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Two di↵erent approaches to quantum computing

‘Gate’ based quantum computing

• Discrete quantum operations
on qubits

• Construct ‘circuits’ out of
these gates

• Detect and correct errors to
reduce e↵ect of noise
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• Allow quantum physics to
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Type Discrete Gate Quantum Annealer Photonic devices

Property
Universal (any 

quantum algorithm 
can be expressed)

Not universal — 
certain quantum 

systems

Also universal — 
continuous variable 

model

Where? IBM - Qiskit 
~127 Qubits

DWave - LEAP 
~7000 Qubits

Xanadu, 
~8 Qumodes - but 
millions in principle

What?

How?

Background: Quantum compuKng has a long and disKnguished  history but is 
only now becoming pracKcable. Three (at least) types of Quantum Computer:

Feynman ’81,  Zalka '96, 
Jordan, Lee, Preskill … see 
Preskill 1811.10085 for 
review.



• In this talk I will argue that photonic devices (and related continuous variable 
quantum computers) are the natural devices for simulating QFT (i.e. performing full 
Hamiltonian evolution)	

• I will also show how we can already solve QM on these devices very easily



1. Quantum mechanics with qubits: e.g. tunnelling	

2. The trouble with qubits: How would we do QFT?	

3. Photonic devices - and Quantum Mechanics	

4. How would we do QFT on a photonic computer?

Overview



1. Quantum mechanics with qubits: e.g. 
tunnelling



•Operate on the Bloch sphere: basically measuring                                        
where 	

• Each  denotes a single qubit 	

• As an example consider tunnelling with a quantum annealers: based on the 
general transverse field Ising model making it natural for field theories  
(Kadowaki, Nishimori):

σZ
i |0⟩ = |0⟩, σZ

i |1⟩ = − |0⟩

i

Why we focus on continuous time

|0i

|1i

| i =
1p
2
(|0i + |1i)

Classical bits: fundamentally discrete ! 0 or 1, nothing in between

Lends itself to a discrete digital description: bit flips either happen
or they don’t

Quantum bits: continuous rotations are possible

Breaking operations up into discrete chunks is not natural ! an
(exact) bit flip is just as hard as any other rotation

Bonus feature: applied gate based algorithms similar to continuous time
operations ! cont. time algorithms have implications for gate based

II. SET-UP OF A SIMPLE PROBLEM

A useful potential to focus on is the following quartic one:

V (�) =
�

8
(�2 � v2)2 +

✏

2v
(�� v) . (1)

The potential is shown in Fig.1. On the left we show the “thick-wall” regime where ✏ is large. This limit is when the
barrier is close to disappearing (or has disappeared altogether) and the walls become comparable in size to the bubble
itself. For numerics we choose v = � = 1 and ✏ = 0.3. The opposite “thin-wall” regime (for which we choose ✏ = 0.01)
is the limit in which ✏ is small and is approximately the difference in vacuum energy density between the false and
true minima.

We are interested in the situation where the system starts in the false vacuum, and our objective is to study the
rate per unit volume of tunnelling out of it. The analytic calculation of this rate is a classic problem, but it is worth
briefly recapping it in order to recast the result in a form that can easily be compared with the results from a quantum
simulation. It proceeds as follows.

First let us remove the extraneous constant term by working with U(�) = V (�) � V (�+), which has U(�+) = 0.
Using the well-known technique of [42–45], the bubble profile is given by finding a “bounce solution” to the following
differential equation:

d2�

d⇢2
+

c

⇢

d�

d⇢
= U 0 , (2)

where in four dimensions, c takes the value 2 or 3 for a finite temperature O(3) symmetric bubble, or a purely quantum
tunnelling O(4) symmetric instanton, respectively. The required “bounce” is subject to the boundary condition that
d�/d⇢ = 0 as ⇢ ! 0,1, which determines the starting value �(0), which is the field-value at the centre of the radially
symmetric bubble or instanton (also called the escape-point). The resulting �(⇢) profile for our particular choice of
parameters is shown in Fig. 2.

Once such a solution is determined, the tunnelling rate per unit volume can be estimated from its classical action:

�4 = A4 e
�S4[�] ,

�3 = A3 Te
�S3[�]/T , (3)

respectively. The quantum determinant prefactors A4, A3 are notoriously difficult to calculate, but for our purposes
it will be sufficient to focus on the influence of the classical action.

The expressions for the action can be expressed in simple analytic terms in the two limits. In the thick wall limit
the bounce action can be accurately approximated by expanding around the value ✏ = ✏0, above which the barrier
disappears (i.e. when the discriminant vanishes), which gives a cubic potential about the false vacuum. This critical
value corresponds to ✏0 = 2�a4/3

p
3. Defining ⇢ =

p
2/3(1� ✏/✏0), the location of the minima is

�+

v
=

1 + ⇢p
3

+O(⇢2) ,

��
v

= � 2p
3
+O(⇢2) . (4)

Then following the rescaling procedure of [45], the tunnelling actions for the O(4) and O(3) symmetric solutions can
be written in terms of standard actions:

S4 =
3⇢

�
S0
4 ; S0

4 = 91

S3 =
3a⇢3/2

�1/2
S0
3 ; S0

3 = 19.4 (5)

The thin-wall regime is somewhat easier to study numerically, and semi-analytically the actions can be expressed in
terms of the action S1 for the one-dimensional c = 0 problem 1:

S4 =
27⇡2S4

1

2✏3
; S3 =

16⇡3S3
1

3✏2
. (6)

1 This is also the energy of the physical “domain wall” solution, but for reasons that will become apparent it would be confusing to use
this terminology.
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These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�X
i , (9)

where �Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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Discrete qubit approach



•Example: how many verKces on a graph can we colour so that none touch? NP-hard problem.

Example of Ising problem mapping ?

Have:
I Binary variables Zi 2 {�1, 1}
I Minimisation over Hamiltonian made of single and pairwise

terms HIsing =
P

i hiZi +
P

j>i Ji ,jZiZj

Want:
I Maximum independent set: how many vertexes on a graph

can we colour so none touch? ! NP hard

Method:

1. For an edge between vertex i and j add Zi + Zj + ZiZj !
penalizes colouring (Z = 1) adacent vertexes

2. Add ��Zi to reward coloured vertexes (0 < � < 1)
?
Taken from the notes of a physics level 3 computing project I wrote, full

notes at: http://nicholas-chancellor.me/QOpt project final.pdf

•Let non-coloured verKces have   and coloured ones have                   σZ
i = − 1 σZ

i = + 1

•Add a reward for every coloured vertex, and for each link between vertices   we add a penalty if 
there are two +1 eigenvalues:

i, j

Commonly with annealers encode network problems in the general Ising model

<latexit sha1_base64="ZJHqfrgxlGhb+1sqZXTryfmTYiI="></latexit>

H = �⇤
X

i

�Z
i +

X

linked pairs {i,j}

(1 + �Z
i )(1 + �Z

j )



•Electroweak phase transiKon (Higgs mechanism) 	

•InflaKon	

•Baryogenesis (creaKon of (anK)maier asymmetry)	

•Instanton processes: 

Instead aim to model QFT processes: e.g. tunnelling
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U(�) =
3

4
tanh2 �+ tanh2(�� v)� 1

If we begin in the false minimum on the leD, the system should be able to tunnel to the lower one on the right.

e.g. Tunnelling out of the false minimum of this potenFal (where  is the single space coordinate):ϕ



Encode  by discreKsing its value using  qubits:ϕ N
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Represent it as a point on a spin chain  domain wall encoding:⟹
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We can translate any spin chain back to the corresponding field value using 

H =
N
∑

ℓm=1

N
∑

ij=1
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PosiKon

Chancellor;                          
SAA, Chancellor, Spannowsky



To add the potenKal  we then add a contribuKon to the linear  couplingsU h
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only the frustrated 
link  contributes



Results: (reverse anneal with 200 qubits) we see tunnelling — e.g. at  v = 2.5

Figure 6: The probability density of the SHO with N = 200
and with sq = 0.7 after time t = 75µs and with  = 0.06.
The ground-states are measured with an interval �� = 13.
The probability density approximates the red line, which cor-
responds to � ⌘ ~2/2m⌘2

0 = 0.33.

we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150µs.

Figure 8: The transition probabilities for different v with sq =
0.7 after ttunnel = 100µs.

in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Never-
theless the observed behaviour provides support for the
presence of tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
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value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150µs.
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in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Never-
theless the observed behaviour provides support for the
presence of tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that

7

SAA, Spannowsky

It appears to decrease exponenFally with v as expected (WKB approximaFon): 
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Back to the domain wall encoding : to make this a QFT add a discreKsed spaceKme coordinate, r: 
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Everything done for QM is then trivially extended in the  spaceKme index …ℓ
except kineKc space-derivaKve terms which are as follows:

which correctly gives �(⇢`) of Eq.(15) in the event that we take U(�) = � (because we know that �Z
`N = 1). In an

action with arbitrary c 6= 0, we would need to evaluate h(U) ⌘
R
d⇢⇢cU , so that h`N+i would acquire a prefactor of

(`⌫)c. However as we will see later the c 6= 0 problem cannot actually be done using the action alone, but one instead
has to use similar methods to solve the PDE in Eq.(2).

Up to this point the M -factors have been inert and there has been no coupling between the fields at different
positions in ⇢`. At this stage the system would simply relax to M decoupled values of �(⇢`) that minimise U in
either one of its two vacua. This changes once we include the derivatives in the kinetic terms, which contribute to the
bilinear interactions, J . These terms are discretised in ⇢ as
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where ⌫ = �⇢/M scales so as to keep �⇢ constant, and where for convenience we omit the factor 2⇡2. Inserting the
discrete representation of the field values as well using Eq.(15), we find
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(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form

h(BC)
N`+j =

(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.
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But now we find a huge number of couplings, or equivalently a huge number of gates on a 
discrete gate device
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Advantages: 	

Can encode many field theories using similar discreKsaKon	

Can observe `vacuum decay’ processes — requires a coherent quantum tunnelling	

Can also perform this on gate quantum computers	

e.g. Jordan, Lee, Preskill; Jordan, Krovi, Lee, 
Preskill; Kclo, Savage

Taking stock …

Disadvantages: 	

Decoherence becomes criKcal aner few nanoseconds on annealer (such short Kmes are now becoming possible) 	

For QFT number of qubits becomes huge due to discreKsaKon of fields 	

Gate depth becomes huge (on any discrete gate system) due to all the kineKc cross terms (billions to do a 3d lapce 

with disc’n of 10)	

(basically every qubit describing field at  is connected to every qubit of the neighbouring space points)	x

Is there a beWer way?? …



3.Photonics for Quantum Mechanics



Photonics work at room temperature. It relies on the manipulaKon of opKcal circuits using opKcal 
equipment such as interferometers. States can be stored using opKcal fibres (c.f. RAM)	

The quantum circuits are defined by the conKnuous variables (CV) that is the  of quantum harmonic 
oscillators.	

e.g. Borealis and X8 chips of Xanadu … 	

Qubit-based computaKons can be embedded into the CV picture (e.g., by using the Goiesman-Kitaev-
Preskill (GKP) embedding), so the CV model is as (at least as) computaKonally powerful as its qubit 
counterparts.	

qubit:	

qumode: 	

Basic object is the SHO vacuum state and it’s excitaKons … Wigner funcKon looks like:	

x, p



Some simple operaAons:	

Squeezing Gate S:                                                                 RotaKon Gate R:	

Controlled-X:                                                                 ==>                                                                	



Try some simple examples



UlKmately we would like to be able to do this to an arbitrary in state  …

for any in-state. But unless the hamiltonian is trivial (i.e. quadraKc) this will require non-Gaussian 
gates. 	

An evolver-state is a resource state that we `factor’ onto the in-state to make it evolve in Kme. It is an 
ancilla qumode with coordinate , which looks like this:y

where  is the part of the Hamiltonian that is non-quadraKc - (e.g. quarKc potenKal), and  is 
a wavefuncKon that looks like a top-hat (for reasons that will become clear). 

H1(x) ⟨y |ϕ0⟩
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Measurement based approach for Schrödinger evoluAon: the principle of evolver-states



Using homodyne measurement for Schrödinger evoluAon: the principle of evolver-states

`noise’ funcKon which is roughly constant if we choose the top-hat 

PNR = 1

PNR = 2

|0i D0 S0

BS0 BS2

|0i D1 S1

BS1

|0i D2 S2 S3 | i

Interferometer

PNR = 1

PNR = 2

|0i D0(✓i) S0(✓i)

BS0(✓i) BS2(✓i)

|0i D1(✓i) S1(✓i)

BS1(✓i)

|0i D2(✓i) S2(✓i) S3(✓i) | i

Displace Squeeze Interferometer Squeeze Post-select

Non-Gaussian

State

PNR = n

PNR = m

|0i D0(✓i) S0(✓i)

BS0(✓i) BS2(✓i)

|0i D1(✓i) S1(✓i)

BS1(✓i)

|0i D2(✓i) S2(✓i) |�i

Displace

Layer with parameters ✓i

Squeeze Interferometer Post-select

Non-Gaussian

State

y = 0|�i S(r)

| ini R(��t) | outi

Squeeze

Single Trotter Step

CX Homodyne

Rotate

1
Figure 4: Evolver-gadget to evolve through a single Trotter step. Here |�i is the resource

state which is set according to Eq. (3.17), and which in Section 6 will be machine learned

using a measurement-based quantum algorithm.

a shift y ! y + sx in the coordinates of the evolver-function, and then implementing a

squeezing S(r; ŷ) with parameter r chosen such that

e
r
s = q . (3.12)

Finally we make a rotation R(��t) on the | i state and then the cast-state is collapsed

by making a homodyne measurement of y = 0. The whole layout is shown in the circuit

diagram of Fig. 4.

Let us consider the e↵ect of this train of operations. To be explicit let us denote the

incoming state | ini combined with the evolver-state with a single ket as | outi. Thus

the output on the two qumodes after our train of operations and before we make any

measurements can be written

hx, y| outi = hy|hx|R(��t; x̂) CX(�s; x̂, ŷ) S(r; ŷ) f(ŷ/q) |�0i| ini . (3.13)

According to Eqs. (2.3) and (2.10), performing the various manipulations corresponding

to these gates and then performing the Homodyne measurement y = 0 with the choice of

parameters in Eq. (3.12) finally yields

hx| ini = exp

✓
�

i

2
(p̂2 + x̂

2)�t

◆
e
�iH1(x̂) �t

he
r
sx|�0i hx| ini . (3.14)

This is the desired evolution we were seeking, which corresponds to a single Trotter step,

up to the ‘noise’-factor he
r
sx|�0i ⌘ hxq|�0i.

We now reach the crux of the matter, namely what is the optimal form of the resource

function hy|�0i in order to suppress the noise? Clearly we would like to reduce the e↵ect

of this noise function which can be done in two ways: either choosing a large value of q,

and/or choosing a flat resource function. As an ideal we can consider the top-hat function,

hy|�0i =

(
1
L

|y| < L/2

0 |y| > L/2 .

– 8 –
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hx| outi = exp

✓
� i

2
(p̂2 + x̂2)�t

◆
e�iH1(x̂)�thqx|�0ihx| ini

Evolver - “Gadget”: 

SAA, Spannowsky, Williams



Evolving QM using an evolver state: example SAA, Spannowsky, Williams



Exact = dotted 
Photonics = solid
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Evolving QM using an evolver state: example SAA, Spannowsky, Williams



Exact = dotted 
Photonics = solid
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Evolving QM using an evolver state: example SAA, Spannowsky, Williams



KL-divergence for different Fock truncaKons: 

Evolving QM using an evolver-state: example
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Fock Truncation
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Figure 9: Kullback-Leibler (KL) divergence between the quantum simulation and exact

calculation for di↵erent times and Fock truncations. The KL divergence quantifies the

disparity between probability distributions. After a su�cient cuto↵, the KL divergence

exhibits a monotonic behaviour with time.

Finally the spatial derivative @r�k can be approximated by discretised derivative

(@r'k)
2(r) =

('(rk + a) � '(rk))2

a2

⌘
(x̂k+1 � x̂k)2

a2
. (5.6)

Thus we may rewrite the space-discretised field theory in Eq. (5.3) in terms of the sum

over qumode operators:

Ha =
MX

k=1

✓
1

2
p̂
2
k

+
1

2
(x̂

k+1 � x̂k)
2 + a

2
V (x̂k)

◆
, (5.7)

where it is convenient to adapt periodic coordinates for the space dimension, such that

k + 1 = k + 1 mod(M) . (5.8)
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SAA, Spannowsky, Williams



Machine learning the evolver-state: 	

In these studies we set the iniKal ancilla evolver-state using the Fock back-end of StrawberryFields                     
- (Ket command). To use on enKrely photonic device can use photon measurement and ML to tune a 
circuit that gives desired non-Gaussian state on the ancilla qumode …

SAA, Spannowsky, Williams

(Izaac, Myers, Sabapathy, Su, Weedbrook)



Machine learning the evolver-state: 	

In these studies we set the iniKal ancilla evolver-state using the Fock back-end of StrawberryFields                     
- (Ket command). To use on enKrely photonic device can use photon measurement and ML to tune a 
circuit that gives desired non-Gaussian state on the ancilla qumode … (Izaac, Myers, Sabapathy, Su, Weedbrook)

SAA, Spannowsky, Williams



4.How can we do QFT on a photonic device?



QFT? Considerable simplificaAon !…

Consider 1-d field theory with space-dimension labelled  … discrete lapce of oscillators at r

with Hamiltonian density given by 

The oscillators are connected only by the cross-terms in the kineKc piece which connect 
neighbouring points. Finite difference …

Suppose we encode field values and their conjugate momenta at each point as a 
qumode variable. Their commutaKon relaKons are correct if we idenKfy …



where      can be treated as the effecKve potenKal of each local node. H1(x) =
1
2

x2 + a2V(x)

This is essenKally just  of the Q.M. problem that we have already solved, coupled together with hopping 
couplings which correspond to a single Controlled-Z gate between adjacent space points.

M

⟹



Circuit diagram for  space-points looks like this: M
SAA, Spannowsky, Williams
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For 1-d field theory before we had this … (this small 1D example would need 1000 gates)
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Now we have this … (which in this example has 5 CZ gates and 5 evolver gadgets)
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Conclusions

•Able to build conKnuous quantum theories by hand in order to produce tunnelling processes	

•Observe and measure tunnelling out of false vacuum	

•Moving to QFT is difficult in any discrete quantum field encoding	

•ConKnuous Variable Quantum CompuKng has great promise 	

•Can solve QM with arbitrary potenKals on a single qumode with very liile loss of coherence using 
Gaussian boson sampling	

•ConKnuous variables could be essenKal for circumvenKng problems with simulaKng a QFT


