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[attractive features of thermal DM]    

DM mass scale

- Viable DM mass range is limited ⇒ Thermal mass window (~1 MeV to ~100 TeV)   

~1 MeV ~100 TeV~ 1 GeV

Thermal DM scenario provides target of experiment
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- three components of beam dump experiment: 

Beam particle Detector
e.g., electron, proton, and muon

Beam particle

Target
(nucleon, electron, etc)

Dark states(DS) may be produced

Detect signature of DS

Detection of dark state signatures produced by beam-target collision 

DS

[My talk’s focus] 
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× × (Track length [L])× (Operation time [T]) × (# density of target [L-3]) (Beam flux [T-1]) 

Beam dump (fixed-target)Beam particle
e.g., electron, proton, and muon

(Track length) = + +

Integrated luminosity

Ex. Target = Iron, # of injected proton beam = 1020

(Proton luminosity) ~  for track length of 10 cm(nuclear collision length)   90 ab−1

※ Luminosity becomes higher for thick targets

Beam dump experiment has high luminosity and is sensitive to feeble coupling DS

(# of produced DS) = (DS production cross section [L2]) 
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The MiniBooNE experiment was designed to study
short-baseline neutrino oscillations [21]. In the normal
neutrino or antineutrino running modes, charged pions
⇡± are produced in the collisions of the proton beam
with a beryllium target and subsequently decay in flight
to neutrinos in the decay volume immediately following
the target, as shown in Fig 1. This results in a large

Using this high-statistics and low-background event sam-
ple, we report the first measurement of an absolute !"

CCQE double differential cross section, the main result
of this work. In addition, CCQE cross sections in several
other conventional forms are provided. The layout of the
remainder of this paper is as follows. In Sec. II, we provide
a summary of the MiniBooNE experiment, including the
booster neutrino beamline (BNB) and the MiniBooNE
detector. We detail the neutrino interaction model used to
describe the signal and background in Sec. III. The CCQE
selection and analysis strategy is outlined in Sec. IV.
Finally, in Sec. V, we report the MiniBooNE flux-
integrated CCQE double differential cross section
( d2#
dT"d cos$"

), the flux-integrated CCQE single differential

cross section ( d#
dQ2

QE
), and the flux-unfolded CCQE cross

section as a function of energy (#½EQE;RFG
! "). To facilitate

comparison with updated model predictions [16,17], we
provide the predicted MiniBooNE neutrino fluxes and
measured cross section values in tabular form in the
appendix.

II. MINIBOONE EXPERIMENT

A. Neutrino beamline and flux

The Booster Neutrino Beamline (BNB) consists of three
major components as shown in Fig. 1: a primary proton
beam, a secondary meson beam, and a tertiary neutrino
beam. Protons are accelerated to 8 GeV kinetic energy in
the Fermilab Booster synchrotron and then fast-extracted
in 1:6 "s ‘‘spills’’ to the BNB. These primary protons
impinge on a 1.75 interaction-length beryllium target cen-
tered in a magnetic focusing horn. The secondary mesons
that are produced are then focused by a toroidal magnetic
field which serves to direct the resulting beam of tertiary
neutrinos towards the downstream detector. The neutrino
flux is calculated at the detector with a GEANT4-based
[18] simulation which takes into account proton transport
to the target, interactions of protons in the target, produc-
tion of mesons in the p-Be process, and transport of
resulting particles through the horn and decay volume. A
full description of the calculation with associated uncer-
tainties is provided in Ref. [19]. MiniBooNE neutrino data

is not used in any way to obtain the flux prediction. The
resulting !" flux is shown as a function of neutrino energy
in Fig. 2 along with its predicted uncertainty. These values
are tabulated in Table V in the appendix. The !" flux has an
average energy (over 0< E! < 3 GeV) of 788 MeV and
comprises 93.6% of the total flux of neutrinos at the
MiniBooNE detector. There is a 5.9% (0.5%) contamina-
tion of !!" (!e, !!e); all events from these (non-!") neutrino
types are treated as background in this measurement
(Sec. IVD).
The largest error on the predicted neutrino flux results

from the uncertainty of pion production in the initial p-Be
process in the target as the simulation predicts that 96.7%
of muon neutrinos in the BNB are produced via %þ decay.
The meson production model in the neutrino beam simu-
lation [19] relies on external hadron production measure-
ments. Those of the HARP experiment [20] are the most
relevant as they measure the %$ differential cross section
in p-Be interactions at the same proton energy and on the
same target material as MiniBooNE. The uncertainty in
%þ production is determined from spline fits to the HARP
%þ double differential cross section data [19]. The spline-
fit procedure more accurately quantifies the uncertainty in
the underlying data, removing unnecessary sources of error
resulting from an inadequate parameterization [21] of the
HARP data. The HARP data used was that from a thin (5%
interaction length) beryllium target run [20]. While that
data provides a valuable constraint on the BNB flux pre-
diction, additional uncertainties resulting from thick target
effects (secondary rescattering of protons and pions) are
included through the BNB flux simulation.

FIG. 1 (color online). Schematic overview of the MiniBooNE
experiment including the booster neutrino beamline and
MiniBooNE detector.
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FIG. 2 (color online). Predicted !" flux at the MiniBooNE
detector (a) along with the fractional uncertainties grouped into
various contributions (b). The integrated flux is 5:16%
10&10 !"=POT=cm

2 (0<E! < 3 GeV) with a mean energy of

788 MeV. Numerical values corresponding to the top plot are
provided in Table V in the appendix.
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FIG. 1. The production of neutrinos in the Booster Neutrino
Beamline in on-target running [22].

flux of neutrinos at the MiniBooNE detector, which is a
background to the dark matter neutral-current-like scat-
tering signature. Instead, in the beam-dump running
mode, the proton beam is steered past the beryllium tar-
get and directed onto the steel absorber at the end of
the decay volume, which significantly reduces the neu-
trino flux and increases sensitivity to a potential dark
matter signal. A dedicated run in beam-dump mode was
carried out from November 2013 to September 2014 col-
lecting 1.86⇥1020 protons on target (POT). Besides the
capability of running in beam-dump mode, MiniBooNE
has several advantages which make this search feasible,
including a detailed understanding of detector response
and standard background processes gained through over
a decade of operation, and robust and well-tested particle
identification techniques.

The results presented here improve upon those in
Ref. [20] by including two additional dark matter in-
teraction channels in two separate analyses. The first
was a combined NCE and neutral-current pion produc-
tion through delta resonant decay (NC⇡) fit to search for
dark matter interaction with nucleons, and the second
was dark matter elastically scattering o↵ electrons. A
“time-of-flight” observable was also added to both anal-
yses to increase sensitivity to heavier dark matter masses.
No significant excess is observed in either analysis, and
90% confidence level limits are derived for vector por-
tal and leptophobic dark matter models. MiniBooNE
excludes new parameter space in the vector portal dark
matter model.

Results from applying the neutrino oscillation cuts are
also presented. With the reduction of the neutrino flux,
a test was preformed to determine if the neutrino oscilla-
tion excess [21, 23] comes from a process that scales with
neutrino production or a process that would scale solely
on the number of POT.

The following section provides an overview of the the-

oretical aspects of sub-GeV dark matter. Following this,
Sec. III reviews the Booster Neutrino Beamline (BNB),
where the neutrino flux (in beam-dump mode) is given,
and the “time-of-flight” measurement is discussed. In
Sec. IV the MiniBooNE detector and simulations are re-
viewed. Section V we present the event distributions,
and describe backgrounds, systematics, and fit method-
ology. Finally, the dark matter results are presented in
Sec. VI, and a discussion of the implications for both the
dark matter and neutrino oscillation searches is given in
Sec. VII.

II. THEORY OF SUB-GEV DARK MATTER

Light dark matter � with a mass below 1GeV c�2 and
coupled to ordinary matter through a light mediator par-
ticle is a viable and theoretically well-motivated possibil-
ity. While it is possible that � exists at this scale in iso-
lation, on general grounds one may expect a larger “dark
sector” of states. One or more of these additional states
may mediate interactions to the Standard Model (SM)
and may also play a role in the cosmological production
of dark matter, allowing for the correct relic abundance
through the standard thermal freeze-out mechanism.
The simplest dark sector scenario of this type is known

as vector portal dark matter, in which the interactions of
� are mediated by a new dark U(1) gauge boson Vµ that
kinetically mixes with the ordinary photon [24–29]. In
such a model, there are four parameters that govern the
properties of dark matter: the dark matter mass m�,
the dark photon mass mV , the kinetic mixing angle ✏,
and the dark gauge coupling gD . Equation (1) gives the
Lagrangian LV that is added to the SM Lagrangian:

LV = L� � 1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ � ✏

2
Fµ⌫V

µ⌫ , (1)

where

L� =

⇢
i� /D��m��� Dirac fermion,
|Dµ�|2 �m2

� |�|2 Complex scalar,

and Dµ = @µ � igDVµ with the dark matter charge equal
to one. The interactions above lead to e�cient dark mat-
ter annihilation to light SM particles such that the ob-
served dark matter abundance can be explained for cer-
tain values of the model parameters. Furthermore, if the
dark matter is a complex scalar the annihilation occurs in
the p-wave and is velocity suppressed [2], evading other-
wise strong constraints from the cosmic microwave back-
ground [30]. For this reason, the dark matter particle is
assumed to be a complex scalar in this work.
The BNB is able to produce dark matter through sev-

eral mechanisms, illustrated in Fig. 2. They are (i)
decay of secondary ⇡0 or ⌘ mesons, and (ii) proton
bremsstrahlung plus vector-meson mixing. Note that in
all cases, the production rate scales as ✏2 provided V can
decay to two on-shell �. On-shell decay is defined by
mV > 2m�, and is known as the invisible decay mode.
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・Beam dump experiment can run in parallel with accelerator experiments

⇒  parasitic running of neutrino experiment MiniBooNE, LSND, CHARM, COHERENT CsI, CCM120

- Ex. current and past experiments:

Key features of beam dump experiment (3)

2

The MiniBooNE experiment was designed to study
short-baseline neutrino oscillations [21]. In the normal
neutrino or antineutrino running modes, charged pions
⇡± are produced in the collisions of the proton beam
with a beryllium target and subsequently decay in flight
to neutrinos in the decay volume immediately following
the target, as shown in Fig 1. This results in a large

Using this high-statistics and low-background event sam-
ple, we report the first measurement of an absolute !"

CCQE double differential cross section, the main result
of this work. In addition, CCQE cross sections in several
other conventional forms are provided. The layout of the
remainder of this paper is as follows. In Sec. II, we provide
a summary of the MiniBooNE experiment, including the
booster neutrino beamline (BNB) and the MiniBooNE
detector. We detail the neutrino interaction model used to
describe the signal and background in Sec. III. The CCQE
selection and analysis strategy is outlined in Sec. IV.
Finally, in Sec. V, we report the MiniBooNE flux-
integrated CCQE double differential cross section
( d2#
dT"d cos$"

), the flux-integrated CCQE single differential

cross section ( d#
dQ2

QE
), and the flux-unfolded CCQE cross

section as a function of energy (#½EQE;RFG
! "). To facilitate

comparison with updated model predictions [16,17], we
provide the predicted MiniBooNE neutrino fluxes and
measured cross section values in tabular form in the
appendix.

II. MINIBOONE EXPERIMENT

A. Neutrino beamline and flux

The Booster Neutrino Beamline (BNB) consists of three
major components as shown in Fig. 1: a primary proton
beam, a secondary meson beam, and a tertiary neutrino
beam. Protons are accelerated to 8 GeV kinetic energy in
the Fermilab Booster synchrotron and then fast-extracted
in 1:6 "s ‘‘spills’’ to the BNB. These primary protons
impinge on a 1.75 interaction-length beryllium target cen-
tered in a magnetic focusing horn. The secondary mesons
that are produced are then focused by a toroidal magnetic
field which serves to direct the resulting beam of tertiary
neutrinos towards the downstream detector. The neutrino
flux is calculated at the detector with a GEANT4-based
[18] simulation which takes into account proton transport
to the target, interactions of protons in the target, produc-
tion of mesons in the p-Be process, and transport of
resulting particles through the horn and decay volume. A
full description of the calculation with associated uncer-
tainties is provided in Ref. [19]. MiniBooNE neutrino data

is not used in any way to obtain the flux prediction. The
resulting !" flux is shown as a function of neutrino energy
in Fig. 2 along with its predicted uncertainty. These values
are tabulated in Table V in the appendix. The !" flux has an
average energy (over 0< E! < 3 GeV) of 788 MeV and
comprises 93.6% of the total flux of neutrinos at the
MiniBooNE detector. There is a 5.9% (0.5%) contamina-
tion of !!" (!e, !!e); all events from these (non-!") neutrino
types are treated as background in this measurement
(Sec. IVD).
The largest error on the predicted neutrino flux results

from the uncertainty of pion production in the initial p-Be
process in the target as the simulation predicts that 96.7%
of muon neutrinos in the BNB are produced via %þ decay.
The meson production model in the neutrino beam simu-
lation [19] relies on external hadron production measure-
ments. Those of the HARP experiment [20] are the most
relevant as they measure the %$ differential cross section
in p-Be interactions at the same proton energy and on the
same target material as MiniBooNE. The uncertainty in
%þ production is determined from spline fits to the HARP
%þ double differential cross section data [19]. The spline-
fit procedure more accurately quantifies the uncertainty in
the underlying data, removing unnecessary sources of error
resulting from an inadequate parameterization [21] of the
HARP data. The HARP data used was that from a thin (5%
interaction length) beryllium target run [20]. While that
data provides a valuable constraint on the BNB flux pre-
diction, additional uncertainties resulting from thick target
effects (secondary rescattering of protons and pions) are
included through the BNB flux simulation.

FIG. 1 (color online). Schematic overview of the MiniBooNE
experiment including the booster neutrino beamline and
MiniBooNE detector.
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FIG. 2 (color online). Predicted !" flux at the MiniBooNE
detector (a) along with the fractional uncertainties grouped into
various contributions (b). The integrated flux is 5:16%
10&10 !"=POT=cm

2 (0<E! < 3 GeV) with a mean energy of

788 MeV. Numerical values corresponding to the top plot are
provided in Table V in the appendix.
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FIG. 1. The production of neutrinos in the Booster Neutrino
Beamline in on-target running [22].

flux of neutrinos at the MiniBooNE detector, which is a
background to the dark matter neutral-current-like scat-
tering signature. Instead, in the beam-dump running
mode, the proton beam is steered past the beryllium tar-
get and directed onto the steel absorber at the end of
the decay volume, which significantly reduces the neu-
trino flux and increases sensitivity to a potential dark
matter signal. A dedicated run in beam-dump mode was
carried out from November 2013 to September 2014 col-
lecting 1.86⇥1020 protons on target (POT). Besides the
capability of running in beam-dump mode, MiniBooNE
has several advantages which make this search feasible,
including a detailed understanding of detector response
and standard background processes gained through over
a decade of operation, and robust and well-tested particle
identification techniques.

The results presented here improve upon those in
Ref. [20] by including two additional dark matter in-
teraction channels in two separate analyses. The first
was a combined NCE and neutral-current pion produc-
tion through delta resonant decay (NC⇡) fit to search for
dark matter interaction with nucleons, and the second
was dark matter elastically scattering o↵ electrons. A
“time-of-flight” observable was also added to both anal-
yses to increase sensitivity to heavier dark matter masses.
No significant excess is observed in either analysis, and
90% confidence level limits are derived for vector por-
tal and leptophobic dark matter models. MiniBooNE
excludes new parameter space in the vector portal dark
matter model.

Results from applying the neutrino oscillation cuts are
also presented. With the reduction of the neutrino flux,
a test was preformed to determine if the neutrino oscilla-
tion excess [21, 23] comes from a process that scales with
neutrino production or a process that would scale solely
on the number of POT.

The following section provides an overview of the the-

oretical aspects of sub-GeV dark matter. Following this,
Sec. III reviews the Booster Neutrino Beamline (BNB),
where the neutrino flux (in beam-dump mode) is given,
and the “time-of-flight” measurement is discussed. In
Sec. IV the MiniBooNE detector and simulations are re-
viewed. Section V we present the event distributions,
and describe backgrounds, systematics, and fit method-
ology. Finally, the dark matter results are presented in
Sec. VI, and a discussion of the implications for both the
dark matter and neutrino oscillation searches is given in
Sec. VII.

II. THEORY OF SUB-GEV DARK MATTER

Light dark matter � with a mass below 1GeV c�2 and
coupled to ordinary matter through a light mediator par-
ticle is a viable and theoretically well-motivated possibil-
ity. While it is possible that � exists at this scale in iso-
lation, on general grounds one may expect a larger “dark
sector” of states. One or more of these additional states
may mediate interactions to the Standard Model (SM)
and may also play a role in the cosmological production
of dark matter, allowing for the correct relic abundance
through the standard thermal freeze-out mechanism.
The simplest dark sector scenario of this type is known

as vector portal dark matter, in which the interactions of
� are mediated by a new dark U(1) gauge boson Vµ that
kinetically mixes with the ordinary photon [24–29]. In
such a model, there are four parameters that govern the
properties of dark matter: the dark matter mass m�,
the dark photon mass mV , the kinetic mixing angle ✏,
and the dark gauge coupling gD . Equation (1) gives the
Lagrangian LV that is added to the SM Lagrangian:

LV = L� � 1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ � ✏

2
Fµ⌫V

µ⌫ , (1)

where

L� =

⇢
i� /D��m��� Dirac fermion,
|Dµ�|2 �m2

� |�|2 Complex scalar,

and Dµ = @µ � igDVµ with the dark matter charge equal
to one. The interactions above lead to e�cient dark mat-
ter annihilation to light SM particles such that the ob-
served dark matter abundance can be explained for cer-
tain values of the model parameters. Furthermore, if the
dark matter is a complex scalar the annihilation occurs in
the p-wave and is velocity suppressed [2], evading other-
wise strong constraints from the cosmic microwave back-
ground [30]. For this reason, the dark matter particle is
assumed to be a complex scalar in this work.
The BNB is able to produce dark matter through sev-

eral mechanisms, illustrated in Fig. 2. They are (i)
decay of secondary ⇡0 or ⌘ mesons, and (ii) proton
bremsstrahlung plus vector-meson mixing. Note that in
all cases, the production rate scales as ✏2 provided V can
decay to two on-shell �. On-shell decay is defined by
mV > 2m�, and is known as the invisible decay mode.
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・Beam dump experiment can run in parallel with accelerator experiments

⇒  parasitic running of neutrino experiment MiniBooNE, LSND, CHARM, COHERENT CsI, CCM120

- Ex. current and past experiments:

Key features of beam dump experiment (3)

2

The MiniBooNE experiment was designed to study
short-baseline neutrino oscillations [21]. In the normal
neutrino or antineutrino running modes, charged pions
⇡± are produced in the collisions of the proton beam
with a beryllium target and subsequently decay in flight
to neutrinos in the decay volume immediately following
the target, as shown in Fig 1. This results in a large

Using this high-statistics and low-background event sam-
ple, we report the first measurement of an absolute !"

CCQE double differential cross section, the main result
of this work. In addition, CCQE cross sections in several
other conventional forms are provided. The layout of the
remainder of this paper is as follows. In Sec. II, we provide
a summary of the MiniBooNE experiment, including the
booster neutrino beamline (BNB) and the MiniBooNE
detector. We detail the neutrino interaction model used to
describe the signal and background in Sec. III. The CCQE
selection and analysis strategy is outlined in Sec. IV.
Finally, in Sec. V, we report the MiniBooNE flux-
integrated CCQE double differential cross section
( d2#
dT"d cos$"

), the flux-integrated CCQE single differential

cross section ( d#
dQ2

QE
), and the flux-unfolded CCQE cross

section as a function of energy (#½EQE;RFG
! "). To facilitate

comparison with updated model predictions [16,17], we
provide the predicted MiniBooNE neutrino fluxes and
measured cross section values in tabular form in the
appendix.

II. MINIBOONE EXPERIMENT

A. Neutrino beamline and flux

The Booster Neutrino Beamline (BNB) consists of three
major components as shown in Fig. 1: a primary proton
beam, a secondary meson beam, and a tertiary neutrino
beam. Protons are accelerated to 8 GeV kinetic energy in
the Fermilab Booster synchrotron and then fast-extracted
in 1:6 "s ‘‘spills’’ to the BNB. These primary protons
impinge on a 1.75 interaction-length beryllium target cen-
tered in a magnetic focusing horn. The secondary mesons
that are produced are then focused by a toroidal magnetic
field which serves to direct the resulting beam of tertiary
neutrinos towards the downstream detector. The neutrino
flux is calculated at the detector with a GEANT4-based
[18] simulation which takes into account proton transport
to the target, interactions of protons in the target, produc-
tion of mesons in the p-Be process, and transport of
resulting particles through the horn and decay volume. A
full description of the calculation with associated uncer-
tainties is provided in Ref. [19]. MiniBooNE neutrino data

is not used in any way to obtain the flux prediction. The
resulting !" flux is shown as a function of neutrino energy
in Fig. 2 along with its predicted uncertainty. These values
are tabulated in Table V in the appendix. The !" flux has an
average energy (over 0< E! < 3 GeV) of 788 MeV and
comprises 93.6% of the total flux of neutrinos at the
MiniBooNE detector. There is a 5.9% (0.5%) contamina-
tion of !!" (!e, !!e); all events from these (non-!") neutrino
types are treated as background in this measurement
(Sec. IVD).
The largest error on the predicted neutrino flux results

from the uncertainty of pion production in the initial p-Be
process in the target as the simulation predicts that 96.7%
of muon neutrinos in the BNB are produced via %þ decay.
The meson production model in the neutrino beam simu-
lation [19] relies on external hadron production measure-
ments. Those of the HARP experiment [20] are the most
relevant as they measure the %$ differential cross section
in p-Be interactions at the same proton energy and on the
same target material as MiniBooNE. The uncertainty in
%þ production is determined from spline fits to the HARP
%þ double differential cross section data [19]. The spline-
fit procedure more accurately quantifies the uncertainty in
the underlying data, removing unnecessary sources of error
resulting from an inadequate parameterization [21] of the
HARP data. The HARP data used was that from a thin (5%
interaction length) beryllium target run [20]. While that
data provides a valuable constraint on the BNB flux pre-
diction, additional uncertainties resulting from thick target
effects (secondary rescattering of protons and pions) are
included through the BNB flux simulation.

FIG. 1 (color online). Schematic overview of the MiniBooNE
experiment including the booster neutrino beamline and
MiniBooNE detector.
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FIG. 2 (color online). Predicted !" flux at the MiniBooNE
detector (a) along with the fractional uncertainties grouped into
various contributions (b). The integrated flux is 5:16%
10&10 !"=POT=cm

2 (0<E! < 3 GeV) with a mean energy of

788 MeV. Numerical values corresponding to the top plot are
provided in Table V in the appendix.
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FIG. 1. The production of neutrinos in the Booster Neutrino
Beamline in on-target running [22].

flux of neutrinos at the MiniBooNE detector, which is a
background to the dark matter neutral-current-like scat-
tering signature. Instead, in the beam-dump running
mode, the proton beam is steered past the beryllium tar-
get and directed onto the steel absorber at the end of
the decay volume, which significantly reduces the neu-
trino flux and increases sensitivity to a potential dark
matter signal. A dedicated run in beam-dump mode was
carried out from November 2013 to September 2014 col-
lecting 1.86⇥1020 protons on target (POT). Besides the
capability of running in beam-dump mode, MiniBooNE
has several advantages which make this search feasible,
including a detailed understanding of detector response
and standard background processes gained through over
a decade of operation, and robust and well-tested particle
identification techniques.

The results presented here improve upon those in
Ref. [20] by including two additional dark matter in-
teraction channels in two separate analyses. The first
was a combined NCE and neutral-current pion produc-
tion through delta resonant decay (NC⇡) fit to search for
dark matter interaction with nucleons, and the second
was dark matter elastically scattering o↵ electrons. A
“time-of-flight” observable was also added to both anal-
yses to increase sensitivity to heavier dark matter masses.
No significant excess is observed in either analysis, and
90% confidence level limits are derived for vector por-
tal and leptophobic dark matter models. MiniBooNE
excludes new parameter space in the vector portal dark
matter model.

Results from applying the neutrino oscillation cuts are
also presented. With the reduction of the neutrino flux,
a test was preformed to determine if the neutrino oscilla-
tion excess [21, 23] comes from a process that scales with
neutrino production or a process that would scale solely
on the number of POT.

The following section provides an overview of the the-

oretical aspects of sub-GeV dark matter. Following this,
Sec. III reviews the Booster Neutrino Beamline (BNB),
where the neutrino flux (in beam-dump mode) is given,
and the “time-of-flight” measurement is discussed. In
Sec. IV the MiniBooNE detector and simulations are re-
viewed. Section V we present the event distributions,
and describe backgrounds, systematics, and fit method-
ology. Finally, the dark matter results are presented in
Sec. VI, and a discussion of the implications for both the
dark matter and neutrino oscillation searches is given in
Sec. VII.

II. THEORY OF SUB-GEV DARK MATTER

Light dark matter � with a mass below 1GeV c�2 and
coupled to ordinary matter through a light mediator par-
ticle is a viable and theoretically well-motivated possibil-
ity. While it is possible that � exists at this scale in iso-
lation, on general grounds one may expect a larger “dark
sector” of states. One or more of these additional states
may mediate interactions to the Standard Model (SM)
and may also play a role in the cosmological production
of dark matter, allowing for the correct relic abundance
through the standard thermal freeze-out mechanism.
The simplest dark sector scenario of this type is known

as vector portal dark matter, in which the interactions of
� are mediated by a new dark U(1) gauge boson Vµ that
kinetically mixes with the ordinary photon [24–29]. In
such a model, there are four parameters that govern the
properties of dark matter: the dark matter mass m�,
the dark photon mass mV , the kinetic mixing angle ✏,
and the dark gauge coupling gD . Equation (1) gives the
Lagrangian LV that is added to the SM Lagrangian:

LV = L� � 1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ � ✏

2
Fµ⌫V

µ⌫ , (1)

where

L� =

⇢
i� /D��m��� Dirac fermion,
|Dµ�|2 �m2

� |�|2 Complex scalar,

and Dµ = @µ � igDVµ with the dark matter charge equal
to one. The interactions above lead to e�cient dark mat-
ter annihilation to light SM particles such that the ob-
served dark matter abundance can be explained for cer-
tain values of the model parameters. Furthermore, if the
dark matter is a complex scalar the annihilation occurs in
the p-wave and is velocity suppressed [2], evading other-
wise strong constraints from the cosmic microwave back-
ground [30]. For this reason, the dark matter particle is
assumed to be a complex scalar in this work.
The BNB is able to produce dark matter through sev-

eral mechanisms, illustrated in Fig. 2. They are (i)
decay of secondary ⇡0 or ⌘ mesons, and (ii) proton
bremsstrahlung plus vector-meson mixing. Note that in
all cases, the production rate scales as ✏2 provided V can
decay to two on-shell �. On-shell decay is defined by
mV > 2m�, and is known as the invisible decay mode.

 Ex. MiniBooNE experiment

proton beam Fixed-target
(beam dump) Neutrino detector

Dark State

[1807.06137]

proton accelerator



・Beam dump experiment can run in parallel with accelerator experiments

⇒  parasitic running of neutrino experiment MiniBooNE, LSND, CHARM, COHERENT CsI, CCM120

- Ex. current and past experiments:

Key features of beam dump experiment (3)

2

The MiniBooNE experiment was designed to study
short-baseline neutrino oscillations [21]. In the normal
neutrino or antineutrino running modes, charged pions
⇡± are produced in the collisions of the proton beam
with a beryllium target and subsequently decay in flight
to neutrinos in the decay volume immediately following
the target, as shown in Fig 1. This results in a large

Using this high-statistics and low-background event sam-
ple, we report the first measurement of an absolute !"

CCQE double differential cross section, the main result
of this work. In addition, CCQE cross sections in several
other conventional forms are provided. The layout of the
remainder of this paper is as follows. In Sec. II, we provide
a summary of the MiniBooNE experiment, including the
booster neutrino beamline (BNB) and the MiniBooNE
detector. We detail the neutrino interaction model used to
describe the signal and background in Sec. III. The CCQE
selection and analysis strategy is outlined in Sec. IV.
Finally, in Sec. V, we report the MiniBooNE flux-
integrated CCQE double differential cross section
( d2#
dT"d cos$"

), the flux-integrated CCQE single differential

cross section ( d#
dQ2

QE
), and the flux-unfolded CCQE cross

section as a function of energy (#½EQE;RFG
! "). To facilitate

comparison with updated model predictions [16,17], we
provide the predicted MiniBooNE neutrino fluxes and
measured cross section values in tabular form in the
appendix.

II. MINIBOONE EXPERIMENT

A. Neutrino beamline and flux

The Booster Neutrino Beamline (BNB) consists of three
major components as shown in Fig. 1: a primary proton
beam, a secondary meson beam, and a tertiary neutrino
beam. Protons are accelerated to 8 GeV kinetic energy in
the Fermilab Booster synchrotron and then fast-extracted
in 1:6 "s ‘‘spills’’ to the BNB. These primary protons
impinge on a 1.75 interaction-length beryllium target cen-
tered in a magnetic focusing horn. The secondary mesons
that are produced are then focused by a toroidal magnetic
field which serves to direct the resulting beam of tertiary
neutrinos towards the downstream detector. The neutrino
flux is calculated at the detector with a GEANT4-based
[18] simulation which takes into account proton transport
to the target, interactions of protons in the target, produc-
tion of mesons in the p-Be process, and transport of
resulting particles through the horn and decay volume. A
full description of the calculation with associated uncer-
tainties is provided in Ref. [19]. MiniBooNE neutrino data

is not used in any way to obtain the flux prediction. The
resulting !" flux is shown as a function of neutrino energy
in Fig. 2 along with its predicted uncertainty. These values
are tabulated in Table V in the appendix. The !" flux has an
average energy (over 0< E! < 3 GeV) of 788 MeV and
comprises 93.6% of the total flux of neutrinos at the
MiniBooNE detector. There is a 5.9% (0.5%) contamina-
tion of !!" (!e, !!e); all events from these (non-!") neutrino
types are treated as background in this measurement
(Sec. IVD).
The largest error on the predicted neutrino flux results

from the uncertainty of pion production in the initial p-Be
process in the target as the simulation predicts that 96.7%
of muon neutrinos in the BNB are produced via %þ decay.
The meson production model in the neutrino beam simu-
lation [19] relies on external hadron production measure-
ments. Those of the HARP experiment [20] are the most
relevant as they measure the %$ differential cross section
in p-Be interactions at the same proton energy and on the
same target material as MiniBooNE. The uncertainty in
%þ production is determined from spline fits to the HARP
%þ double differential cross section data [19]. The spline-
fit procedure more accurately quantifies the uncertainty in
the underlying data, removing unnecessary sources of error
resulting from an inadequate parameterization [21] of the
HARP data. The HARP data used was that from a thin (5%
interaction length) beryllium target run [20]. While that
data provides a valuable constraint on the BNB flux pre-
diction, additional uncertainties resulting from thick target
effects (secondary rescattering of protons and pions) are
included through the BNB flux simulation.

FIG. 1 (color online). Schematic overview of the MiniBooNE
experiment including the booster neutrino beamline and
MiniBooNE detector.
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FIG. 2 (color online). Predicted !" flux at the MiniBooNE
detector (a) along with the fractional uncertainties grouped into
various contributions (b). The integrated flux is 5:16%
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2 (0<E! < 3 GeV) with a mean energy of

788 MeV. Numerical values corresponding to the top plot are
provided in Table V in the appendix.
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FIG. 1. The production of neutrinos in the Booster Neutrino
Beamline in on-target running [22].

flux of neutrinos at the MiniBooNE detector, which is a
background to the dark matter neutral-current-like scat-
tering signature. Instead, in the beam-dump running
mode, the proton beam is steered past the beryllium tar-
get and directed onto the steel absorber at the end of
the decay volume, which significantly reduces the neu-
trino flux and increases sensitivity to a potential dark
matter signal. A dedicated run in beam-dump mode was
carried out from November 2013 to September 2014 col-
lecting 1.86⇥1020 protons on target (POT). Besides the
capability of running in beam-dump mode, MiniBooNE
has several advantages which make this search feasible,
including a detailed understanding of detector response
and standard background processes gained through over
a decade of operation, and robust and well-tested particle
identification techniques.

The results presented here improve upon those in
Ref. [20] by including two additional dark matter in-
teraction channels in two separate analyses. The first
was a combined NCE and neutral-current pion produc-
tion through delta resonant decay (NC⇡) fit to search for
dark matter interaction with nucleons, and the second
was dark matter elastically scattering o↵ electrons. A
“time-of-flight” observable was also added to both anal-
yses to increase sensitivity to heavier dark matter masses.
No significant excess is observed in either analysis, and
90% confidence level limits are derived for vector por-
tal and leptophobic dark matter models. MiniBooNE
excludes new parameter space in the vector portal dark
matter model.

Results from applying the neutrino oscillation cuts are
also presented. With the reduction of the neutrino flux,
a test was preformed to determine if the neutrino oscilla-
tion excess [21, 23] comes from a process that scales with
neutrino production or a process that would scale solely
on the number of POT.

The following section provides an overview of the the-

oretical aspects of sub-GeV dark matter. Following this,
Sec. III reviews the Booster Neutrino Beamline (BNB),
where the neutrino flux (in beam-dump mode) is given,
and the “time-of-flight” measurement is discussed. In
Sec. IV the MiniBooNE detector and simulations are re-
viewed. Section V we present the event distributions,
and describe backgrounds, systematics, and fit method-
ology. Finally, the dark matter results are presented in
Sec. VI, and a discussion of the implications for both the
dark matter and neutrino oscillation searches is given in
Sec. VII.

II. THEORY OF SUB-GEV DARK MATTER

Light dark matter � with a mass below 1GeV c�2 and
coupled to ordinary matter through a light mediator par-
ticle is a viable and theoretically well-motivated possibil-
ity. While it is possible that � exists at this scale in iso-
lation, on general grounds one may expect a larger “dark
sector” of states. One or more of these additional states
may mediate interactions to the Standard Model (SM)
and may also play a role in the cosmological production
of dark matter, allowing for the correct relic abundance
through the standard thermal freeze-out mechanism.
The simplest dark sector scenario of this type is known

as vector portal dark matter, in which the interactions of
� are mediated by a new dark U(1) gauge boson Vµ that
kinetically mixes with the ordinary photon [24–29]. In
such a model, there are four parameters that govern the
properties of dark matter: the dark matter mass m�,
the dark photon mass mV , the kinetic mixing angle ✏,
and the dark gauge coupling gD . Equation (1) gives the
Lagrangian LV that is added to the SM Lagrangian:

LV = L� � 1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ � ✏

2
Fµ⌫V

µ⌫ , (1)

where

L� =

⇢
i� /D��m��� Dirac fermion,
|Dµ�|2 �m2

� |�|2 Complex scalar,

and Dµ = @µ � igDVµ with the dark matter charge equal
to one. The interactions above lead to e�cient dark mat-
ter annihilation to light SM particles such that the ob-
served dark matter abundance can be explained for cer-
tain values of the model parameters. Furthermore, if the
dark matter is a complex scalar the annihilation occurs in
the p-wave and is velocity suppressed [2], evading other-
wise strong constraints from the cosmic microwave back-
ground [30]. For this reason, the dark matter particle is
assumed to be a complex scalar in this work.
The BNB is able to produce dark matter through sev-

eral mechanisms, illustrated in Fig. 2. They are (i)
decay of secondary ⇡0 or ⌘ mesons, and (ii) proton
bremsstrahlung plus vector-meson mixing. Note that in
all cases, the production rate scales as ✏2 provided V can
decay to two on-shell �. On-shell decay is defined by
mV > 2m�, and is known as the invisible decay mode.
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Within the PBC study, the design of the BDF has reached the com-
prehensive design stage16. The overall layout in the SPS North Area 
is fully defined and critical aspects such as target design and radio-
protection are well advanced. In particular, studies were performed 
to minimize proton losses when the beam is extracted from the SPS. 
These studies were critical to maximize the total intensity available 
to the BDF, and will also allow improved delivery of conventional 
North Area beams. In the first instance, exploitation of the facility 
is envisaged to be for the Search for Hidden Particles (SHiP) experi-
ment, looking for weakly-interacting and long-lived particles, and 
the TauFV experiment, which uses a fixed-target geometry to search 
for flavour violation in tau-lepton decays as a sign for BSM physics.

Experiments rooted in research and development for novel accel-
eration techniques. In addition to the proton beam dump proposal 
discussed above, electron beam dump experiments building on 
CERN research and development for new acceleration techniques 
are discussed. The eSPS project17 foresees injecting 3.5 GeV elec-
trons into the SPS using X-band accelerator structures developed 
during intensive research and development for the Compact Linear 
Collider. The electrons would be subsequently accelerated to 16 GeV 
and then slowly extracted to a new experimental facility devoted to 
DM searches using the missing momentum method (Fig. 3c). The 
SPS also delivers beam to the Advanced Proton Plasma Wakefield 
Acceleration (AWAKE) research project. Following the success-
ful demonstration of the AWAKE concept in its first phase18, and 
assuming success of the next phase planned for the coming years, a 
new high-intensity medium-energy pulsed electron beam could be 
implemented in the former CERN neutrino project area to search 
for new particles (AWAKE++)19.

Another proposed SPS-based facility is the Neutrinos from 
Stored Muons (nuSTORM) project, which is designed to deliver a 
neutrino–nucleus scattering programme using beams of neutrinos 
from the decay of muons confined within a storage ring. The SPS 
would provide the primary proton beam for muon production and 
offers a credible location for fast extraction towards a new experi-
mental area20.

Developments in acceleration techniques are also expected 
to foster further experiments that do not rely on a particle beam. 
CERN has traditionally hosted a number of non-accelerator experi-
ments exploiting accelerator technologies for specific new physics 
searches, such as the CAST axion helioscope21 using a spare LHC 
dipole magnet. A systematic survey of this domain has identified 
several technologies, among them high-field magnets, radio-fre-
quency cavities, cryogenics, and vacuum and optical techniques, 
as particularly suited for exchange of expertise between CERN and 
outside laboratories to develop new experimental non-accelerator 
projects22.

PBC projects potential in the worldwide context
The PBC experiments build on the unique features of the facilities 
discussed above to explore the whole spectrum of possible new par-
ticle masses and couplings (Fig. 1a). They also foresee new mea-
surements of the QCD phase transition (Fig. 1b) and of the internal 
dynamics of hadrons. A full list of PBC project proposals is given in 
Table 1, indicating their maturity and approximate time scale. The 
projects will be discussed in the following.

QCD measurements. Some of the PBC QCD-oriented projects 
aim at providing new fundamental insights on the strong phase  
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protection are well advanced. In particular, studies were performed 
to minimize proton losses when the beam is extracted from the SPS. 
These studies were critical to maximize the total intensity available 
to the BDF, and will also allow improved delivery of conventional 
North Area beams. In the first instance, exploitation of the facility 
is envisaged to be for the Search for Hidden Particles (SHiP) experi-
ment, looking for weakly-interacting and long-lived particles, and 
the TauFV experiment, which uses a fixed-target geometry to search 
for flavour violation in tau-lepton decays as a sign for BSM physics.

Experiments rooted in research and development for novel accel-
eration techniques. In addition to the proton beam dump proposal 
discussed above, electron beam dump experiments building on 
CERN research and development for new acceleration techniques 
are discussed. The eSPS project17 foresees injecting 3.5 GeV elec-
trons into the SPS using X-band accelerator structures developed 
during intensive research and development for the Compact Linear 
Collider. The electrons would be subsequently accelerated to 16 GeV 
and then slowly extracted to a new experimental facility devoted to 
DM searches using the missing momentum method (Fig. 3c). The 
SPS also delivers beam to the Advanced Proton Plasma Wakefield 
Acceleration (AWAKE) research project. Following the success-
ful demonstration of the AWAKE concept in its first phase18, and 
assuming success of the next phase planned for the coming years, a 
new high-intensity medium-energy pulsed electron beam could be 
implemented in the former CERN neutrino project area to search 
for new particles (AWAKE++)19.

Another proposed SPS-based facility is the Neutrinos from 
Stored Muons (nuSTORM) project, which is designed to deliver a 
neutrino–nucleus scattering programme using beams of neutrinos 
from the decay of muons confined within a storage ring. The SPS 
would provide the primary proton beam for muon production and 
offers a credible location for fast extraction towards a new experi-
mental area20.

Developments in acceleration techniques are also expected 
to foster further experiments that do not rely on a particle beam. 
CERN has traditionally hosted a number of non-accelerator experi-
ments exploiting accelerator technologies for specific new physics 
searches, such as the CAST axion helioscope21 using a spare LHC 
dipole magnet. A systematic survey of this domain has identified 
several technologies, among them high-field magnets, radio-fre-
quency cavities, cryogenics, and vacuum and optical techniques, 
as particularly suited for exchange of expertise between CERN and 
outside laboratories to develop new experimental non-accelerator 
projects22.

PBC projects potential in the worldwide context
The PBC experiments build on the unique features of the facilities 
discussed above to explore the whole spectrum of possible new par-
ticle masses and couplings (Fig. 1a). They also foresee new mea-
surements of the QCD phase transition (Fig. 1b) and of the internal 
dynamics of hadrons. A full list of PBC project proposals is given in 
Table 1, indicating their maturity and approximate time scale. The 
projects will be discussed in the following.

QCD measurements. Some of the PBC QCD-oriented projects 
aim at providing new fundamental insights on the strong phase  
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to minimize proton losses when the beam is extracted from the SPS. 
These studies were critical to maximize the total intensity available 
to the BDF, and will also allow improved delivery of conventional 
North Area beams. In the first instance, exploitation of the facility 
is envisaged to be for the Search for Hidden Particles (SHiP) experi-
ment, looking for weakly-interacting and long-lived particles, and 
the TauFV experiment, which uses a fixed-target geometry to search 
for flavour violation in tau-lepton decays as a sign for BSM physics.

Experiments rooted in research and development for novel accel-
eration techniques. In addition to the proton beam dump proposal 
discussed above, electron beam dump experiments building on 
CERN research and development for new acceleration techniques 
are discussed. The eSPS project17 foresees injecting 3.5 GeV elec-
trons into the SPS using X-band accelerator structures developed 
during intensive research and development for the Compact Linear 
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and then slowly extracted to a new experimental facility devoted to 
DM searches using the missing momentum method (Fig. 3c). The 
SPS also delivers beam to the Advanced Proton Plasma Wakefield 
Acceleration (AWAKE) research project. Following the success-
ful demonstration of the AWAKE concept in its first phase18, and 
assuming success of the next phase planned for the coming years, a 
new high-intensity medium-energy pulsed electron beam could be 
implemented in the former CERN neutrino project area to search 
for new particles (AWAKE++)19.

Another proposed SPS-based facility is the Neutrinos from 
Stored Muons (nuSTORM) project, which is designed to deliver a 
neutrino–nucleus scattering programme using beams of neutrinos 
from the decay of muons confined within a storage ring. The SPS 
would provide the primary proton beam for muon production and 
offers a credible location for fast extraction towards a new experi-
mental area20.

Developments in acceleration techniques are also expected 
to foster further experiments that do not rely on a particle beam. 
CERN has traditionally hosted a number of non-accelerator experi-
ments exploiting accelerator technologies for specific new physics 
searches, such as the CAST axion helioscope21 using a spare LHC 
dipole magnet. A systematic survey of this domain has identified 
several technologies, among them high-field magnets, radio-fre-
quency cavities, cryogenics, and vacuum and optical techniques, 
as particularly suited for exchange of expertise between CERN and 
outside laboratories to develop new experimental non-accelerator 
projects22.

PBC projects potential in the worldwide context
The PBC experiments build on the unique features of the facilities 
discussed above to explore the whole spectrum of possible new par-
ticle masses and couplings (Fig. 1a). They also foresee new mea-
surements of the QCD phase transition (Fig. 1b) and of the internal 
dynamics of hadrons. A full list of PBC project proposals is given in 
Table 1, indicating their maturity and approximate time scale. The 
projects will be discussed in the following.
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LDMX

16 GeV electrons

LHC

SPS

SHIP, TauFV

BDF

400 GeV protons

nuSTORM

AWAKE

AWAKE++

eSPS linac

100 GeV protons

400 GeV protons

∼50 GeV electrons

Proposed beam

Proposed experiment

Proposed facility

Existing facility

North Area targets

North Area beam lines

NA64++, NA62++, KLEVER
COMPASS++, MUonE...

North Area

3.5 GeV electrons

Fig. 2 | Schematic overview of the SPS showing existing and proposed facilities. Solid lines indicate existing beam lines, dashed lines refer to proposed 
new beams, and proposed new experiments are shown in blue. See main text for descriptions of the projects.

FOCUS | PERSPECTIVENATURE PHYSICS

NATURE PHYSICS | VOL 16 | APRIL 2020 | 393–401 | www.nature.com/naturephysics 397

SPS

LHC

Proton beam extraction

2

FIG. 1. Schematic side view of the NA62 setup in 2021. Information from KTAG, GTK, CHANTI, MUV1,2, IRC, and SAC
is not used in this analysis. Not all beam elements are shown.

10 GeV/c; extrapolated positions at the front planes of
NA48-CHOD, CHOD, LKr, MUV3 within the geometri-
cal acceptance of each detector; extrapolated positions at
the first STRAW chamber and LKr front planes isolated
from those of other tracks. Each track must be associ-
ated with a CHOD signal compatible in space and time.
The track time is defined using the time of the associ-
ated NA48-CHOD signal if present, otherwise using the
time of the associated CHOD signal. Track times must
be within 5 ns of the trigger time. Tracks spatially com-
patible and in time with an ANTI0 signal or in time with
a LAV signal are rejected.

Any MUV3 signal within a momentum-dependent
search radius around the extrapolated track position and
within 5 ns of the track time is associated with the
STRAW track. An LKr energy deposit E > 1 GeV is
associated with the track if it is in time and spatially com-
patible, accounting for possible bremsstrahlung-induced
energy deposits. Tracks with an associated MUV3 signal
and E/p < 0.2 are identified as muons. Tracks without
associated MUV3 signals, with (E/p)min < E/p < 1.05
are identified as electrons, where (E/p)min = 0.95 for
p < 150 GeV/c and decreases with momentum otherwise.

The presence of exactly one two-track vertex is re-
quired. The vertex time is evaluated as the mean time
of the two tracks. The vertex position is obtained by the
backwards extrapolation of the tracks, accounting for the
residual magnetic field in the FV. The data distribution
of the vertex longitudinal coordinate (Zvtx) and radial
position in the transverse plane (⇢vtx) is shown in Fig-
ure 2. This distribution is dominated by secondary in-
teractions in LAV1–5 and the vacuum-tank cap. Most
reconstructed vertices originate from secondary interac-
tions in LAV5 (Z ' 152 m). LAV6–12 have larger inner
radii (Figure 1) and do not block the resulting particles.
It is required that the vertex is reconstructed in the re-
stricted FV, defined as shown in Figure 2, to reject these
interactions.

The position of the A0 production point is evaluated
as the point of closest approach between the A0 line of

FIG. 2. Distribution of two-track vertex positions in the plane
(Zvtx, ⇢vtx) for data events, without particle identification
requirements. The black contour defines the restricted FV.

flight, defined by the two-track vertex position and to-
tal momentum direction, and the beam line, parallel to
the Z axis and defined by the average impact point of
the primary protons in the TAX. The signal region (SR)
is defined as an ellipse in the plane of the Z coordinate
(ZTAX) of the A0 production point and the distance be-
tween the two lines (CDATAX):

SR :

✓
ZTAX[m]� 23

12

◆2

+

✓
CDATAX[m]

0.03

◆2

< 1. (1)

This condition reduces the signal acceptance by 1.7% as
shown by simulation. The control region (CR) used to
validate the background estimate is the area outside SR
that satisfies:

CR : � 4 < ZTAX < 50 m and CDATAX < 0.15 m. (2)

Both SR and CR are kept masked until validation of
the background estimate. The data distribution of e+e�
vertices in the plane (ZTAX,CDATAX), after applying the
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Within the PBC study, the design of the BDF has reached the com-
prehensive design stage16. The overall layout in the SPS North Area 
is fully defined and critical aspects such as target design and radio-
protection are well advanced. In particular, studies were performed 
to minimize proton losses when the beam is extracted from the SPS. 
These studies were critical to maximize the total intensity available 
to the BDF, and will also allow improved delivery of conventional 
North Area beams. In the first instance, exploitation of the facility 
is envisaged to be for the Search for Hidden Particles (SHiP) experi-
ment, looking for weakly-interacting and long-lived particles, and 
the TauFV experiment, which uses a fixed-target geometry to search 
for flavour violation in tau-lepton decays as a sign for BSM physics.

Experiments rooted in research and development for novel accel-
eration techniques. In addition to the proton beam dump proposal 
discussed above, electron beam dump experiments building on 
CERN research and development for new acceleration techniques 
are discussed. The eSPS project17 foresees injecting 3.5 GeV elec-
trons into the SPS using X-band accelerator structures developed 
during intensive research and development for the Compact Linear 
Collider. The electrons would be subsequently accelerated to 16 GeV 
and then slowly extracted to a new experimental facility devoted to 
DM searches using the missing momentum method (Fig. 3c). The 
SPS also delivers beam to the Advanced Proton Plasma Wakefield 
Acceleration (AWAKE) research project. Following the success-
ful demonstration of the AWAKE concept in its first phase18, and 
assuming success of the next phase planned for the coming years, a 
new high-intensity medium-energy pulsed electron beam could be 
implemented in the former CERN neutrino project area to search 
for new particles (AWAKE++)19.

Another proposed SPS-based facility is the Neutrinos from 
Stored Muons (nuSTORM) project, which is designed to deliver a 
neutrino–nucleus scattering programme using beams of neutrinos 
from the decay of muons confined within a storage ring. The SPS 
would provide the primary proton beam for muon production and 
offers a credible location for fast extraction towards a new experi-
mental area20.

Developments in acceleration techniques are also expected 
to foster further experiments that do not rely on a particle beam. 
CERN has traditionally hosted a number of non-accelerator experi-
ments exploiting accelerator technologies for specific new physics 
searches, such as the CAST axion helioscope21 using a spare LHC 
dipole magnet. A systematic survey of this domain has identified 
several technologies, among them high-field magnets, radio-fre-
quency cavities, cryogenics, and vacuum and optical techniques, 
as particularly suited for exchange of expertise between CERN and 
outside laboratories to develop new experimental non-accelerator 
projects22.

PBC projects potential in the worldwide context
The PBC experiments build on the unique features of the facilities 
discussed above to explore the whole spectrum of possible new par-
ticle masses and couplings (Fig. 1a). They also foresee new mea-
surements of the QCD phase transition (Fig. 1b) and of the internal 
dynamics of hadrons. A full list of PBC project proposals is given in 
Table 1, indicating their maturity and approximate time scale. The 
projects will be discussed in the following.
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aim at providing new fundamental insights on the strong phase  
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FIG. 1. Schematic side view of the NA62 setup in 2021. Information from KTAG, GTK, CHANTI, MUV1,2, IRC, and SAC
is not used in this analysis. Not all beam elements are shown.

10 GeV/c; extrapolated positions at the front planes of
NA48-CHOD, CHOD, LKr, MUV3 within the geometri-
cal acceptance of each detector; extrapolated positions at
the first STRAW chamber and LKr front planes isolated
from those of other tracks. Each track must be associ-
ated with a CHOD signal compatible in space and time.
The track time is defined using the time of the associ-
ated NA48-CHOD signal if present, otherwise using the
time of the associated CHOD signal. Track times must
be within 5 ns of the trigger time. Tracks spatially com-
patible and in time with an ANTI0 signal or in time with
a LAV signal are rejected.

Any MUV3 signal within a momentum-dependent
search radius around the extrapolated track position and
within 5 ns of the track time is associated with the
STRAW track. An LKr energy deposit E > 1 GeV is
associated with the track if it is in time and spatially com-
patible, accounting for possible bremsstrahlung-induced
energy deposits. Tracks with an associated MUV3 signal
and E/p < 0.2 are identified as muons. Tracks without
associated MUV3 signals, with (E/p)min < E/p < 1.05
are identified as electrons, where (E/p)min = 0.95 for
p < 150 GeV/c and decreases with momentum otherwise.

The presence of exactly one two-track vertex is re-
quired. The vertex time is evaluated as the mean time
of the two tracks. The vertex position is obtained by the
backwards extrapolation of the tracks, accounting for the
residual magnetic field in the FV. The data distribution
of the vertex longitudinal coordinate (Zvtx) and radial
position in the transverse plane (⇢vtx) is shown in Fig-
ure 2. This distribution is dominated by secondary in-
teractions in LAV1–5 and the vacuum-tank cap. Most
reconstructed vertices originate from secondary interac-
tions in LAV5 (Z ' 152 m). LAV6–12 have larger inner
radii (Figure 1) and do not block the resulting particles.
It is required that the vertex is reconstructed in the re-
stricted FV, defined as shown in Figure 2, to reject these
interactions.

The position of the A0 production point is evaluated
as the point of closest approach between the A0 line of

FIG. 2. Distribution of two-track vertex positions in the plane
(Zvtx, ⇢vtx) for data events, without particle identification
requirements. The black contour defines the restricted FV.

flight, defined by the two-track vertex position and to-
tal momentum direction, and the beam line, parallel to
the Z axis and defined by the average impact point of
the primary protons in the TAX. The signal region (SR)
is defined as an ellipse in the plane of the Z coordinate
(ZTAX) of the A0 production point and the distance be-
tween the two lines (CDATAX):

SR :
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+

✓
CDATAX[m]

0.03

◆2

< 1. (1)

This condition reduces the signal acceptance by 1.7% as
shown by simulation. The control region (CR) used to
validate the background estimate is the area outside SR
that satisfies:

CR : � 4 < ZTAX < 50 m and CDATAX < 0.15 m. (2)

Both SR and CR are kept masked until validation of
the background estimate. The data distribution of e+e�
vertices in the plane (ZTAX,CDATAX), after applying the
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Within the PBC study, the design of the BDF has reached the com-
prehensive design stage16. The overall layout in the SPS North Area 
is fully defined and critical aspects such as target design and radio-
protection are well advanced. In particular, studies were performed 
to minimize proton losses when the beam is extracted from the SPS. 
These studies were critical to maximize the total intensity available 
to the BDF, and will also allow improved delivery of conventional 
North Area beams. In the first instance, exploitation of the facility 
is envisaged to be for the Search for Hidden Particles (SHiP) experi-
ment, looking for weakly-interacting and long-lived particles, and 
the TauFV experiment, which uses a fixed-target geometry to search 
for flavour violation in tau-lepton decays as a sign for BSM physics.

Experiments rooted in research and development for novel accel-
eration techniques. In addition to the proton beam dump proposal 
discussed above, electron beam dump experiments building on 
CERN research and development for new acceleration techniques 
are discussed. The eSPS project17 foresees injecting 3.5 GeV elec-
trons into the SPS using X-band accelerator structures developed 
during intensive research and development for the Compact Linear 
Collider. The electrons would be subsequently accelerated to 16 GeV 
and then slowly extracted to a new experimental facility devoted to 
DM searches using the missing momentum method (Fig. 3c). The 
SPS also delivers beam to the Advanced Proton Plasma Wakefield 
Acceleration (AWAKE) research project. Following the success-
ful demonstration of the AWAKE concept in its first phase18, and 
assuming success of the next phase planned for the coming years, a 
new high-intensity medium-energy pulsed electron beam could be 
implemented in the former CERN neutrino project area to search 
for new particles (AWAKE++)19.

Another proposed SPS-based facility is the Neutrinos from 
Stored Muons (nuSTORM) project, which is designed to deliver a 
neutrino–nucleus scattering programme using beams of neutrinos 
from the decay of muons confined within a storage ring. The SPS 
would provide the primary proton beam for muon production and 
offers a credible location for fast extraction towards a new experi-
mental area20.

Developments in acceleration techniques are also expected 
to foster further experiments that do not rely on a particle beam. 
CERN has traditionally hosted a number of non-accelerator experi-
ments exploiting accelerator technologies for specific new physics 
searches, such as the CAST axion helioscope21 using a spare LHC 
dipole magnet. A systematic survey of this domain has identified 
several technologies, among them high-field magnets, radio-fre-
quency cavities, cryogenics, and vacuum and optical techniques, 
as particularly suited for exchange of expertise between CERN and 
outside laboratories to develop new experimental non-accelerator 
projects22.

PBC projects potential in the worldwide context
The PBC experiments build on the unique features of the facilities 
discussed above to explore the whole spectrum of possible new par-
ticle masses and couplings (Fig. 1a). They also foresee new mea-
surements of the QCD phase transition (Fig. 1b) and of the internal 
dynamics of hadrons. A full list of PBC project proposals is given in 
Table 1, indicating their maturity and approximate time scale. The 
projects will be discussed in the following.

QCD measurements. Some of the PBC QCD-oriented projects 
aim at providing new fundamental insights on the strong phase  
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FIG. 1. Schematic side view of the NA62 setup in 2021. Information from KTAG, GTK, CHANTI, MUV1,2, IRC, and SAC
is not used in this analysis. Not all beam elements are shown.

10 GeV/c; extrapolated positions at the front planes of
NA48-CHOD, CHOD, LKr, MUV3 within the geometri-
cal acceptance of each detector; extrapolated positions at
the first STRAW chamber and LKr front planes isolated
from those of other tracks. Each track must be associ-
ated with a CHOD signal compatible in space and time.
The track time is defined using the time of the associ-
ated NA48-CHOD signal if present, otherwise using the
time of the associated CHOD signal. Track times must
be within 5 ns of the trigger time. Tracks spatially com-
patible and in time with an ANTI0 signal or in time with
a LAV signal are rejected.

Any MUV3 signal within a momentum-dependent
search radius around the extrapolated track position and
within 5 ns of the track time is associated with the
STRAW track. An LKr energy deposit E > 1 GeV is
associated with the track if it is in time and spatially com-
patible, accounting for possible bremsstrahlung-induced
energy deposits. Tracks with an associated MUV3 signal
and E/p < 0.2 are identified as muons. Tracks without
associated MUV3 signals, with (E/p)min < E/p < 1.05
are identified as electrons, where (E/p)min = 0.95 for
p < 150 GeV/c and decreases with momentum otherwise.

The presence of exactly one two-track vertex is re-
quired. The vertex time is evaluated as the mean time
of the two tracks. The vertex position is obtained by the
backwards extrapolation of the tracks, accounting for the
residual magnetic field in the FV. The data distribution
of the vertex longitudinal coordinate (Zvtx) and radial
position in the transverse plane (⇢vtx) is shown in Fig-
ure 2. This distribution is dominated by secondary in-
teractions in LAV1–5 and the vacuum-tank cap. Most
reconstructed vertices originate from secondary interac-
tions in LAV5 (Z ' 152 m). LAV6–12 have larger inner
radii (Figure 1) and do not block the resulting particles.
It is required that the vertex is reconstructed in the re-
stricted FV, defined as shown in Figure 2, to reject these
interactions.

The position of the A0 production point is evaluated
as the point of closest approach between the A0 line of

FIG. 2. Distribution of two-track vertex positions in the plane
(Zvtx, ⇢vtx) for data events, without particle identification
requirements. The black contour defines the restricted FV.

flight, defined by the two-track vertex position and to-
tal momentum direction, and the beam line, parallel to
the Z axis and defined by the average impact point of
the primary protons in the TAX. The signal region (SR)
is defined as an ellipse in the plane of the Z coordinate
(ZTAX) of the A0 production point and the distance be-
tween the two lines (CDATAX):

SR :

✓
ZTAX[m]� 23

12

◆2

+

✓
CDATAX[m]

0.03

◆2

< 1. (1)

This condition reduces the signal acceptance by 1.7% as
shown by simulation. The control region (CR) used to
validate the background estimate is the area outside SR
that satisfies:

CR : � 4 < ZTAX < 50 m and CDATAX < 0.15 m. (2)

Both SR and CR are kept masked until validation of
the background estimate. The data distribution of e+e�
vertices in the plane (ZTAX,CDATAX), after applying the
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Within the PBC study, the design of the BDF has reached the com-
prehensive design stage16. The overall layout in the SPS North Area 
is fully defined and critical aspects such as target design and radio-
protection are well advanced. In particular, studies were performed 
to minimize proton losses when the beam is extracted from the SPS. 
These studies were critical to maximize the total intensity available 
to the BDF, and will also allow improved delivery of conventional 
North Area beams. In the first instance, exploitation of the facility 
is envisaged to be for the Search for Hidden Particles (SHiP) experi-
ment, looking for weakly-interacting and long-lived particles, and 
the TauFV experiment, which uses a fixed-target geometry to search 
for flavour violation in tau-lepton decays as a sign for BSM physics.

Experiments rooted in research and development for novel accel-
eration techniques. In addition to the proton beam dump proposal 
discussed above, electron beam dump experiments building on 
CERN research and development for new acceleration techniques 
are discussed. The eSPS project17 foresees injecting 3.5 GeV elec-
trons into the SPS using X-band accelerator structures developed 
during intensive research and development for the Compact Linear 
Collider. The electrons would be subsequently accelerated to 16 GeV 
and then slowly extracted to a new experimental facility devoted to 
DM searches using the missing momentum method (Fig. 3c). The 
SPS also delivers beam to the Advanced Proton Plasma Wakefield 
Acceleration (AWAKE) research project. Following the success-
ful demonstration of the AWAKE concept in its first phase18, and 
assuming success of the next phase planned for the coming years, a 
new high-intensity medium-energy pulsed electron beam could be 
implemented in the former CERN neutrino project area to search 
for new particles (AWAKE++)19.

Another proposed SPS-based facility is the Neutrinos from 
Stored Muons (nuSTORM) project, which is designed to deliver a 
neutrino–nucleus scattering programme using beams of neutrinos 
from the decay of muons confined within a storage ring. The SPS 
would provide the primary proton beam for muon production and 
offers a credible location for fast extraction towards a new experi-
mental area20.

Developments in acceleration techniques are also expected 
to foster further experiments that do not rely on a particle beam. 
CERN has traditionally hosted a number of non-accelerator experi-
ments exploiting accelerator technologies for specific new physics 
searches, such as the CAST axion helioscope21 using a spare LHC 
dipole magnet. A systematic survey of this domain has identified 
several technologies, among them high-field magnets, radio-fre-
quency cavities, cryogenics, and vacuum and optical techniques, 
as particularly suited for exchange of expertise between CERN and 
outside laboratories to develop new experimental non-accelerator 
projects22.

PBC projects potential in the worldwide context
The PBC experiments build on the unique features of the facilities 
discussed above to explore the whole spectrum of possible new par-
ticle masses and couplings (Fig. 1a). They also foresee new mea-
surements of the QCD phase transition (Fig. 1b) and of the internal 
dynamics of hadrons. A full list of PBC project proposals is given in 
Table 1, indicating their maturity and approximate time scale. The 
projects will be discussed in the following.

QCD measurements. Some of the PBC QCD-oriented projects 
aim at providing new fundamental insights on the strong phase  
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Within the PBC study, the design of the BDF has reached the com-
prehensive design stage16. The overall layout in the SPS North Area 
is fully defined and critical aspects such as target design and radio-
protection are well advanced. In particular, studies were performed 
to minimize proton losses when the beam is extracted from the SPS. 
These studies were critical to maximize the total intensity available 
to the BDF, and will also allow improved delivery of conventional 
North Area beams. In the first instance, exploitation of the facility 
is envisaged to be for the Search for Hidden Particles (SHiP) experi-
ment, looking for weakly-interacting and long-lived particles, and 
the TauFV experiment, which uses a fixed-target geometry to search 
for flavour violation in tau-lepton decays as a sign for BSM physics.

Experiments rooted in research and development for novel accel-
eration techniques. In addition to the proton beam dump proposal 
discussed above, electron beam dump experiments building on 
CERN research and development for new acceleration techniques 
are discussed. The eSPS project17 foresees injecting 3.5 GeV elec-
trons into the SPS using X-band accelerator structures developed 
during intensive research and development for the Compact Linear 
Collider. The electrons would be subsequently accelerated to 16 GeV 
and then slowly extracted to a new experimental facility devoted to 
DM searches using the missing momentum method (Fig. 3c). The 
SPS also delivers beam to the Advanced Proton Plasma Wakefield 
Acceleration (AWAKE) research project. Following the success-
ful demonstration of the AWAKE concept in its first phase18, and 
assuming success of the next phase planned for the coming years, a 
new high-intensity medium-energy pulsed electron beam could be 
implemented in the former CERN neutrino project area to search 
for new particles (AWAKE++)19.

Another proposed SPS-based facility is the Neutrinos from 
Stored Muons (nuSTORM) project, which is designed to deliver a 
neutrino–nucleus scattering programme using beams of neutrinos 
from the decay of muons confined within a storage ring. The SPS 
would provide the primary proton beam for muon production and 
offers a credible location for fast extraction towards a new experi-
mental area20.

Developments in acceleration techniques are also expected 
to foster further experiments that do not rely on a particle beam. 
CERN has traditionally hosted a number of non-accelerator experi-
ments exploiting accelerator technologies for specific new physics 
searches, such as the CAST axion helioscope21 using a spare LHC 
dipole magnet. A systematic survey of this domain has identified 
several technologies, among them high-field magnets, radio-fre-
quency cavities, cryogenics, and vacuum and optical techniques, 
as particularly suited for exchange of expertise between CERN and 
outside laboratories to develop new experimental non-accelerator 
projects22.

PBC projects potential in the worldwide context
The PBC experiments build on the unique features of the facilities 
discussed above to explore the whole spectrum of possible new par-
ticle masses and couplings (Fig. 1a). They also foresee new mea-
surements of the QCD phase transition (Fig. 1b) and of the internal 
dynamics of hadrons. A full list of PBC project proposals is given in 
Table 1, indicating their maturity and approximate time scale. The 
projects will be discussed in the following.

QCD measurements. Some of the PBC QCD-oriented projects 
aim at providing new fundamental insights on the strong phase  
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Within the PBC study, the design of the BDF has reached the com-
prehensive design stage16. The overall layout in the SPS North Area 
is fully defined and critical aspects such as target design and radio-
protection are well advanced. In particular, studies were performed 
to minimize proton losses when the beam is extracted from the SPS. 
These studies were critical to maximize the total intensity available 
to the BDF, and will also allow improved delivery of conventional 
North Area beams. In the first instance, exploitation of the facility 
is envisaged to be for the Search for Hidden Particles (SHiP) experi-
ment, looking for weakly-interacting and long-lived particles, and 
the TauFV experiment, which uses a fixed-target geometry to search 
for flavour violation in tau-lepton decays as a sign for BSM physics.

Experiments rooted in research and development for novel accel-
eration techniques. In addition to the proton beam dump proposal 
discussed above, electron beam dump experiments building on 
CERN research and development for new acceleration techniques 
are discussed. The eSPS project17 foresees injecting 3.5 GeV elec-
trons into the SPS using X-band accelerator structures developed 
during intensive research and development for the Compact Linear 
Collider. The electrons would be subsequently accelerated to 16 GeV 
and then slowly extracted to a new experimental facility devoted to 
DM searches using the missing momentum method (Fig. 3c). The 
SPS also delivers beam to the Advanced Proton Plasma Wakefield 
Acceleration (AWAKE) research project. Following the success-
ful demonstration of the AWAKE concept in its first phase18, and 
assuming success of the next phase planned for the coming years, a 
new high-intensity medium-energy pulsed electron beam could be 
implemented in the former CERN neutrino project area to search 
for new particles (AWAKE++)19.

Another proposed SPS-based facility is the Neutrinos from 
Stored Muons (nuSTORM) project, which is designed to deliver a 
neutrino–nucleus scattering programme using beams of neutrinos 
from the decay of muons confined within a storage ring. The SPS 
would provide the primary proton beam for muon production and 
offers a credible location for fast extraction towards a new experi-
mental area20.

Developments in acceleration techniques are also expected 
to foster further experiments that do not rely on a particle beam. 
CERN has traditionally hosted a number of non-accelerator experi-
ments exploiting accelerator technologies for specific new physics 
searches, such as the CAST axion helioscope21 using a spare LHC 
dipole magnet. A systematic survey of this domain has identified 
several technologies, among them high-field magnets, radio-fre-
quency cavities, cryogenics, and vacuum and optical techniques, 
as particularly suited for exchange of expertise between CERN and 
outside laboratories to develop new experimental non-accelerator 
projects22.

PBC projects potential in the worldwide context
The PBC experiments build on the unique features of the facilities 
discussed above to explore the whole spectrum of possible new par-
ticle masses and couplings (Fig. 1a). They also foresee new mea-
surements of the QCD phase transition (Fig. 1b) and of the internal 
dynamics of hadrons. A full list of PBC project proposals is given in 
Table 1, indicating their maturity and approximate time scale. The 
projects will be discussed in the following.

QCD measurements. Some of the PBC QCD-oriented projects 
aim at providing new fundamental insights on the strong phase  
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Within the PBC study, the design of the BDF has reached the com-
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CERN research and development for new acceleration techniques 
are discussed. The eSPS project17 foresees injecting 3.5 GeV elec-
trons into the SPS using X-band accelerator structures developed 
during intensive research and development for the Compact Linear 
Collider. The electrons would be subsequently accelerated to 16 GeV 
and then slowly extracted to a new experimental facility devoted to 
DM searches using the missing momentum method (Fig. 3c). The 
SPS also delivers beam to the Advanced Proton Plasma Wakefield 
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ful demonstration of the AWAKE concept in its first phase18, and 
assuming success of the next phase planned for the coming years, a 
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PBC projects potential in the worldwide context
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discussed above to explore the whole spectrum of possible new par-
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dynamics of hadrons. A full list of PBC project proposals is given in 
Table 1, indicating their maturity and approximate time scale. The 
projects will be discussed in the following.
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aim at providing new fundamental insights on the strong phase  
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- SHiP has been approved recently by CERN and will start to explore in 2031 in the North Area’s ECN3 hall

[https://home.web.cern.ch/news/news/experiments]

- LDMX@eSPS, HIKE, SHADOWS, etc are proposed at CERN
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※ Energy transfer to nucleus is modest in Bremsstrahlung process

Missing momentum search, e.g., LDMX:
Tracker

DM

Thin target EM and Hadron calorimeter

e−e−

Tracker

pbeam

χ

χ
e− e−

γ*

A′￼

Nucleus 

Bremsstrahlung process

ϵe

χ
pDM

e−pe−

Missing momentum:
pDM ≃ pbeam− pe−

※ Target is thin to reconstruct final state electron

・# of missing events:

~ (# of produced DM) × (Probability DM reaches detector) × (Probability DM is detected)
Acceptance

∝ (Beam flux)×(ϵe)2 ※ not proportional to  in contrast to recoil and visible search(ϵe)2



Missing energy search, e.g., NA64: Missing momentum search, e.g., LDMX:
Tracker

DM

Thin target

Missing energy/momentum signal processes

e−

χ

χ
e− e−

γ*

A′￼

Nucleus 

χ

Missing energy:

EDSEe−

Bremsstrahlung process

χ

χ
e− e−

γ*

A′￼

Nucleus 

Bremsstrahlung process

pbeam

EM and Hadron calorimeter

e−pe−

χ
pDS

Missing momentum:
EDS ≃ Ebeam− Ee− pDS ≃ pbeam− pe−

・# of missing events:

Acceptance is good, but the continuous beam(low-intensity) is needed to reconstruct final state 

~ (# of produced DM) × (Probability DM reaches detector) × (Probability DM is detected)

※ not proportional to  in contrast to recoil and visible search(ϵe)2

※ Energy transfer to nucleus is modest in Bremsstrahlung process

ϵe ϵe

∝ (Beam flux)×(ϵe)2

e−

Ebeam

Tracker

e−

TrackerEM and hadron calorimeter, i.e., active target 

Acceptance

Benchmark model: : Dark photon, : Dark Matter, : SM EM current  A′￼ χ Jμ
EM

ℒ ⊃ ϵe A′￼μ Jμ
EM −gD A′￼μ χ̄γμχ
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・Benchmark model (1): ℒ ⊃ ϵ ⋅ eA′￼μJμ
EM − gDA′￼μ χ̄γμχ

χ

χ

SM

SM

A′￼

gD eϵ

⟨σv⟩ann ∝ y/m2
χ with y ≡ ϵ2αD (mχ /mA′￼)

4

DM annihilation cross section

where : dark photon, and : DM  A′￼ χ

Excluded regions by beam dump experiments (1)

 saturates observed DM abundanceχ
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Excluded regions by beam dump experiments (1)

Rescattering Missing signal 
E137 NA64 
LSND 

MiniBooNE 
COHERENT CsI 

⇒ parasitic running of neutrino experiment

Electron beam

Proton beam

※ MiniBooNE is off-target running to reduce neutrino BG 

※ Limited missing signal experiments are conducted 
because of the severe beam condition

LS
ND

E1
37

COHERENT CsI

MiniBooNE
NA64

・Benchmark model (1): ℒ ⊃ ϵ ⋅ eA′￼μJμ
EM − gDA′￼μ χ̄γμχ where : dark photon, and : DM  A′￼ χ

αD ≡ g2
D/4π = 0.5, mA′￼

= 3mχ
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Sensitivity of beam dump experiments at future accelerators (1)

Rescattering Missing signal 

PIP2-BD 
DUNE 

DUNE-PRISM 

SHiP 

ILC-BDX LDMX Electron beam

Proton beam
- LDMX is highly sensitive because of good acceptance

leverage DUNE facilities

・Benchmark model (1): ℒ ⊃ ϵ ⋅ eA′￼μJμ
EM − gDA′￼μ χ̄γμχ where : dark photon, and : DM  A′￼ χ

Examples of BD at future accelerators

- DUNE-PRISM(off-axis detector) is more sensitive than 
DUNE(on-axis detector) because of neutrino BG 
reductions 

- ILC is sensitive because of high energy positron 
annihilation
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※ FLArE is LHC auxiliary detector experiments in HL-LHC phase



・Benchmark model (2): ℒ ⊃ ϵ ⋅ eA′￼μJμ
EM where : dark photon  A′￼

Excluded regions by beam dump experiments (2)
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・Benchmark model (2): ℒ ⊃ ϵ ⋅ eA′￼μJμ
EM where : dark photon  A′￼

Visible decay 
ILC-BDX 

AWAKE

HIKE 

DUNE 

muon-BD
SHiP 

LDMX 

Proton beam

Electron beam ILC, SLAC, 
and CERN

muon collider

SPS, neutrino 
experiments, etc
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muon-BD
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AWAKE

REDTOP

Muon beam

- ILC can be sensitive to small  because of positron annihilationϵ
- AWAKE and muon-BD can be sensitive to large  because of 
thick target and high beam energy, respectively

ϵ

- REDTOP is  meson factory and can perform prompt decay 
search(sensitive to large )

η
ϵ

FASER2

※ FASER2 is LHC auxiliary detector experiments in HL-LHC phase

Sensitivity of beam dump experiments at future accelerators (2)

Examples of BD at future accelerators



Summary 
- The beam dump experiment is high luminosity experiment sensitive to Sub-GeV scale 

・Regarding the dark sector search, the physical potential of the beam dump experiment depends on 
various factors, e.g., beam flux, beam energy, beam particle, acceptance, detection approach,…  

・The beam dump experiment tandems with the future accelerators and potentially sheds light on the 
beyond the SM

- The beam dump experiment can run in parallel with accelerator-based experiments

・Key features of beam dump(fixed target) experiments:

⇒ The physical potential is complemental to the other experiments, e.g., collider experiments, direct 
detection experiments

⇒ The beam dump experiments are economical and would also run with future accelerators, 
e.g., HL-LHC, ILC, and muon collider.

⇒ High energy and high flux beams in the future accelerator lead to high sensitivity of the parasitic 
beam dump experiments


