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Two di↵erent approaches to quantum computing

‘Gate’ based quantum computing
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Type Discrete Gate Quantum Annealer Photonic devices

Property
Universal (any 

quantum algorithm 
can be expressed)

Not universal — 
certain quantum 

systems

Also universal — 
continuous variable 

model

Where? IBM - Qiskit 
~127 Qubits

DWave - LEAP 
~7000 Qubits

Xanadu, 
~8 Qumodes - but 
millions in principle

What?

How?

Background:	Quantum	compuKng	has	a	long	and	disKnguished		history	but	is	
only	now	becoming	pracKcable.	Three	(at	least)	types	of	Quantum	Computer:

Feynman	’81,		Zalka	'96,	
Jordan,	Lee,	Preskill	…	see	
Preskill	1811.10085	for	
review.



•	In	this	talk	I	will	argue	that	photonic	devices	(and	related	conKnuous	variable	
quantum	computers)	are	the	natural	devices	for	simulaKng	QFT	(i.e.	performing	full	
Hamiltonian	evoluKon)	

•	I	will	also	show	how	we	can	already	solve	QM	on	these	devices	very	easily



1. Quantum	mechanics	with	qubits:	e.g.	tunnelling	

2. The	trouble	with	qubits:	How	would	we	do	QFT?	

3. Photonic	devices	-	and	Quantum	Mechanics	

4. How	would	we	do	QFT	on	a	photonic	computer?

Overview



1.	Quantum	mechanics	with	qubits:	e.g.	
tunnelling



•Operate	on	the	Bloch	sphere:	basically	measuring																																								
where	 	

•	Each	 	denotes	a	single	qubit		

•	As	an	example	consider	tunnelling	with	a	quantum	annealers:	based	on	the	
general	transverse	field	Ising	model	making	it	natural	for	field	theories		
(Kadowaki,	Nishimori):

σZ
i |0⟩ = |0⟩, σZ

i |1⟩ = − |0⟩

i

Why we focus on continuous time

|0i

|1i

| i =
1p
2
(|0i + |1i)

Classical bits: fundamentally discrete ! 0 or 1, nothing in between

Lends itself to a discrete digital description: bit flips either happen
or they don’t

Quantum bits: continuous rotations are possible

Breaking operations up into discrete chunks is not natural ! an
(exact) bit flip is just as hard as any other rotation

Bonus feature: applied gate based algorithms similar to continuous time
operations ! cont. time algorithms have implications for gate based

II. SET-UP OF A SIMPLE PROBLEM

A useful potential to focus on is the following quartic one:

V (�) =
�

8
(�2 � v2)2 +

✏

2v
(�� v) . (1)

The potential is shown in Fig.1. On the left we show the “thick-wall” regime where ✏ is large. This limit is when the
barrier is close to disappearing (or has disappeared altogether) and the walls become comparable in size to the bubble
itself. For numerics we choose v = � = 1 and ✏ = 0.3. The opposite “thin-wall” regime (for which we choose ✏ = 0.01)
is the limit in which ✏ is small and is approximately the difference in vacuum energy density between the false and
true minima.

We are interested in the situation where the system starts in the false vacuum, and our objective is to study the
rate per unit volume of tunnelling out of it. The analytic calculation of this rate is a classic problem, but it is worth
briefly recapping it in order to recast the result in a form that can easily be compared with the results from a quantum
simulation. It proceeds as follows.

First let us remove the extraneous constant term by working with U(�) = V (�) � V (�+), which has U(�+) = 0.
Using the well-known technique of [42–45], the bubble profile is given by finding a “bounce solution” to the following
differential equation:

d2�

d⇢2
+

c

⇢

d�

d⇢
= U 0 , (2)

where in four dimensions, c takes the value 2 or 3 for a finite temperature O(3) symmetric bubble, or a purely quantum
tunnelling O(4) symmetric instanton, respectively. The required “bounce” is subject to the boundary condition that
d�/d⇢ = 0 as ⇢ ! 0,1, which determines the starting value �(0), which is the field-value at the centre of the radially
symmetric bubble or instanton (also called the escape-point). The resulting �(⇢) profile for our particular choice of
parameters is shown in Fig. 2.

Once such a solution is determined, the tunnelling rate per unit volume can be estimated from its classical action:

�4 = A4 e
�S4[�] ,

�3 = A3 Te
�S3[�]/T , (3)

respectively. The quantum determinant prefactors A4, A3 are notoriously difficult to calculate, but for our purposes
it will be sufficient to focus on the influence of the classical action.

The expressions for the action can be expressed in simple analytic terms in the two limits. In the thick wall limit
the bounce action can be accurately approximated by expanding around the value ✏ = ✏0, above which the barrier
disappears (i.e. when the discriminant vanishes), which gives a cubic potential about the false vacuum. This critical
value corresponds to ✏0 = 2�a4/3

p
3. Defining ⇢ =

p
2/3(1� ✏/✏0), the location of the minima is

�+

v
=

1 + ⇢p
3

+O(⇢2) ,

��
v

= � 2p
3
+O(⇢2) . (4)

Then following the rescaling procedure of [45], the tunnelling actions for the O(4) and O(3) symmetric solutions can
be written in terms of standard actions:

S4 =
3⇢

�
S0
4 ; S0

4 = 91

S3 =
3a⇢3/2

�1/2
S0
3 ; S0

3 = 19.4 (5)

The thin-wall regime is somewhat easier to study numerically, and semi-analytically the actions can be expressed in
terms of the action S1 for the one-dimensional c = 0 problem 1:

S4 =
27⇡2S4

1

2✏3
; S3 =

16⇡3S3
1

3✏2
. (6)

1 This is also the energy of the physical “domain wall” solution, but for reasons that will become apparent it would be confusing to use
this terminology.

3

These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�X
i , (9)

where �Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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Discrete	qubit	approach



•Example:	how	many	verKces	on	a	graph	can	we	colour	so	that	none	touch?	NP-hard	problem.

Example of Ising problem mapping ?

Have:
I Binary variables Zi 2 {�1, 1}
I Minimisation over Hamiltonian made of single and pairwise

terms HIsing =
P

i hiZi +
P

j>i Ji ,jZiZj

Want:
I Maximum independent set: how many vertexes on a graph

can we colour so none touch? ! NP hard

Method:

1. For an edge between vertex i and j add Zi + Zj + ZiZj !
penalizes colouring (Z = 1) adacent vertexes

2. Add ��Zi to reward coloured vertexes (0 < � < 1)
?
Taken from the notes of a physics level 3 computing project I wrote, full

notes at: http://nicholas-chancellor.me/QOpt project final.pdf

•Let	non-coloured	verKces	have	 		and	coloured	ones	have	 																		σZ
i = − 1 σZ

i = + 1

•Add	a	reward	for	every	coloured	vertex,	and	for	each	link	between	verKces	 		we	add	a	penalty	if	
there	are	two	+1	eigenvalues:

i, j

Commonly	with	annealers	encode	network	problems	in	the	general	Ising	model

<latexit sha1_base64="ZJHqfrgxlGhb+1sqZXTryfmTYiI=">AAACZXicbVFNb9QwEHVCgWWhsG1RLxwYsUIqalklqAUuSBVceuihSGxbsV6iiePdumsnkT1BWqXhR3LrtRf+Rr0fUqFlJMtv3szz2M9pqZWjKLoMwnsr9x88bD1qP36y+vRZZ2392BWVFbIvCl3Y0xSd1CqXfVKk5WlpJZpUy5N08mVWP/kprVNF/o2mpRwaHOdqpASSp5LOBdTcIJ0J1HDQfHrLD702Q+CuMonymxobTNSP77C94OqaO2FVSY6mWgK3BvzsicyA70CJyrrmF/Ba7ZzzBhrYirdvznhzk537DJJON+pF84C7IF6CLlvGUdL5zbNCVEbmJDQ6N4ijkoY1WlJCy6bNKydLFBMcy4GHORrphvXcpQZeeyaDUWH9ygnm7N+KGo1zU5P6zpkj7nZtRv6vNqho9HFYq7ysSOZiMWhUaaACZpZDpqwUpKceoLfO3xXEGVoU5D+m7U2Ibz/5Ljh+14vf9/a+7nb3Py/taLEX7BXbYjH7wPbZATtifSbYVdAK1oL14E+4Gj4PNxetYbDUbLB/Inx5DajOtj8=</latexit>

H = �⇤
X

i

�Z
i +

X

linked pairs {i,j}

(1 + �Z
i )(1 + �Z

j )



•Electroweak	phase	transiKon	(Higgs	mechanism)		

•InflaKon	

•Baryogenesis	(creaKon	of	(anK)maier	asymmetry)	

•Instanton	processes:	

Instead	aim	to	model	QFT	processes:	e.g.	tunnelling
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U(�) =
3

4
tanh2 �+ tanh2(�� v)� 1

If	we	begin	in	the	false	minimum	on	the	leD,	the	system	should	be	able	to	tunnel	to	the	lower	one	on	the	right.

e.g.	Tunnelling	out	of	the	false	minimum	of	this	potenFal	(where	 	is	the	single	space	coordinate):ϕ



Encode	 	by	discreKsing	its	value	using	 	qubits:ϕ N
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
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2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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Represent	it	as	a	point	on	a	spin	chain	 	domain	wall	encoding:⟹

-1 -1 -1 -1 -1 -1 -1+1+1+1+1+1+1

We	can	translate	any	spin	chain	back	to	the	corresponding	field	value	using	

H =
N
∑

ℓm=1

N
∑

ij=1

(

δℓm(δ(i+1)j + δ(i−1)j) + δij(δ(ℓ+1)m + δ(ℓ−1)m)
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i σ
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100100
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_
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� j

PosiKon

Chancellor;																										
SAA,	Chancellor,	Spannowsky



To	add	the	potenKal	 	we	then	add	a	contribuKon	to	the	linear	 	couplingsU h
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only	the	frustrated	
link		contributes



Results:	(reverse	anneal	with	200	qubits)	we	see	tunnelling	—	e.g.	at	 	v = 2.5

Figure 6: The probability density of the SHO with N = 200
and with sq = 0.7 after time t = 75µs and with  = 0.06.
The ground-states are measured with an interval �� = 13.
The probability density approximates the red line, which cor-
responds to � ⌘ ~2/2m⌘2

0 = 0.33.

we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence
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after ttunnel = 50, 100, 150µs.
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0.7 after ttunnel = 100µs.

in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Never-
theless the observed behaviour provides support for the
presence of tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
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with either a minimum at either exactly the same height as
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ever the difference in energies (EB1 �EB2) is of the same
order as the activation energy Ea itself. Therefore a sig-
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we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.
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we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.
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We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence
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2.How	would	we	go	about	doing	QFT	rather	than	
QM?
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Back	to	the	domain	wall	encoding	:	to	make	this	a	QFT	add	a	discreKsed	spaceKme	coordinate,	r:	
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Everything	done	for	QM	is	then	trivially	extended	in	the	 	spaceKme	index	…ℓ
except	kineKc	space-derivaKve	terms	which	are	as	follows:

which correctly gives �(⇢`) of Eq.(15) in the event that we take U(�) = � (because we know that �Z
`N = 1). In an

action with arbitrary c 6= 0, we would need to evaluate h(U) ⌘
R
d⇢⇢cU , so that h`N+i would acquire a prefactor of

(`⌫)c. However as we will see later the c 6= 0 problem cannot actually be done using the action alone, but one instead
has to use similar methods to solve the PDE in Eq.(2).

Up to this point the M -factors have been inert and there has been no coupling between the fields at different
positions in ⇢`. At this stage the system would simply relax to M decoupled values of �(⇢`) that minimise U in
either one of its two vacua. This changes once we include the derivatives in the kinetic terms, which contribute to the
bilinear interactions, J . These terms are discretised in ⇢ as
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2 , (21)

where ⌫ = �⇢/M scales so as to keep �⇢ constant, and where for convenience we omit the factor 2⇡2. Inserting the
discrete representation of the field values as well using Eq.(15), we find
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Hence the bilinear terms receive the additional contribution:
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or in other words
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�
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�
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(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form

h(BC)
N`+j =

(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.
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⇠2

8⌫

0

B@

1 �1
�1 2 �1

�1 2 �1

. . .
�1 2 �1

�1 1

1

CA

`m

, (23)

or in other words

J (QFT)
`N+i,mN+j =

⇠2

8⌫

�
2�`m � �`(m+1) � �(`+1)m

�
. (24)

(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form

h(BC)
N`+j =

(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.

6

But	now	we	find	a	huge	number	of	couplings,	or	equivalently	a	huge	number	of	gates	on	a	
discrete	gate	device
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Advantages:		

Can	encode	many	field	theories	using	similar	discreKsaKon	

Can	observe	`vacuum	decay’	processes	—	requires	a	coherent	quantum	tunnelling	

Can	also	perform	this	on	gate	quantum	computers	

e.g.	Jordan,	Lee,	Preskill;	Jordan,	Krovi,	Lee,	
Preskill;	Kclo,	Savage

Taking	stock	…

Disadvantages:		

Decoherence	becomes	criKcal	aner	few	nanoseconds	on	annealer	(such	short	Kmes	are	now	becoming	possible)		

For	QFT	number	of	qubits	becomes	huge	due	to	discreKsaKon	of	fields		

Gate	depth	becomes	huge	(on	any	discrete	gate	system)	due	to	all	the	kineKc	cross	terms	(billions	to	do	a	3d	lapce	

with	disc’n	of	10)	

(basically	every	qubit	describing	field	at	 	is	connected	to	every	qubit	of	the	neighbouring	space	points)	x

Is	there	a	beWer	way??	…



3.Photonics	for	Quantum	Mechanics



Photonics	work	at	room	temperature.	It	relies	on	the	manipulaKon	of	opKcal	circuits	using	opKcal	
equipment	such	as	interferometers.	States	can	be	stored	using	opKcal	fibres	(c.f.	RAM)	

The	quantum	circuits	are	defined	by	the	conKnuous	variables	(CV)	that	is	the	 	of	quantum	harmonic	
oscillators.	

e.g.	Borealis	and	X8	chips	of	Xanadu	…		

Qubit-based	computaKons	can	be	embedded	into	the	CV	picture	(e.g.,	by	using	the	Goiesman-Kitaev-
Preskill	(GKP)	embedding),	so	the	CV	model	is	as	(at	least	as)	computaKonally	powerful	as	its	qubit	
counterparts.	

qubit:	

qumode:		

Basic	object	is	the	SHO	vacuum	state	and	it’s	excitaKons	…	Wigner	funcKon	looks	like:	

x, p



Some	simple	operaAons:	

Squeezing	Gate	S:																																																																	RotaKon	Gate	R:	

Controlled-X:																																																																	==>																																																																	



Try	some	simple	examples



UlKmately	we	would	like	to	be	able	to	do	this	to	an	arbitrary	in	state		…

for	any	in-state.	But	unless	the	hamiltonian	is	trivial	(i.e.	quadraKc)	this	will	require	non-Gaussian	
gates.		

An	evolver-state	is	a	resource	state	that	we	`factor’	onto	the	in-state	to	make	it	evolve	in	Kme.	It	is	an	
ancilla	qumode	with	coordinate	 ,	which	looks	like	this:y

where	 	is	the	part	of	the	Hamiltonian	that	is	non-quadraKc	-	(e.g.	quarKc	potenKal),	and	 	is	
a	wavefuncKon	that	looks	like	a	top-hat	(for	reasons	that	will	become	clear).	

H1(x) ⟨y |ϕ0⟩

<latexit sha1_base64="JzdqEpru0is/N3RLoYbe+V3yk54="></latexit>

hy|�i = hy|e�iH1(ŷ/q)�t|�0i

Measurement	based	approach	for	Schrödinger	evoluAon:	the	principle	of	evolver-states



Using	homodyne	measurement	for	Schrödinger	evoluAon:	the	principle	of	evolver-states

`noise’	funcKon	which	is	roughly	constant	if	we	choose	the	top-hat	

PNR = 1

PNR = 2

|0i D0 S0

BS0 BS2

|0i D1 S1

BS1

|0i D2 S2 S3 | i

Interferometer

PNR = 1

PNR = 2

|0i D0(✓i) S0(✓i)

BS0(✓i) BS2(✓i)

|0i D1(✓i) S1(✓i)

BS1(✓i)

|0i D2(✓i) S2(✓i) S3(✓i) | i

Displace Squeeze Interferometer Squeeze Post-select

Non-Gaussian

State

PNR = n

PNR = m

|0i D0(✓i) S0(✓i)

BS0(✓i) BS2(✓i)

|0i D1(✓i) S1(✓i)

BS1(✓i)

|0i D2(✓i) S2(✓i) |�i

Displace

Layer with parameters ✓i

Squeeze Interferometer Post-select

Non-Gaussian

State

y = 0|�i S(r)

| ini R(��t) | outi

Squeeze

Single Trotter Step

CX Homodyne

Rotate

1
Figure 4: Evolver-gadget to evolve through a single Trotter step. Here |�i is the resource

state which is set according to Eq. (3.17), and which in Section 6 will be machine learned

using a measurement-based quantum algorithm.

a shift y ! y + sx in the coordinates of the evolver-function, and then implementing a

squeezing S(r; ŷ) with parameter r chosen such that

e
r
s = q . (3.12)

Finally we make a rotation R(��t) on the | i state and then the cast-state is collapsed

by making a homodyne measurement of y = 0. The whole layout is shown in the circuit

diagram of Fig. 4.

Let us consider the e↵ect of this train of operations. To be explicit let us denote the

incoming state | ini combined with the evolver-state with a single ket as | outi. Thus

the output on the two qumodes after our train of operations and before we make any

measurements can be written

hx, y| outi = hy|hx|R(��t; x̂) CX(�s; x̂, ŷ) S(r; ŷ) f(ŷ/q) |�0i| ini . (3.13)

According to Eqs. (2.3) and (2.10), performing the various manipulations corresponding

to these gates and then performing the Homodyne measurement y = 0 with the choice of

parameters in Eq. (3.12) finally yields

hx| ini = exp

✓
�

i

2
(p̂2 + x̂

2)�t

◆
e
�iH1(x̂) �t

he
r
sx|�0i hx| ini . (3.14)

This is the desired evolution we were seeking, which corresponds to a single Trotter step,

up to the ‘noise’-factor he
r
sx|�0i ⌘ hxq|�0i.

We now reach the crux of the matter, namely what is the optimal form of the resource

function hy|�0i in order to suppress the noise? Clearly we would like to reduce the e↵ect

of this noise function which can be done in two ways: either choosing a large value of q,

and/or choosing a flat resource function. As an ideal we can consider the top-hat function,

hy|�0i =

(
1
L

|y| < L/2

0 |y| > L/2 .

– 8 –
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hx| outi = exp
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2
(p̂2 + x̂2)�t
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Evolver	-	“Gadget”:	

SAA,	Spannowsky,	Williams



Evolving	QM	using	an	evolver	state:	example SAA,	Spannowsky,	Williams



Exact = dotted 
Photonics = solid
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Evolving	QM	using	an	evolver	state:	example SAA,	Spannowsky,	Williams



Exact = dotted 
Photonics = solid
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Evolving	QM	using	an	evolver	state:	example SAA,	Spannowsky,	Williams



KL-divergence	for	different	Fock	truncaKons:	

Evolving	QM	using	an	evolver-state:	example
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Fock Truncation
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Figure 9: Kullback-Leibler (KL) divergence between the quantum simulation and exact

calculation for di↵erent times and Fock truncations. The KL divergence quantifies the

disparity between probability distributions. After a su�cient cuto↵, the KL divergence

exhibits a monotonic behaviour with time.

Finally the spatial derivative @r�k can be approximated by discretised derivative

(@r'k)
2(r) =

('(rk + a) � '(rk))2

a2

⌘
(x̂k+1 � x̂k)2

a2
. (5.6)

Thus we may rewrite the space-discretised field theory in Eq. (5.3) in terms of the sum

over qumode operators:

Ha =
MX

k=1

✓
1

2
p̂
2
k

+
1

2
(x̂

k+1 � x̂k)
2 + a

2
V (x̂k)

◆
, (5.7)

where it is convenient to adapt periodic coordinates for the space dimension, such that

k + 1 = k + 1 mod(M) . (5.8)
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SAA,	Spannowsky,	Williams



Machine	learning	the	evolver-state:		

In	these	studies	we	set	the	iniKal	ancilla	evolver-state	using	the	Fock	back-end	of	StrawberryFields																					
-	(Ket	command).	To	use	on	enKrely	photonic	device	can	use	photon	measurement	and	ML	to	tune	a	
circuit	that	gives	desired	non-Gaussian	state	on	the	ancilla	qumode	…

SAA,	Spannowsky,	Williams

(Izaac,	Myers,	Sabapathy,	Su,	Weedbrook)



Machine	learning	the	evolver-state:		

In	these	studies	we	set	the	iniKal	ancilla	evolver-state	using	the	Fock	back-end	of	StrawberryFields																					
-	(Ket	command).	To	use	on	enKrely	photonic	device	can	use	photon	measurement	and	ML	to	tune	a	
circuit	that	gives	desired	non-Gaussian	state	on	the	ancilla	qumode	… (Izaac,	Myers,	Sabapathy,	Su,	Weedbrook)

SAA,	Spannowsky,	Williams



4.How	can	we	do	QFT	on	a	photonic	device?



QFT?	Considerable	simplificaAon	!…

Consider	1-d	field	theory	with	space-dimension	labelled	 	…	discrete	lapce	of	oscillators	at	r

with	Hamiltonian	density	given	by	

The	oscillators	are	connected	only	by	the	cross-terms	in	the	kineKc	piece	which	connect	
neighbouring	points.	Finite	difference	…

Suppose	we	encode	field	values	and	their	conjugate	momenta	at	each	point	as	a	
qumode	variable.	Their	commutaKon	relaKons	are	correct	if	we	idenKfy	…



where			 			can	be	treated	as	the	effecKve	potenKal	of	each	local	node.	H1(x) =
1
2

x2 + a2V(x)

This	is	essenKally	just	 	of	the	Q.M.	problem	that	we	have	already	solved,	coupled	together	with	hopping	
couplings	which	correspond	to	a	single	Controlled-Z	gate	between	adjacent	space	points.

M

⟹



Circuit	diagram	for	 	space-points	looks	like	this:	M
SAA,	Spannowsky,	Williams
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.

.

.

.

.

.

.

.

+1+1+1
+1+1

+1

For	1-d	field	theory	before	we	had	this	…	(this	small	1D	example	would	need	1000	gates)
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<latexit sha1_base64="SoIi+tikGdI+W5/sBdimPmJGRH4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVVa9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzWL8rV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwB4GGNAA==</latexit>r <latexit sha1_base64="qyqZA4zx5ecJbNN5HxYWLVMTTvw=">AAACGXicbZDLSsNAFIYnXmu9RV26GSyCCylJ8bYRim7cCBXsBZoQJpNJO3QyCTMToYS+hhtfxY0LRVzqyrdxkmahrQdmzsd/zmHm/H7CqFSW9W0sLC4tr6xW1qrrG5tb2+bObkfGqcCkjWMWi56PJGGUk7aiipFeIgiKfEa6/ug6r3cfiJA05vdqnBA3QgNOQ4qR0pJnWsJzCGPwEhbJ4Sl0KIdOpum4kV8OC2Il4a1mZ1KtembNqltFwHmwS6iBMlqe+ekEMU4jwhVmSMq+bSXKzZBQFDMyqTqpJAnCIzQgfY0cRUS6WbHZBB5qJYBhLPThChbq74kMRVKOI193RkgN5WwtF/+r9VMVXrgZ5UmqCMfTh8KUQRXD3CYYUEGwYmMNCAuq/wrxEAmElTYzN8GeXXkeOo26fVY/vTupNa9KOypgHxyAI2CDc9AEN6AF2gCDR/AMXsGb8WS8GO/Gx7R1wShn9sCfML5+ALbqnuE=</latexit>

r` = `⌫ 2 {⌫, 2⌫, . . .M⌫}

Now	we	have	this	…	(which	in	this	example	has	5	CZ	gates	and	5	evolver	gadgets)

<latexit sha1_base64="ACbNIl+yBKnx22beZSH0NZiBzoc=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQEUoivjZC0Y3LCvYBTQiT6aQdOpmEmYlYQndu/BU3LhRx6y+482+cpFlo9cCFM+fcy9x7/JhRqSzryyjNzS8sLpWXKyura+sb5uZWW0aJwKSFIxaJro8kYZSTlqKKkW4sCAp9Rjr+6CrzO3dESBrxWzWOiRuiAacBxUhpyTN3nXhIa8JzCGMH8AJmT8+Ch/A+lzyzatWtHPAvsQtSBQWanvnp9COchIQrzJCUPduKlZsioShmZFJxEklihEdoQHqachQS6ab5HRO4r5U+DCKhiyuYqz8nUhRKOQ593RkiNZSzXib+5/USFZy7KeVxogjH04+ChEEVwSwU2KeCYMXGmiAsqN4V4iESCCsdXUWHYM+e/Je0j+r2af3k5rjauCziKIMdsAdqwAZnoAGuQRO0AAYP4Am8gFfj0Xg23oz3aWvJKGa2wS8YH99iDZe9</latexit>

�(r`) = �0 + x`



Conclusions

•Able	to	build	conKnuous	quantum	theories	by	hand	in	order	to	produce	tunnelling	processes	

•Observe	and	measure	tunnelling	out	of	false	vacuum	

•Moving	to	QFT	is	difficult	in	any	discrete	quantum	field	encoding	

•ConKnuous	Variable	Quantum	CompuKng	has	great	promise		

•Can	solve	QM	with	arbitrary	potenKals	on	a	single	qumode	with	very	liile	loss	of	coherence	using	
Gaussian	boson	sampling	

•ConKnuous	variables	could	be	essenKal	for	circumvenKng	problems	with	simulaKng	a	QFT


