Physics potential of beam dump experiments at future accelerators

Corfu Workshop on Future Accelerators 25 May 2024

Daiki Ueda (Technion)

· Unsolved problems, e.g., neutrino mass, hierarchy problem, and dark matter(DM), remain in the SM

• Unsolved problems, e.g., neutrino mass, hierarchy problem, and dark matter(DM), remain in the SM • A simple extension of the SM: add dark sector comprising new SM gauge singlet states to SM sector

• Unsolved problems, e.g., neutrino mass, hierarchy problem, and dark matter(DM), remain in the SM A simple extension of the SM: add dark sector comprising new SM gauge singlet states to SM sector

• Unsolved problems, e.g., neutrino mass, hierarchy problem, and dark matter(DM), remain in the SM • A simple extension of the SM: add dark sector comprising new SM gauge singlet states to SM sector

Ex. renormalizable interaction b/w SM and dark sector

 $-\frac{1}{2\cos\theta_W}B_{\mu\nu}F'_{\mu\nu}$ $B_{\mu
u}$ hypercharge field strength, $F_{\mu
u}' U(1)'$ filed strength

• Unsolved problems, e.g., neutrino mass, hierarchy problem, and dark matter(DM), remain in the SM A simple extension of the SM: add dark sector comprising new SM gauge singlet states to SM sector

Ex. renormalizable interaction b/w SM and dark sector

 $\frac{1}{2\cos\theta_W} \frac{B_{\mu\nu}F_{\mu\nu}}{F_{\mu\nu}}$ $B_{\mu\nu}$ hypercharge field strength, $F'_{\mu\nu}$ U(1)' filed strength $= -H^{\dagger}H(AS + \lambda S^2)$ H SM Higgs field, S SM singlet scalar field

• Unsolved problems, e.g., neutrino mass, hierarchy problem, and dark matter(DM), remain in the SM • A simple extension of the SM: add dark sector comprising new SM gauge singlet states to SM sector

Ex. renormalizable interaction b/w SM and dark sector

$$= -\frac{\epsilon}{2\cos\theta_W} B_{\mu\nu} F'_{\mu\nu} \qquad B_{\mu\nu} \text{ hypercharge field strength, } F'_{\mu\nu} U(1)' \text{ filed strength}}$$
$$= -H^{\dagger}H (A S + \lambda S^2) \qquad H \text{ SM Higgs field, } S \text{ SM singlet scalar field}$$
$$= -\sum y_{\nu}^{\alpha I} (\bar{L}_{\alpha} H) N_I \qquad L \text{ SM lepton field, } N \text{ SM singlet fermion field}$$

• Unsolved problems, e.g., neutrino mass, hierarchy problem, and dark matter(DM), remain in the SM • A simple extension of the SM: add dark sector comprising new SM gauge singlet states to SM sector

Ex. renormalizable interaction b/w SM and dark sector

$$= -\frac{\epsilon}{2\cos\theta_W} B_{\mu\nu} F'_{\mu\nu} \qquad B_{\mu\nu} \text{ hypercharge field strength, } F'_{\mu\nu} U(1)' \text{ filed st}$$
$$= -H^{\dagger}H (AS + \lambda S^2) \qquad H \text{ SM Higgs field, } S \text{ SM singlet scalar field}$$
$$= -\sum y_{\nu}^{\alpha I} (\bar{L}_{\alpha} H) N_I \qquad L \text{ SM lepton field, } N \text{ SM singlet fermion field}$$

[See Sebastian Trojanowski's, Bhupal Dev's, and Vedran Brdar's slide]

Neutrino portal can yield neutrino mass

Higgs portal, e.g., Twin Higgs models, can solve hierarchy problem

• Unsolved problems, e.g., neutrino mass, hierarchy problem, and dark matter(DM), remain in the SM A simple extension of the SM: add dark sector comprising new SM gauge singlet states to SM sector

Ex. renormalizable interaction b/w SM and dark sector

 $\mathscr{L}_{\text{vector portal}}^{d=4} = -\frac{1}{2\cos\theta_W} \frac{B_{\mu\nu}F'_{\mu\nu}}{B_{\mu\nu}F'_{\mu\nu}}$ $B_{\mu\nu}$ hypercharge field strength, $F'_{\mu\nu}$ U(1)' filed strength $\mathscr{L}_{\text{scalar portal}}^{d=3,4} = -H^{\dagger}H(AS + \lambda S^2)$ H SM Higgs field, S SM singlet scalar field

 $\mathscr{L}_{\text{neutrino portal}}^{d=4} = -\sum y_{\nu}^{\alpha I} (\bar{L}_{\alpha} H) N_{I}$ L SM lepton field, N SM singlet fermion field

[See Sebastian Trojanowski's, Bhupal Dev's, and Vedran Brdar's slide]

- Unsolved problems, e.g., neutrino mass, hierarchy problem, and dark matter(DM), remain in the SM A simple extension of the SM: add dark sector comprising new SM gauge singlet states to SM sector

Higgs portal, e.g., Twin Higgs models, can solve hierarchy problem

Ex. renormalizable interaction b/w SM and dark sector

$$= -\frac{\epsilon}{2\cos\theta_W} B_{\mu\nu} F'_{\mu\nu} \qquad B_{\mu\nu} \text{ hypercharge field strength, } F'_{\mu\nu} U(1)' \text{ filed strength}}$$
$$= -H^{\dagger}H (AS + \lambda S^2) \qquad H \text{ SM Higgs field, } S \text{ SM singlet scalar field}$$

- $\mathscr{L}_{neutrino portal}^{d=4} = -\sum y_{\nu}^{\alpha I} (\bar{L}_{\alpha} H) N_{I}$ L SM lepton field, N SM singlet fermion field
 - [See Sebastian Trojanowski's, Bhupal Dev's, and Vedran Brdar's slide]
- Neutrino portal can yield neutrino mass

Dark sector potentially includes DM candidates

[attractive features of thermal DM]

[attractive features of thermal DM]

- Freeze-out mechanism can yield DM abundance \Rightarrow DM-SM reaction cross section can be large

[attractive features of thermal DM]

- Viable DM mass range is limited \Rightarrow Thermal mass window (~1 MeV to ~100 TeV)

• One of the DM candidates is thermal DM, i.e., DM is thermalized with SM particles in the early universe

- Freeze-out mechanism can yield DM abundance \Rightarrow DM-SM reaction cross section can be large

[attractive features of thermal DM]

- Freeze-out mechanism can yield DM abundance \Rightarrow DM-SM reaction cross section can be large - Viable DM mass range is limited \Rightarrow Thermal mass window (~1 MeV to ~100 TeV)

[attractive features of thermal DM]

- Freeze-out mechanism can yield DM abundance \Rightarrow DM-SM reaction cross section can be large - Viable DM mass range is limited \Rightarrow Thermal mass window (~1 MeV to ~100 TeV)

[attractive features of thermal DM]

- Freeze-out mechanism can yield DM abundance \Rightarrow DM-SM reaction cross section can be large - Viable DM mass range is limited \Rightarrow Thermal mass window (~1 MeV to ~100 TeV)

Sub-GeV dark matter

~1 MeV

Sub-GeV dark matter

Sub-GeV DM is also a DM candidate but is feebly coupled with SM particles

- Sub-GeV DM is also a DM candidate but is feebly coupled with SM particles

- Benchmark model (vector portal): $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi$ A': dark photon, χ : DM, J^{μ}_{EM} : SM EM current

Hight intensity experiments are needed to search for Sub-GeV dark states

Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV particles

- - three components of beam dump experiment:

• Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV particles

- three components of beam dump experiment:

Beam particle

e.g., electron, proton, and muon

Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV particles

- - three components of beam dump experiment:

Beam particle

Beam dump(fixed-target)

e.g., electron, proton, and muon

· Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV particles

- - three components of beam dump experiment:

Beam particle

Beam dump(fixed-target)

e.g., electron, proton, and muon

· Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV particles

- - three components of beam dump experiment:

Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV particles

Detector

Beam dump(fixed-target)

- - three components of beam dump experiment:

• Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV particles

- - three components of beam dump experiment:

[My talk's focus]

Detection of dark state signatures produced by beam-target collision

· Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV particles

Outline

- Introduction
 - dark sector and Sub-GeV dark matter
 - beam dump(fixed-target) experiment
- Key features of beam dump experiment
- A classification of beam dump experiment
- Sensitivity of beam dump experiments at future accelerators
- Summary

Key features of beam dump experiment (1)

[Center of mass energy]

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2}$$

where m_{beam} is mass of beam particle, m_{target} is mass of target particle, and E_{beam} is beam energy

 $+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}}$

* This feature is determined only by beam and target properties

Key features of beam dump experiment (1)

[Center of mass energy]

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2}$$

where $m_{\rm beam}$ is mass of beam particle, $m_{\rm target}$ is mass of target particle, and $E_{\rm beam}$ is beam energy

 Center of mass energy is smaller than collid are kinematically allowed

$$+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}}$$

· Center of mass energy is smaller than collider energy scale, but Sub-GeV dark particle productions

* This feature is determined only by beam and target properties

Key features of beam dump experiment (1)

[Center of mass energy]

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2}$$

are kinematically allowed

Ex. Beam = electron (
$$m_{\text{beam}}$$
 = 0.5 MeV),

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2} +$$

$$+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}}$$

where m_{beam} is mass of beam particle, m_{target} is mass of target particle, and E_{beam} is beam energy

• Center of mass energy is smaller than collider energy scale, but Sub-GeV dark particle productions

target = nucleon (m_{target} = 1 GeV), E_{beam} = 10 GeV

 $+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}} \simeq 5 \text{ GeV}$

* This feature is determined only by beam and target properties

[Center of mass energy]

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2}$$

are kinematically allowed

Ex. Beam = electron (
$$m_{\text{beam}}$$
 = 0.5 MeV), target = nucleon (m_{target} = 1 GeV), E_{beam} = 10 GeV

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2} +$$

Boosted Sub-GeV particles can be produced in beam dump

$$+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}}$$

where m_{beam} is mass of beam particle, m_{target} is mass of target particle, and E_{beam} is beam energy

• Center of mass energy is smaller than collider energy scale, but Sub-GeV dark particle productions

 $+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}} \simeq 5 \text{ GeV}$

Beam dump experiment is high luminosity frontier

Beam dump experiment is high luminosity frontier

(# of produced DS) = (DS production cross section $[L^2]$)

X

Beam dump experiment is high luminosity frontier

(# of produced DS) = (DS production cross section $[L^2]$)

 \times (Beam flux [T⁻¹]) \times

Beam dump experiment is high luminosity frontier

(# of produced DS) = (DS production cross section $[L^2]$)

 \times (Beam flux [T⁻¹]) \times (Operation time [T]) \times

Beam dump experiment is high luminosity frontier

(# of produced DS) = (DS production cross section $[L^2]$)

× (Beam flux $[T^{-1}]$)× (Operation time [T]) × (# density of target $[L^{-3}]$) ×

Beam dump experiment is high luminosity frontier

(# of produced DS) = (DS production cross section $[L^2]$)

× (Beam flux $[T^{-1}]$)× (Operation time [T]) × (# density of target $[L^{-3}]$)× (Track length [L])

Beam dump experiment is high luminosity frontier

(# of produced DS) = (DS production cross section $[L^2]$)

- × (Beam flux $[T^{-1}]$)× (Operation time [T]) × (# density of target $[L^{-3}]$)× (Track length [L])

Beam dump experiment is high luminosity frontier

(# of produced DS) = (DS production cross section $[L^2]$)

- × (Beam flux $[T^{-1}]$)× (Operation time [T]) × (# density of target $[L^{-3}]$)× (Track length [L])

Beam dump experiment is high luminosity frontier

(# of produced DS) = (DS production cross section $[L^2]$)

Beam dump experiment is high luminosity frontier

Beam dump experiment is high luminosity frontier

Ex. Target = Iron, # of injected proton beam = 10^{20}

Beam dump experiment is high luminosity frontier

Beam dump experiment is high luminosity frontier

Beam dump experiment can run in parallel with accelerator experiments

- · Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

MiniBooNE, LSND, CHARM, COHERENT CsI, CCM120 \Rightarrow parasitic running of neutrino experiment

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

 - Ex. MiniBooNE experiment

MiniBooNE, LSND, CHARM, COHERENT CsI, CCM120 \Rightarrow parasitic running of neutrino experiment

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

 - Ex. MiniBooNE experiment

MiniBooNE, LSND, CHARM, COHERENT CsI, CCM120 \Rightarrow parasitic running of neutrino experiment

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

MiniBooNE, LSND, CHARM, COHERENT CsI, CCM120 \Rightarrow parasitic running of neutrino experiment

Ex. MiniBooNE experiment

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

MiniBooNE, LSND, CHARM, COHERENT CsI, CCM120 \Rightarrow parasitic running of neutrino experiment

Ex. MiniBooNE experiment

Beam dump experiments can use accelerator facilities of neutrino experiments

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

NA62, NA64, etc \Rightarrow leverage extracted beam from CERN Super Proton Synchrotron(SPS) accelerator

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

NA62, NA64, etc \Rightarrow leverage extracted beam from CERN Super Proton Synchrotron(SPS) accelerator

~50 GeV electrons

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

NA62, NA64, etc \Rightarrow leverage extracted beam from CERN Super Proton Synchrotron(SPS) accelerator

 \sim 50 GeV electrons

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

NA62, NA64, etc \Rightarrow leverage extracted beam from CERN Super Proton Synchrotron(SPS) accelerator

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

Beam dump experiments can be parasitic runnings of accelerator experiments

NA62, NA64, etc \Rightarrow leverage extracted beam from CERN Super Proton Synchrotron(SPS) accelerator

- Beam dump experiment can run in parallel with accelerator experiments
 - Ex. current and past experiments:

 \Rightarrow beam dump experiments will be conducted at **future accelerators**

NA62, NA64, etc \Rightarrow leverage extracted beam from CERN Super Proton Synchrotron(SPS) accelerator

Beam dump experiments can be parasitic runnings of accelerator experiments

- space for muon shield is enough and beam dump facilities could be constructed if ILC is approved
- beam dump experiments in CLIC and C³ would be similarly performed

Ex. ILC-BDX \Rightarrow parasitic running of International Linear Collider(ILC) experiment

- space for muon shield is enough and beam dump facilities could be constructed if ILC is approved
- beam dump experiments in CLIC and C³ would be similarly performed

Beam dump experiments will run in parallel with future accelerator facilities

Ex. SHiP, LDMX, HIKE, SHADOWS \Rightarrow parasitic running of HL-LHC, etc

Ex. SHiP, LDMX, HIKE, SHADOWS \Rightarrow parasitic running of HL-LHC, etc

Ex. SHiP, LDMX, HIKE, SHADOWS \Rightarrow parasitic running of HL-LHC, etc

Ex. SHiP, LDMX, HIKE, SHADOWS \Rightarrow parasitic running of HL-LHC, etc

Ex. SHiP, LDMX, HIKE, SHADOWS \Rightarrow parasitic running of HL-LHC, etc

- LDMX@eSPS, HIKE, SHADOWS, etc are proposed at CERN

Beam dump experiments will run in parallel with future accelerator facilities

- SHiP has been approved recently by CERN and will start to explore in 2031 in the North Area's ECN3 hall

- Examples of proposed beam dump experiments at future accelerator
 - SHiP, LDMX^{*}, HIKE, SHADOWS, etc [1901.09966, 2211.16586, etc]

 \Rightarrow parasitic running of HL-LHC, etc

- ILC-BDX [1507.02809, 2009.13790, etc]
 - \Rightarrow parasitic running of International Linear Collider(ILC) experiment

* LDMX@SLAC received pre-project funds from Dark Matter New Initiatives and awaits construction funding

- Examples of proposed beam dump experiments at future accelerator
 - SHiP, LDMX^{*}, HIKE, SHADOWS, etc [1901.09966, 2211.16586, etc]

 \Rightarrow parasitic running of HL-LHC, etc

- ILC-BDX [1507.02809, 2009.13790, etc]
 - \Rightarrow parasitic running of International Linear Collider(ILC) experiment
- [2002.03005, 2203.08079] - DUNE, PIP2-BD, etc
 - \Rightarrow parasitic running of accelerator facilities of future neutrino experiment

* LDMX@SLAC received pre-project funds from Dark Matter New Initiatives and awaits construction funding

- Examples of proposed beam dump experiments at future accelerator
 - SHiP, LDMX^{*}, HIKE, SHADOWS, etc [1901.09966, 2211.16586, etc]

 \Rightarrow parasitic running of HL-LHC, etc

- ILC-BDX [1507.02809, 2009.13790, etc]
 - \Rightarrow parasitic running of International Linear Collider(ILC) experiment
- [2002.03005, 2203.08079] - DUNE, PIP2-BD, etc
 - \Rightarrow parasitic running of accelerator facilities of future neutrino experiment
- Muon beam dump experiments [2202.12302, 2310.16110]
 - \Rightarrow parasitic running of muon collider experiments

* LDMX@SLAC received pre-project funds from Dark Matter New Initiatives and awaits construction funding

- Examples of proposed beam dump experiments at future accelerator
 - SHiP, LDMX^{*}, HIKE, SHADOWS, etc [1901.09966, 2211.16586, etc]

 \Rightarrow parasitic running of HL-LHC, etc

- ILC-BDX [1507.02809, 2009.13790, etc]
 - \Rightarrow parasitic running of International Linear Collider(ILC) experiment
- [2002.03005, 2203.08079] - DUNE, PIP2-BD, etc
 - \Rightarrow parasitic running of accelerator facilities of future neutrino experiment
- Muon beam dump experiments [2202.12302, 2310.16110]

 \Rightarrow parasitic running of muon collider experiments

Beam dump experiments will run in parallel with future accelerator facilities

* LDMX@SLAC received pre-project funds from Dark Matter New Initiatives and awaits construction funding

Outline

- Introduction
 - dark sector and Sub-GeV dark matter
 - beam dump(fixed-target) experiment
- Key features of beam dump experiment
- A classification of beam dump experiment
- Sensitivity of beam dump experiments at future accelerators
- Summary

• Past, current, and future beam dump experiments use the following detection methods:

Beam dump

Beam particle

Detector

• Past, current, and future beam dump experiments use the following detection methods:

Detector

• Past, current, and future beam dump experiments use the following detection methods:

1. Recoil search

Past and current experiments	
Future experiments	

Past and current experiments	
Future experiments	

Past and current experiments	
Future experiments	

Past and current experiments	
Future experiments	

Past and current experiments	
Future experiments	

Past and current experiments	
Future experiments	

Past and current experiments	
Future experiments	

Past and current experiments	
Future experiments	

Past and current experiments	NA64e, NA64µ, PADN
Future experiments	

Past and current experiments	NA64e, NA64µ, PADM
Future experiments	LDMX, M ³ , etc

• Past, current, and future beam dump experiments use the following detection methods:

Past and current experiments	NA64e, NA64µ, PADME
Future experiments	LDMX, M ³ , etc

Beam dump experiments are divided into three detection approaches

• Past, current, and future beam dump experiments use the following detection methods:

Past and current experiments	NA64e, NA64µ, PADME
Future experiments	LDMX, M ³ , etc

Beam dump experiments are divided into three detection approaches

Typical setup:

Beam

Typical setup:

Beam

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

rrent

• Typical setup:

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

• Typical setup:

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Typical setup:

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Typical setup:

of detected DS signature (signal events):

Typical setup:

of detected DS signature (signal events):

~ (# of produced DS) ×

• Typical setup:

of detected DS signature (signal events):

 \sim (# of produced DS) \times (Probability DS reaches detector) \times

of detected DS signature (signal events):

 \sim (# of produced DS) \times (Probability DS reaches detector) \times

to	r

	_

of detected DS signature (signal events):

to	r

of detected DS signature (signal events):

 \propto (Beam flux)×(ϵe)²

to	r

of detected DS signature (signal events):

 \propto (Beam flux)×(ϵe)²

 \propto (height of detector)² \times (length b/w beam dump and detector)⁻²

to	r

of detected DS signature (signal events):

 \propto (Beam flux)×(ϵe)²

 \propto (height of detector)² \times (length b/w beam dump and detector)⁻²

\sim (# of produced DS) × (Probability DS reaches detector) × (Probability DS is detected)

 \propto (Length of detector)×(ϵe)²

to	r

of detected DS signature (signal events):

~ (# of produced DS) ×

 \propto (Beam flux)×(ϵe)²

(height of detector)² \propto \times (length b/w beam dump and detector)⁻²

Acceptance

(Probability DS reaches detector) \times (Probability DS is detected)

 \propto (Length of detector)×(ϵe)²

to	r

of detected DS signature (signal events):

~ (# of produced DS) ×

 \propto (Beam flux)×(ϵe)²

(height of detector)² \propto \times (length b/w beam dump and detector)⁻²

Acceptance

(Probability DS reaches detector) \times (Probability DS is detected)

 \propto (Length of detector)×(ϵe)²

High flux beam, near* and large detectors are suited for recoil search

to	r

of detected DS signature (signal events):

~ (# of produced DS) ×

 \propto (Beam flux)×(ϵe)²

(height of detector)² \propto \times (length b/w beam dump and detector)⁻²

* Detector cannot be too near because large beam dump or shield is needed to reduce beam-induced BG

Acceptance

(Probability DS reaches detector) \times (Probability DS is detected)

 \propto (Length of detector)×(ϵe)²

High flux beam, near* and large detectors are suited for recoil search

to	r)

		ł

• Typical setup:

Beam

Detector/Decay volume

• Typical setup:

Beam

Detector/Decay volume

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM}$ where A': Dark photon, and J^{μ}_{EM} : SM EM current

• Typical setup:

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM}$ where A': Dark photon, and J^{μ}_{EM} : SM EM current

• Typical setup:

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM}$ where A': Dark photon, and J^{μ}_{EM} : SM EM current

• Typical setup:

of detected dark state(DS) signature:

of detected dark state(DS) signature:

~ (# of produced DS) ×

of detected dark state(DS) signature:

 \sim (# of produced DS) \times (Probability DS reaches detector) \times

of detected dark state(DS) signature:

 \sim (# of produced DS) \times (Probability DS reaches detector) \times

of detected dark state(DS) signature:

of detected dark state(DS) signature:

Acceptance

• # of detected dark state(DS) signature:

 \propto

Acceptance

 \sim (# of produced DS) × (Probability DS reaches detector) × (Probability DS is detected)

decay length of $A' \ge$ length of beam dump 0 decay length of A' < length of beam dump

• # of detected dark state(DS) signature:

~ (# of produced DS) × (Probability DS read

$$\propto \begin{cases} 1 \\ 0 \end{cases}$$

Thick(Thin) target experiments can be sensitive to long(short) lifetime dark states

* In thin target experiments, e.g, HPS, NA64(visible decay search), continuous beam(low-intensity) is used to distinguish signal signatures

Acceptance

ches detector) \times (Probability DS is detected)

- decay length of $A' \ge$ length of beam dump
- 0 decay length of A' < length of beam dump

Missing energy search, e.g., NA64:

Missing energy search, e.g., NA64:

EM and hadron calorimeter, i.e., active target

Missing energy search, e.g., NA64:

Tracker EM and hadron calorimeter, i.e., active target

Missing energy search, e.g., NA64:

Tracker EM and hadron calorimeter, i.e., active target

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

EM and Hadron calorimeter

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

EM and Hadron calorimeter

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Missing momentum search, e.g., LDMX:

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

of missing events:

Benchmark model:
$$\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi$$

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

A': Dark photon, χ : Dark Matter, $J_{\rm EM}^{\mu}$: SM EM current

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

• # of missing events:

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

• # of missing events:

* not proportional to $(\epsilon e)^2$ in contrast to recoil and visible search

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Acceptance

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

• # of missing events:

~ (# of produced DM) × (Probability DM rea

$$\propto$$
 (Beam flux)×(ϵe)² * not proportional

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Acceptance

ches detector) × (Probability DM is detected)

Ito $(\epsilon e)^2$ in contrast to recoil and visible search

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Missing energy search, e.g., NA64:

• *#* of missing events:

 \propto (Beam flux)×(ϵe)²

Acceptance is good, but the continuous beam (low-intensity) is needed to reconstruct final state

Missing momentum search, e.g., LDMX:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Acceptance

~ (# of produced DM) \times (Probability DM reaches detector) \times (Probability DM is detected)

* not proportional to $(\epsilon e)^2$ in contrast to recoil and visible search

Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi A'$: Dark photon, χ : Dark Matter, J^{μ}_{EM} : SM EM current

Outline

- Introduction
 - dark sector and Sub-GeV dark matter
 - beam dump(fixed-target) experiment
- Key features of beam dump experiment
- A classification of beam dump experiment
- Sensitivity of beam dump experiments at future accelerators
- Summary

Excluded regions by beam dump experiments (1)

• Benchmark model (1): $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}\bar{\chi}\gamma^{\mu}\chi$ where A': dark photon, and χ : DM

 χ saturates observed DM abundance

DM annihilation cross section

Excluded regions by beam dump experiments (1)

• Benchmark model (1): $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}\bar{\chi}\gamma^{\mu}\chi$ where A': dark photon, and χ : DM

Proton beam

- \Rightarrow parasitic running of neutrino experiment
 - * MiniBooNE is off-target running to reduce neutrino BG

Sensitivity of beam dump experiments at future accelerators (1)

• Benchmark model (1): $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}\bar{\chi}\gamma^{\mu}\chi$ where A': dark photon, and χ : DM

Examples of BD at future accelerators

Proton beam

- LDMX is highly sensitive because of good acceptance
- ILC is sensitive because of high energy positron annihilation
- DUNE-PRISM(off-axis detector) is more sensitive than DUNE(on-axis detector) because of neutrino BG reductions

* FLARE is LHC auxiliary detector experiments in HL-LHC phase

Excluded regions by beam dump experiments (2)

• Benchmark model (2): $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM}$ where A': dark photon

Sensitivity of beam dump experiments at future accelerators (2)

• Benchmark model (2): $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM}$ where A': dark photon

Examples of BD at future accelerators

- ILC can be sensitive to small ϵ because of positron annihilation

- AWAKE and muon-BD can be sensitive to large ϵ because of

- REDTOP is η meson factory and can perform prompt decay search(sensitive to large ϵ)

* FASER2 is LHC auxiliary detector experiments in HL-LHC phase

Summary

- Key features of beam dump(fixed target) experiments:
 - The beam dump experiment is high luminosity experiment sensitive to Sub-GeV scale \Rightarrow The physical potential is complemental to the other experiments, e.g., collider experiments, direct detection experiments
 - The beam dump experiment can run in parallel with accelerator-based experiments

e.g., HL-LHC, ILC, and muon collider.

beam dump experiments

beyond the SM

- \Rightarrow The beam dump experiments are economical and would also run with future accelerators,
- \Rightarrow High energy and high flux beams in the future accelerator lead to high sensitivity of the parasitic
- Regarding the dark sector search, the physical potential of the beam dump experiment depends on various factors, e.g., beam flux, beam energy, beam particle, acceptance, detection approach,...
- The beam dump experiment tandems with the future accelerators and potentially sheds light on the

