scalar$ $\pi_p | \rightarrow Rg$ p^{34} \rightarrow $\Lambda_{\text{eff}} \ge$ *** Minimal DM ϵ_{1} energines about center-of-mass energies and luminosities $\epsilon_{2} = \frac{1}{\text{Figheft}}$ $RS = Real Scalar$ CS = Complex Scalar *masses saturating the DM relic density (second column) and the projected* 95% *CL exclusion* MF = Majorana Fermion $DF = Dirac$ Fermion I^{vir} – I apprana Fermion terms of the C_5 and C_7 and C_8 and C_9 (see text) I^{vir} ** Wino DM

 $m_{\nu} \sim 0.1 \text{ eV}$ -

 $\lambda = 0$

Elirelli, Fornengo, Strumia '05; ….
Del Nobile, Nardecchia, Panci 1151 $\frac{1}{2N}$ ¹ a_N $\frac{1}{5}$ SM · S Del Nobile, Nardecchia, Panci 15; Di Luzio, Gröber e Λ al χ 15; Mitridate, Redi et al. '17]

 $\lambda \ll 1$

 $\mathcal{O}_6 =$ *c*6 Λ^2_{eff} $q\bar q$

 $\begin{array}{ccc} (1,7,\epsilon)_{\text{CS}} & 16 \\ (1,7,\epsilon)_{\text{DE}} & 16 \end{array}$ $\begin{array}{ccc} \tau_p \gtrsim 10^{34} \text{ yr} \longrightarrow & \Lambda_{\text{eff}} \end{array}$

*c*5

 $m_\nu \sim 0.1 \,\, \text{eV} \quad \longrightarrow \stackrel{\iota\eta}{ind\!\ell}$ eated Figure 1: *triplet are the measurement indicated here as a double horizontal red band (inner for* 1 *uncertainty, outer for* 2*), deter-* $\mathcal{O}_5 =$ $\ell\ell$ *in square brackets stand for a mass interval exclusion. The cases where the DM hypothesis could* $\emph{triplet}$ and $\emph{triplet}$ and $\emph{triplet}$ and $\emph{triplet}$ and $\emph{triplet}$ and \emph{replet} a

Minimal dark matter \mathbf{r} and \mathbf{r} is a promising approach, complementary to direct search searches searches searches searches 2 Physics case for new EW multiplets pertaining to the precise nature of the discovered new states and help point to yet new mass scales for the $f(x) = \sum_{i=1}^n |x_i - y_i|$

- ✦ Universal corrections to 2 → 2 fermion scattering rate of outgoing background at CLIC enables unprecedented searches for dark matter created in the
	- ✦ Testable deviations in angular distributions

2.1 Matsumoto et al. '17;
Dilluzio Gräber GB '197 Figure 1: *Corrections to the di-fermion (di-muon) production process from a fermionic EWIMP.* [Harigaya et al. '15; The operator involving three field strength tensors of *W^a* Di Luzio, Gröber, GP '18]
'

ϵ ach for large multiplets at CLIC *e* multiplets at CLI Indirect probes can extend direct detection reach for large multiplets at CLIC \mathbb{R}

Lagrangian Esee talks by Mahbubani and Panci for reach of direct searches]

Minimal dark matter \mathbf{r} and \mathbf{r} is a promising approach, complementary to direct search searches searches searches searches 2 Physics case for new EW multiplets pertaining to the precise nature of the discovered new states and help point to yet new mass scales for the $f(x) = \sum_{i=1}^n |x_i - y_i|$

- ✦ Universal corrections to 2 → 2 fermion scattering rate of outgoing background at CLIC enables unprecedented searches for dark matter created in the
	- ✦ Testable deviations in angular distributions

absolute limit from Accidental Dark Matter @ CLIC [Harigaya et al.'15;
Matsumoto et al.'17;

direct searches

2.1 Matsumoto et al. '17;
Dilluzio Gräber GB '197 Figure 1: *Corrections to the di-fermion (di-muon) production process from a fermionic EWIMP.* [Harigaya et al. '15; The operator involving three field strength tensors of *W^a* Di Luzio, Gröber, GP '18]
'

 ϵ ach for large multiplets at CLIC *e* multiplets at CLI Indirect probes can extend direct detection reach for large multiplets at CLIC \mathbb{R}

Lagrangian Esee talks by Mahbubani and Panci for reach of direct searches]

Precision measurements at Hadron Colliders

New ideas allow us to exploit also hadron colliders!

New ideas allow us to exploit also hadron colliders!

✦ sizeable systematic errors in many cases do not allow for pole precision measurements

New ideas allow us to exploit also hadron colliders!

- ✦ sizeable systematic errors in many cases do not allow for pole precision measurements
- ✦ however we can exploit the high energy reach

New ideas allow us to exploit also hadron colliders!

- ✦ sizeable systematic errors in many cases do not allow for pole precision measurements
- ✦ however we can exploit the high energy reach

Ruderman, Torre, Wulzer '16]

New ideas allow us to exploit also hadron colliders!

- ✦ sizeable systematic errors in many cases do not allow for pole precision measurements
- ✦ however we can exploit the high energy reach

◆ key point: deviations from SM typically grow with energy

$$
\frac{\mathcal{A}_{\text{SM+BSM}}}{\mathcal{A}_{\text{SM}}} \sim 1 + \# \frac{E^2}{\Lambda^2}
$$

0.1 % at 100 GeV \longrightarrow 10 % at 1 TeV *LEP energy LHC energy* \rightarrow LHC can match LEP sensitivity exploiting the **high energy** reach

Proof of Principle: Di-lepton DY

Drell-Yan production ($\ell^+ \ell^-$ or $\ell \nu$)

- \rightarrow large cross section \rightarrow good statistics
- ‣ small theory and exp. systematic uncertainty

Proof of Principle: Di-lepton DY

Drell-Yan production ($\ell^+ \ell^-$ or $\ell \nu$)

- \rightarrow large cross section \rightarrow good statistics
- ‣ small theory and exp. systematic uncertainty

Simple BSM effects: **oblique parameters**

✦ Deformation of the gauge propagators from dimension-6 operators

$$
\frac{gg'\hat{S}}{16m_{\rm w}^2}(H^{\dagger}\sigma^aH)W_{\mu\nu}^aB^{\mu\nu} - \frac{g^2\hat{T}}{2m_{\rm w}^2}|H^{\dagger}D_{\mu}H|^2 - \frac{W}{4m_{\rm w}^2}(D_{\rho}W_{\mu\nu}^a)^2 - \frac{Y}{4m_{\rm w}^2}(\partial_{\rho}B_{\mu\nu})^2
$$

LEP bounds at the 0.1% level

Proof of Principle: Di-lepton DY

Drell-Yan production ($\ell^+ \ell^-$ or $\ell \nu$)

- \rightarrow large cross section \rightarrow good statistics
- ‣ small theory and exp. systematic uncertainty

Simple BSM effects: **oblique parameters**

✦ Deformation of the gauge propagators from dimension-6 operators

Oblique parameters

- ◆ LHC can significantly surpass LEP sensitivity on W and Y! $\sqrt{2}$ $\frac{1}{2}$
	- 8 TeV runs competitive with LEP $\begin{bmatrix} 1 \end{bmatrix}$

Oblique parameters

- ✦ LHC can significantly surpass LEP sensitivity on W and Y!
	- ‣ 8 TeV runs competitive with LEP
	- ‣ high-luminosity 13 TeV will improve the bounds by one order of magnitude

Oblique parameters and muon channel distributions and muon channel distributions and muon channel distribution Darameters **Darameters** components, and they are in agreement with sensitivity studies performed using pseudodata instead of the experimental data the experimental data themselves. The outcome of the fit and the region allowed

- ✦ LHC can significantly surpass LEP sensitivity on W and Y!
	- ‣ 8 TeV runs competitive with LEP
	- ‣ high-luminosity 13 TeV will improve the bounds by one order of magnitude

Oblique parameters

- sensitivity on W and Y! ◆ LHC can significantly surpass LEP solid: 13TeV, 0.3ab-1 dashed: 13TeV, 3ab-1
	- 8 TeV runs competitive with LEP
	- 1< ال
ً • high-luminosity 13 TeV will improve the bounds by one order of magnitude
- ◆ Future high-energy hadron colliders can tighten further the bounds $-+1$ 5) i
	- \triangleright FCC₁₀₀ can reach 10⁻⁵ precision W⨯10⁴

Comparison with future colliders

Bounds on W and Y at different colliders

✦ HL-LHC comparable with TLEP

✦ FCC100 much better than ILC 500 GeV and CLIC 3 TeV

Testing the Higgs dynamics

To test the Higgs dynamics we need to probe additional channels

Testing the Higgs dynamics

To test the Higgs dynamics we need to probe additional channels

 \triangleleft di-boson production can probe deviations in the Higgs couplings

$$
\mathcal{O}_W = (H^{\dagger} \sigma^i \overleftrightarrow{D}_{\mu}^H)(D^{\nu}W_{\mu\nu})^i
$$
\n
$$
\mathcal{O}_W = (H^{\dagger} \sigma^i \overleftrightarrow{D}_{\mu} H)(D^{\nu}W_{\mu\nu})^i
$$
\n
$$
\mathcal{O}_{HW} = (D_{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i
$$

More challenging than di-lepton

- ‣ energy-growing new physics effects confined to subleading helicity channels (longitudinal) $($ \rightarrow interference resurrection via differential measurements)
- ‣ more complex final states

 \dots but **more interesting** \rightarrow can be used to test a larger set of BSM theories

WZ production: LHC

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^\dagger\sigma^a\overleftrightarrow{D}_\mu H)$

[Franceschini, GP, Pomarol, Riva, Wulzer '17]

- Non-trivial analysis: longitudinal channels small \rightarrow exploit transverse zeroes
- + Big improvement with respect to LEP

WZ production: LHC

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^\dagger\sigma^a\overleftrightarrow{D}_\mu H)$

[Franceschini, GP, Pomarol, Riva, Wulzer '17]

- Non-trivial analysis: longitudinal channels small \rightarrow exploit transverse zeroes
- Big improvement with respect to LEP
- Accuracy plays an important role for the BSM reach
	- weakly coupled new physics only accessible with low systematics («100%)

WZ production: Future colliders

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^\dagger\sigma^a\overleftrightarrow{D}_\mu H)$

- additional improvement possible at future colliders
- reach at FCC-hh comparable with CLIC see [Ellis, Roloff, Sanz, You '17]

WZ Production and Universal Theories

Test universal theories in WZ production channel [Franceschini, GP, Pomarol, Riva, Wulzer '17]

 \blacklozenge better determination on trilinear gauge couplings (δg_1^Z) with respect to global fit at LEP

WZ Production and Universal Theories

- \blacklozenge better determination on trilinear gauge couplings (δg_1^Z) with respect to global fit at LEP
- ✦ LHC and LEP probe independent operators
	- correlations can exist in specific theories (eg. composite Higgs $\widehat{S} \simeq \delta g_1^Z$)

High luminosity and rare channels

High integrated luminosity \longrightarrow very rare but very clean channels

High luminosity and rare channels

High integrated luminosity \longrightarrow very rare but very clean channels

Example: VH production

Different decay channels: **Figure 1. Represent of a way of the leftmost of the leftmost of a way of a way of the leftmost order. The leftmost of the leftmost order. The leftmost order of** diagram shows the SM process while the gray circles in the other diagrams represent one insertion one insertion

- $\rightarrow H \rightarrow bb \rightarrow$ large cross section, but sizeable background
- \rightarrow $H \rightarrow \gamma \gamma$ \rightarrow tiny cross section (only accessible at FCC-hh), but very clean

VH at FCC-hh

[Bishara, Englert et al. '22]

- \blacktriangleright *VH*(\rightarrow *bb*) and *VH*(\rightarrow *γγ*) provide similar sensitivity
- ✦ Bounds competitive with WZ

VH at FCC-hh

[Bishara, Englert et al. '22]

- \blacktriangleright *VH*(\rightarrow *bb*) and *VH*(\rightarrow *γγ*) provide similar sensitivity
- ◆ Bounds competitive with WZ

VH at FCC-hh

[Bishara, De Curtis et al. '20]

Zh ! (⌫⌫¯*/*`⁺`) and *W h* ! `⌫ at FCC-hh with 30 ab¹ for di↵erent systematics and -CC-hh can match (or surpass) sensitivity at e^+e^- colliders bound can matter for sarpass, sonstant, at σ comders FCC-hh can match (or surpass) sensitivity at e+e− colliders *Higgs trilinear coupling*

Theoretical Motivations

Measuring the **Higgs self-couplings** is essential to understand the structure of the Higgs potential

$$
\mathcal{L}=-\frac{1}{2}m_h^2h^2-\lambda_3\frac{m_h^2}{2v}h^3-\lambda_4\frac{m_h^2}{8v^2}h^4
$$

‣ Current measurements only tested locally the minimum of the Higgs potential (Higgs mass and VEV, i.e. quadratic approximation of the potential)

$$
V(H) = \lambda_4 \left(|H|^2 - v^2 \right)^2
$$

‣ Directly measuring the Higgs self-interactions gives us direct evidence of the full structure of the Higgs potential

[See Di Micco et al. '19] Fig. F and the calculate as a function of F is a function of F ✦ HL-LHC can test the Higgs trilinear with O(50%) precision

 \sim 10 signal. The background and SM \sim $-0.43 \leq \delta \kappa_{\lambda} \leq 0.5$ at 68% C.L.

Good sensitivity at low energy in HZ (and $\nu\bar{\nu}H$) channels

h

h

 $\bar{\nu}_e$

 ν_e

Expected precision from 1-parameter fit (1*σ* bounds)

[Di Micco et al. '19]

Expected precision from global fit (1*σ* bounds)

TLC 500 4.0
TLC 500 4.0

 $\frac{\text{hic }1000}{\text{CLIC }380}$ a.0

 $\text{CLIC } 1500$ $\text{CLIC } 3000$ 5.0

plus a varying a varying a fit that includes that includes the possibility of other new physics effects modell
That includes the possibility of other new physics effects modelled by the possibility of other new physics ef

[Di Micco et al. '19]

ILC 250 2.0 ILC 500 4.0 ILC 1000 8.0 CLIC 380 1.0 CLIC 1500 2.5 CLIC 3000 5.0

Expected precision from global fit (1*σ* bounds)

 $\frac{\text{hic }1000}{\text{CLIC }380}$ a.0

 $\text{CLIC } 1500$ $\text{CLIC } 3000$ 5.0

plus a varying a varying a fit that includes that includes the possibility of other new physics effects modell
That includes the possibility of other new physics effects modelled by the possibility of other new physics ef

ILC 1000 8.0 CLIC 380 1.0 CLIC 1500 2.5 CLIC 3000 5.0

High-energy e+e− colliders

Two main channels ZHH and $\nu\bar{\nu}HH$

High-energy e+e− colliders

High-energy e+e− colliders

Precision reach at ILC and CLIC

Expected precision from HH production channels (1*σ* bounds)

 \sim theoretical framework (in particular the renormalization procedure) introduced introduced introduced in \sim

h 32

 \mathbf{r}

Muon collider

collider with 10 ab¹ [16], compared with HL-LHC. The effect of measurements from a 250 GeV *e* • High-energy muon collider can be competitive with FCC-hh eq. (1) for all energies, apart from *^E*cm =3 TeV, where doubled luminosity (of 1.8 ab¹

Conclusions and Outlook

Conclusions and outlook

Precision measurements can provide promising information at HL-LHC and future colliders

- complements direct searches
- ‣ can extend reach beyond collider energy threshold (eg. e+e− machines)

Can be performed both at lepton and at hadron colliders

Challenging aspects:

- ‣ good statistics (especially in the high-energy tails)
- ‣ good control on theoretical and experimental systematics

Conclusions and outlook

Crucial aspect: approaching optimality

‣ important to fully exploit data and reach maximal sensitivity

Challenging aspects:

- ‣ huge amount of data
- information 'hidden' in high-dimensional kinematic distributions
- ‣ need for simultaneous fit of several quantities (eg. PDF determination together with fit of SMEFT operators)

Promising approaches through machine learning