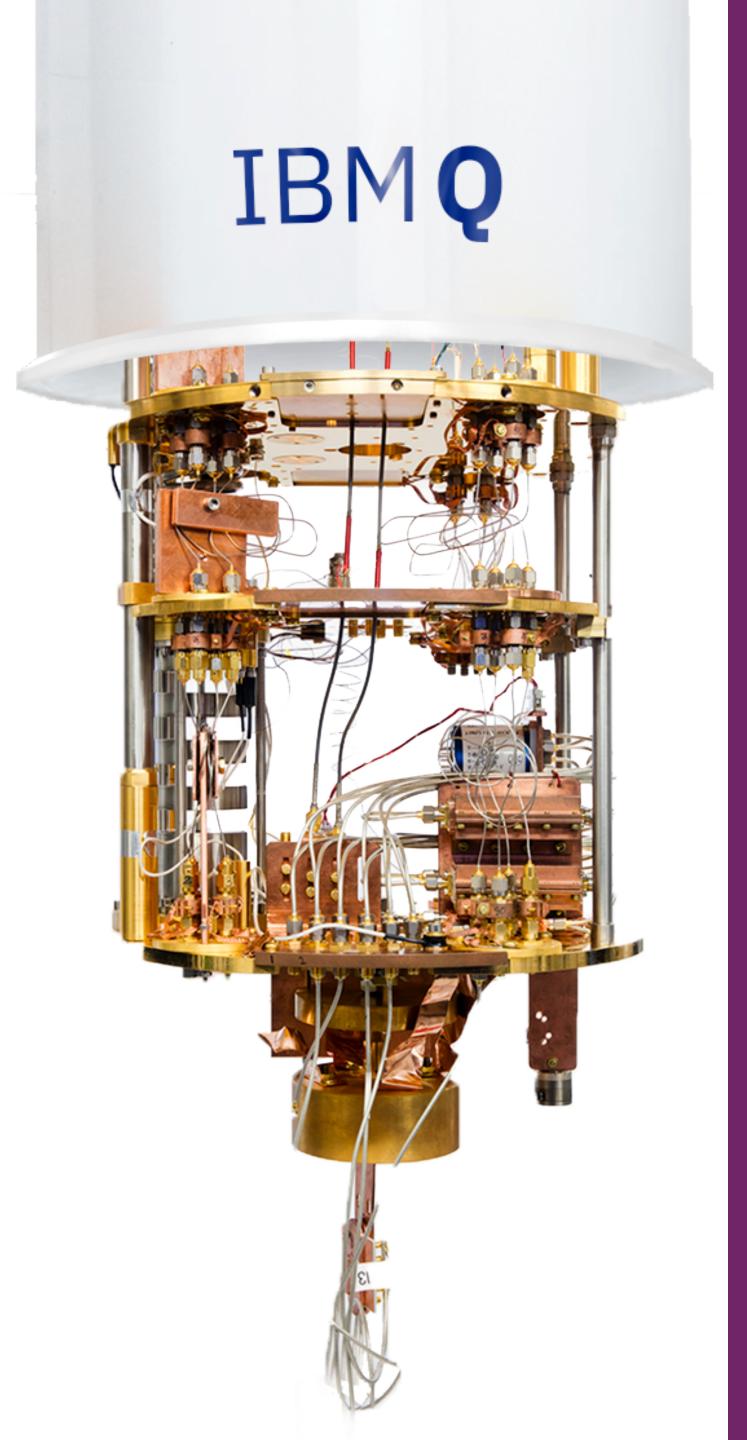


Simulating high-energy collision events with a quantum computer

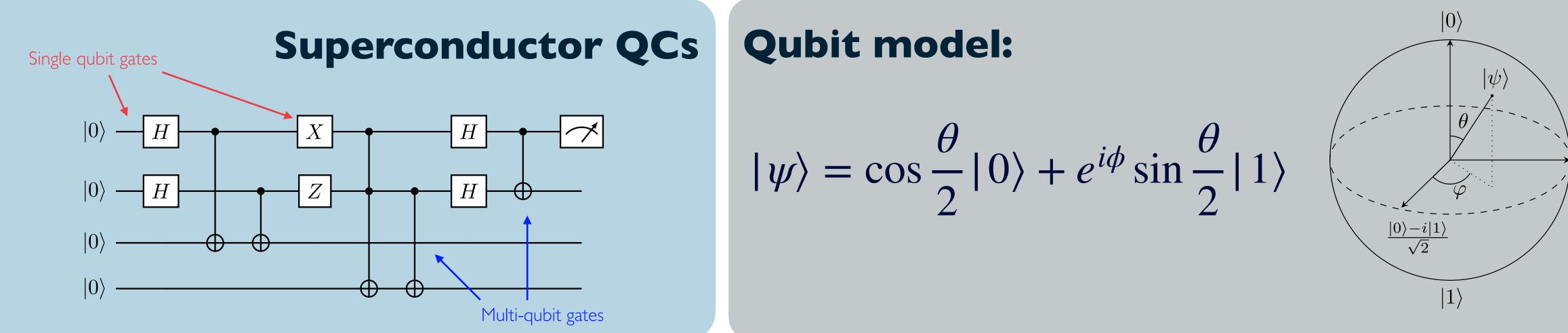
Simon Williams

Future Colliders, Corfu Summer Institute, 24th May 2024



- Event Generation What's the problem?
 - The Parton Shower
- Quantum Parton Shower
 - Discretising QCD
 - The Parton Shower as a Quantum Walk
- Quantum Charged Particle Track Finding

Discrete Gate Quantum Computing



Advantages:

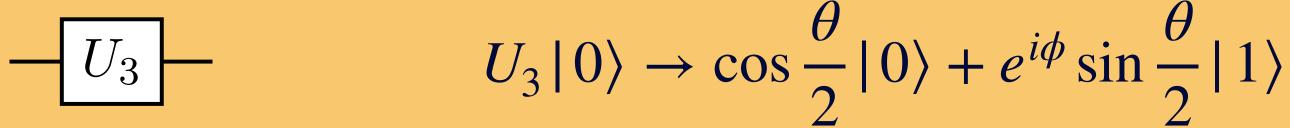
- Highly controllable qubits
- Universal computation

Disadvantages:

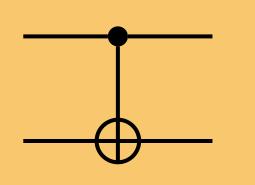
- Small number of qubits, not very fault tolerant

Simon Williams - simon.j.williams@durham.ac.uk

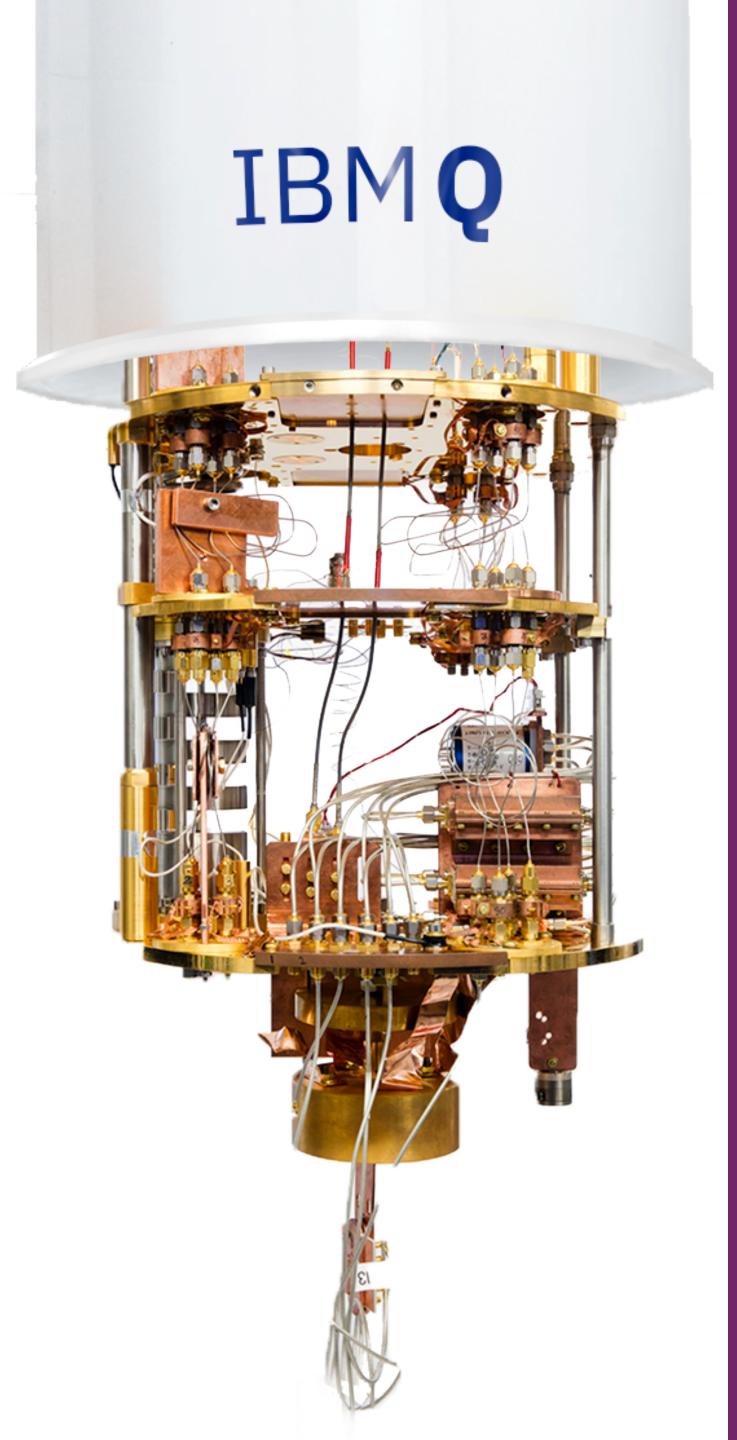
Single qubit gates:



Multi-qubit gates:



 $CNOT | 00 \rangle \rightarrow | 00 \rangle, CNOT | 10 \rangle \rightarrow | 11 \rangle,$ $CNOT |01\rangle \rightarrow |01\rangle, CNOT |11\rangle \rightarrow |10\rangle$



problem?

Event Generation - What's the

Typical hadron-hadron collisions are highly complex resulting in O(1000) particles

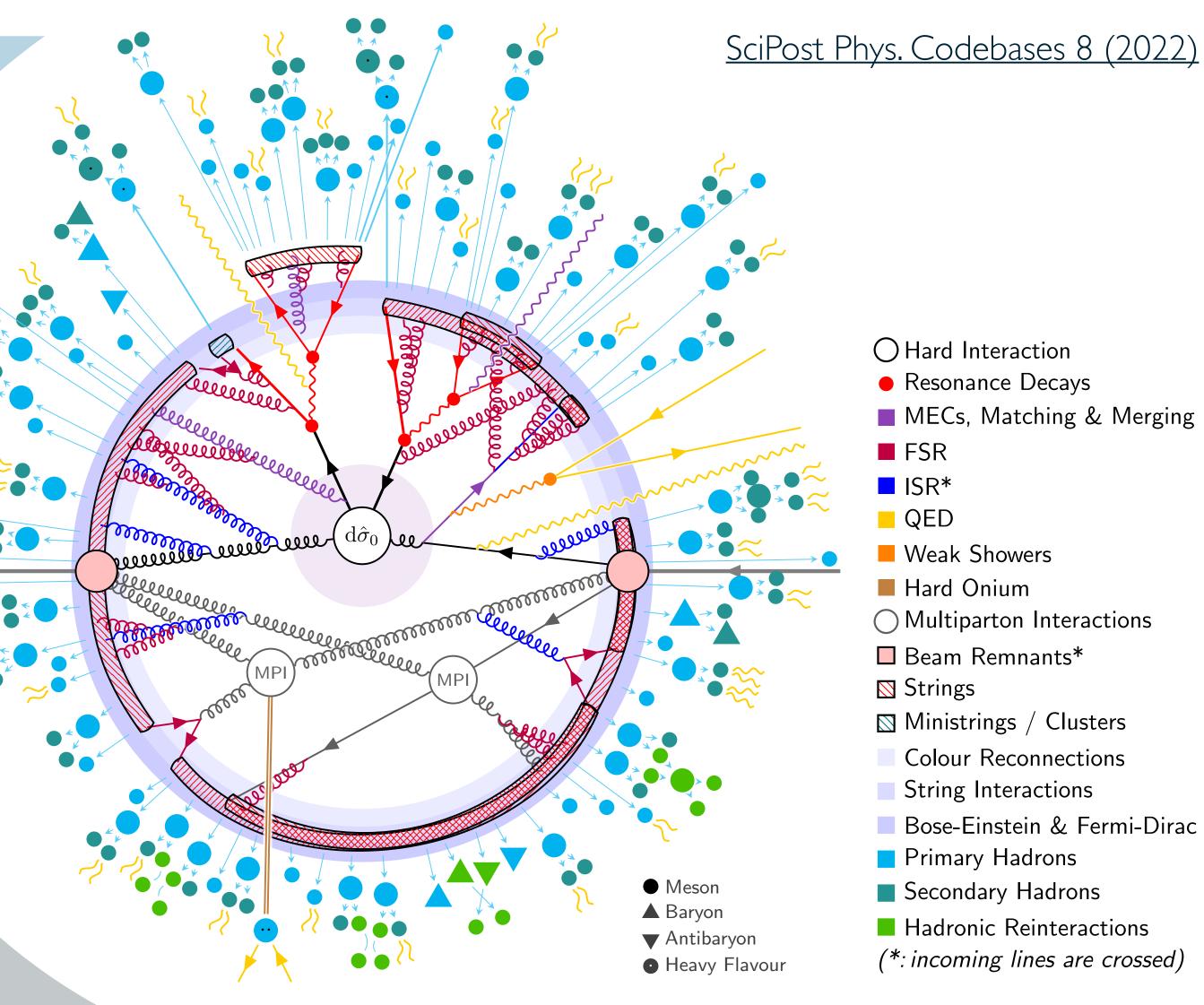
The theoretical description of collision events is **highly complex**

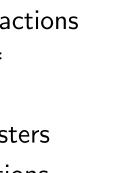
Monte Carlo Event

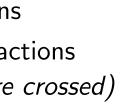
Generators have been the most successful approach to simulating particle collisions

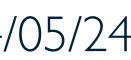
MC Event Generators exploit factorisation theorems in QCD -

Simon Williams - simon.j.williams@durham.ac.uk



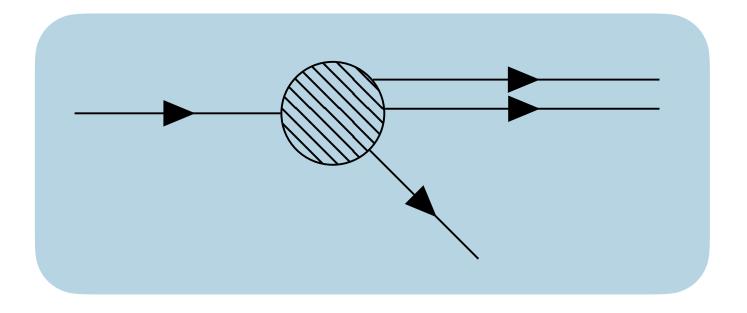


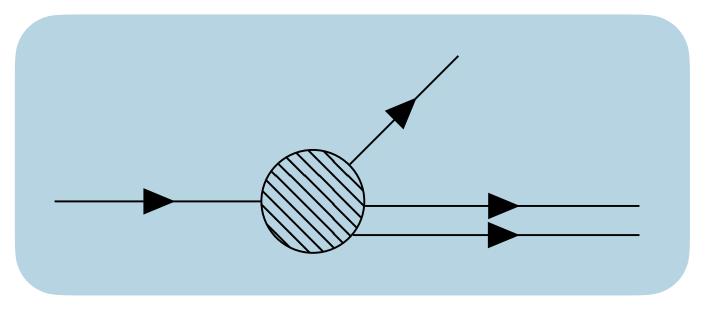




Simon Williams - simon.j.williams@durham.ac.uk

Parton Density Functions

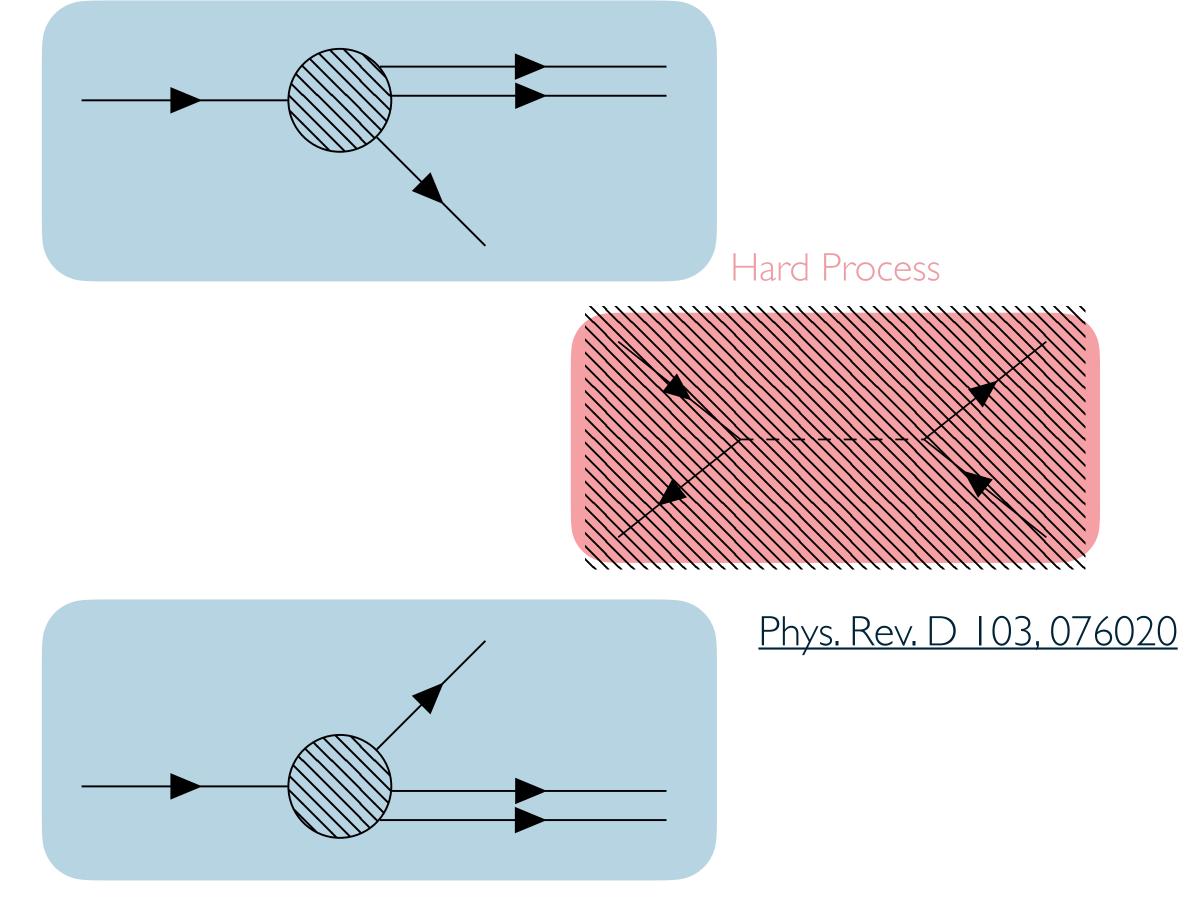




<u>Phys. Rev. D 103, 034027</u>

Simon Williams - simon.j.williams@durham.ac.uk

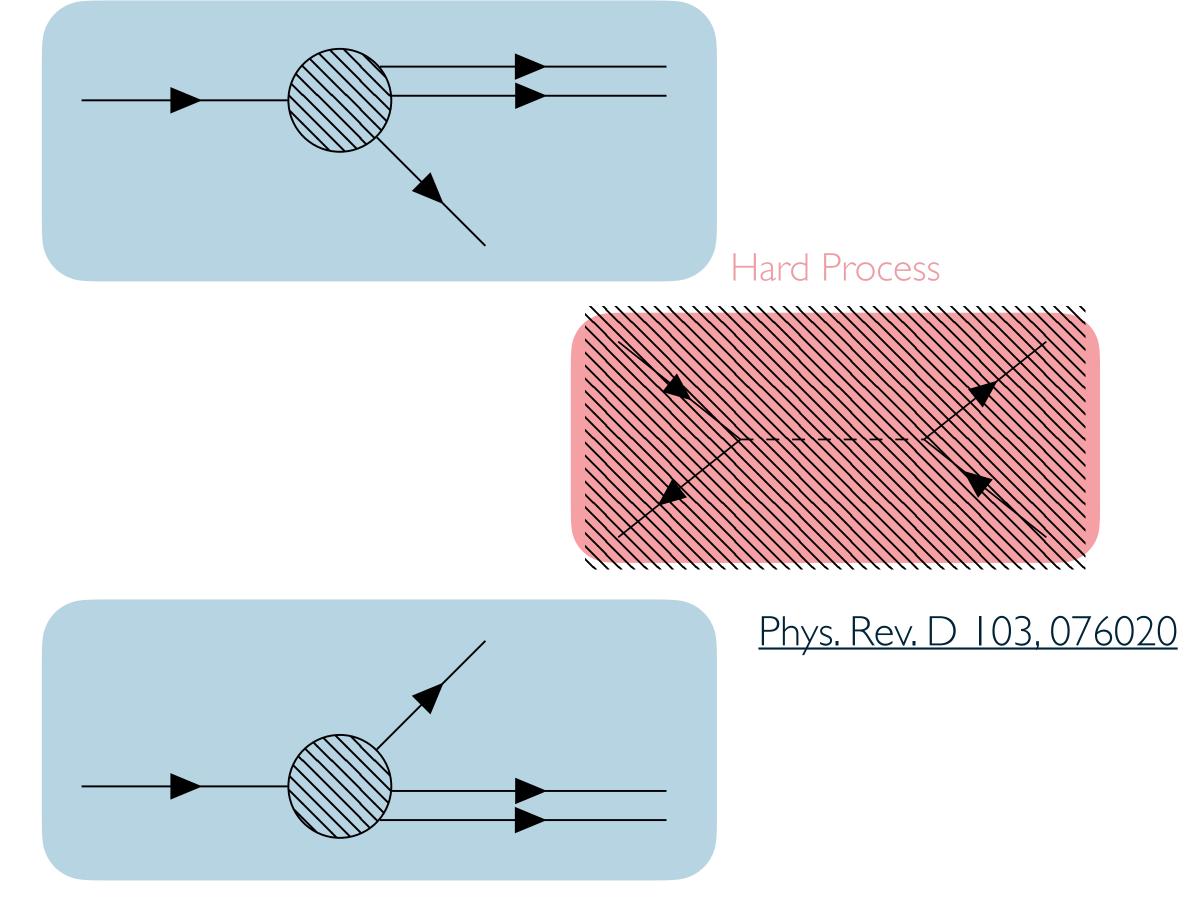
Parton Density Functions



<u>Phys. Rev. D 103, 034027</u>

Simon Williams - simon.j.williams@durham.ac.uk

Parton Density Functions

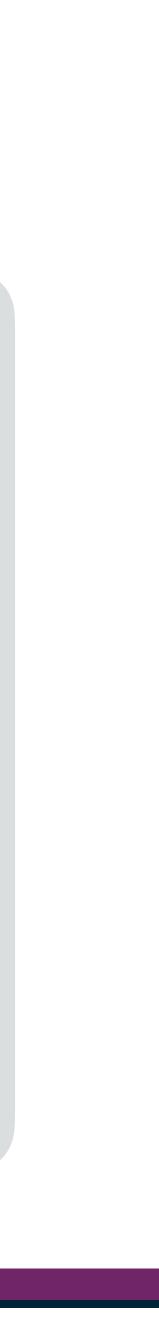


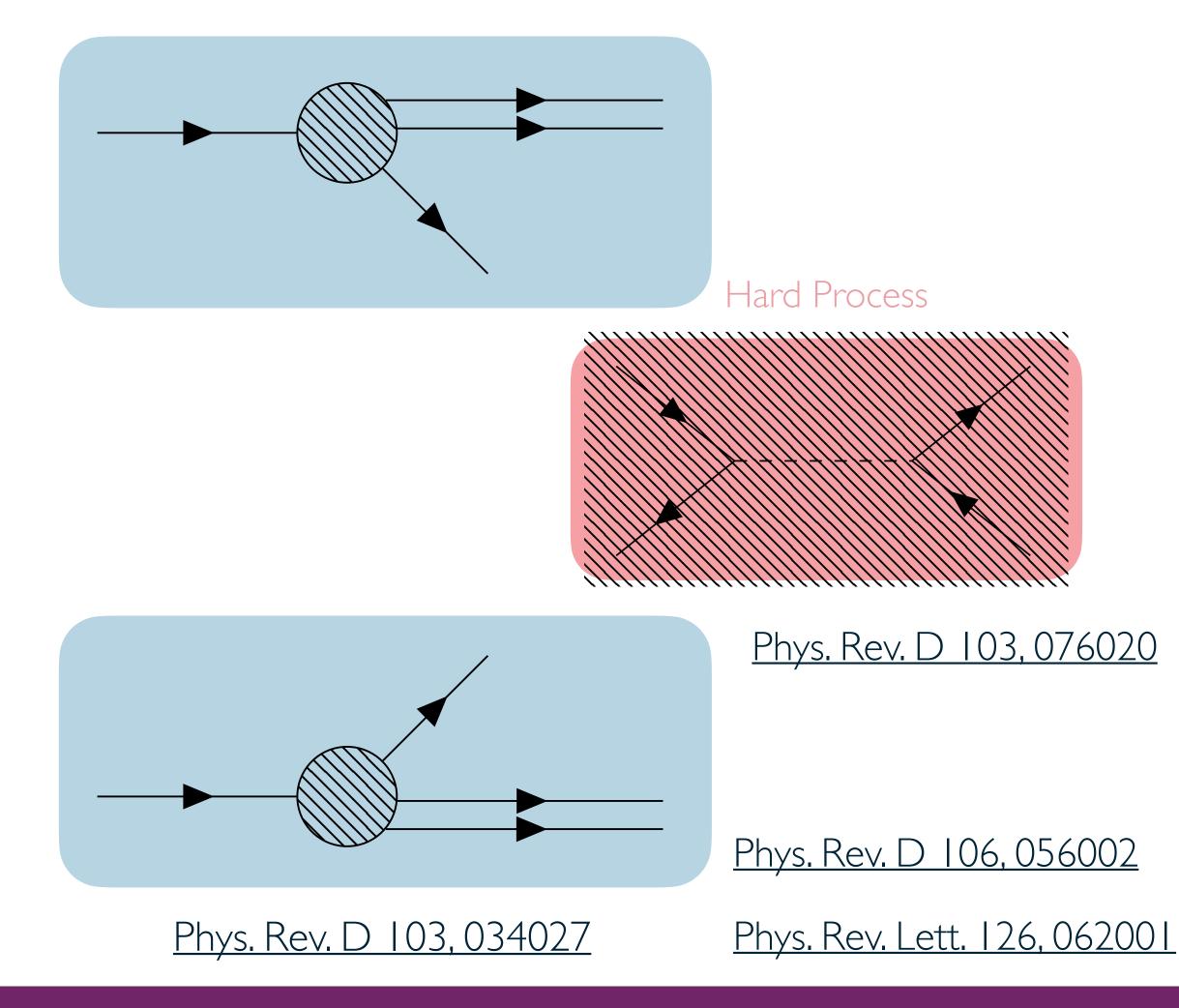
Phys. Rev. D 103, 034027

Simon Williams - simon.j.williams@durham.ac.uk

Hadronisation

Corfu Summer Institute - 24/05/24

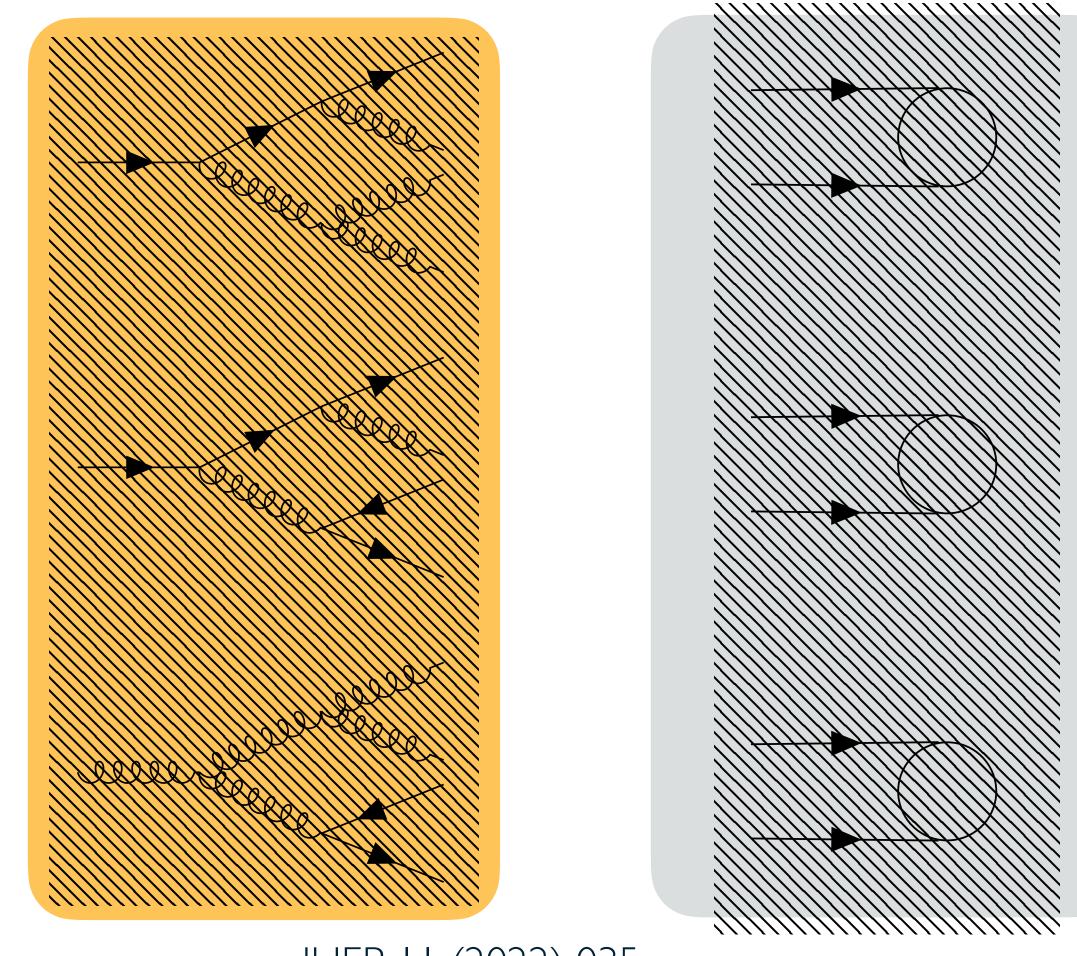


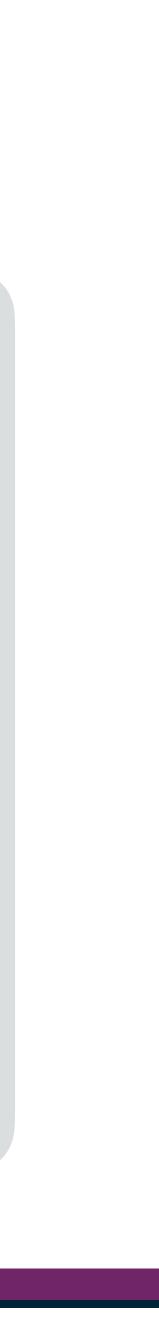


Simon Williams - simon.j.williams@durham.ac.uk

Parton Shower

Hadronisation





Hard Process

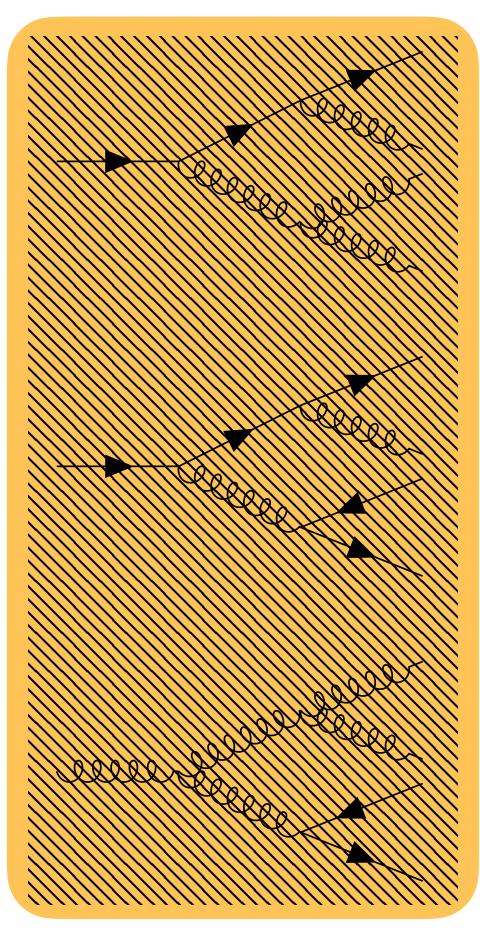
Phys. Rev. D 103, 076020

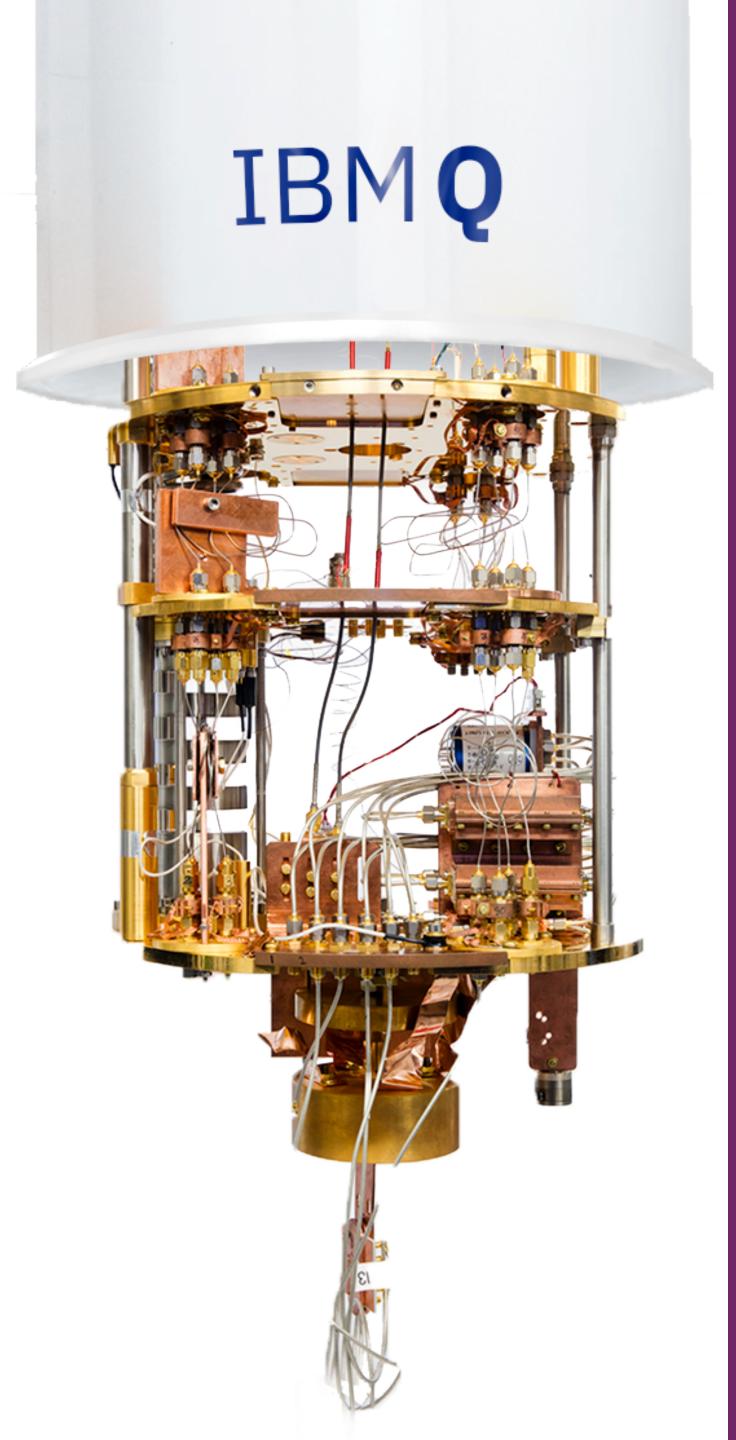
Phys. Rev. D 106, 056002

Phys. Rev. Lett. 126, 062001

Simon Williams - simon.j.williams@durham.ac.uk

Parton Shower



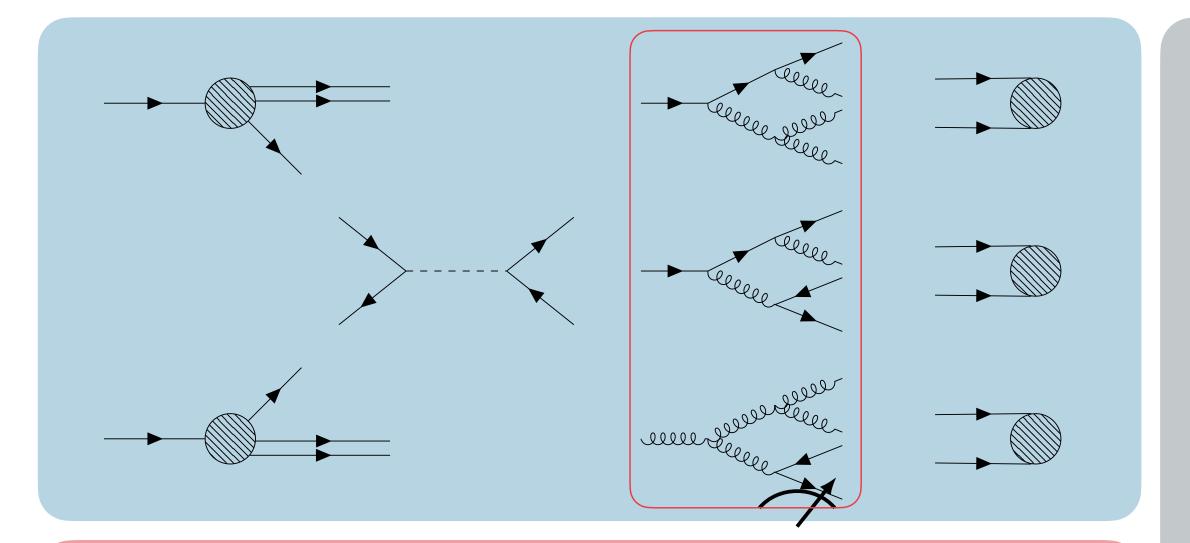


problem?

Event Generation - What's the

- The Parton Shower

The Parton Shower



Collinear mode:

$$k \stackrel{p}{-} \underbrace{ \sum_{j} i}_{j} \qquad p_{i} = zP, \quad p_{j} = (1 - z)P$$

Successive decay steps factorise into independent quasi-classical steps

Simon Williams - simon.j.williams@durham.ac.uk

Soft mode: $p_i \approx 0$

Interference effects only allow for partial factorisation

Leading contributions to the decay rate in the collinear limit are included in the soft limit

In this limit, the decay from high energy to low energy proceeds as a colour-dipole cascade.

This interpretation allows for straightforward interference patterns and momentum conservation

The Parton Shower - The Veto Algorithm

The choice of the variables ξ and t is known as the phase space parameterisation

 $\mathcal{F}_n(\Phi_n, t_n, t_c; O) = \Delta(t_n, t_c) O(\Phi_n)$

Inclusive Decay Probability

 $d\mathcal{P}\left(q(p_{\mathrm{I}})\bar{q}(p_{\mathrm{K}})\to q(p_{i})g(p_{j})\bar{q}(p_{k})\right)\simeq \frac{ds_{ij}}{s_{\mathrm{IK}}}\frac{ds_{jk}}{s_{\mathrm{IK}}}C\frac{\alpha_{s}}{2\pi}\frac{2s_{\mathrm{IK}}}{s_{ij}s_{jk}}$

Simon Williams - simon.j.williams@durham.ac.uk

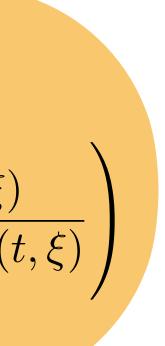
Non-Emission Probability

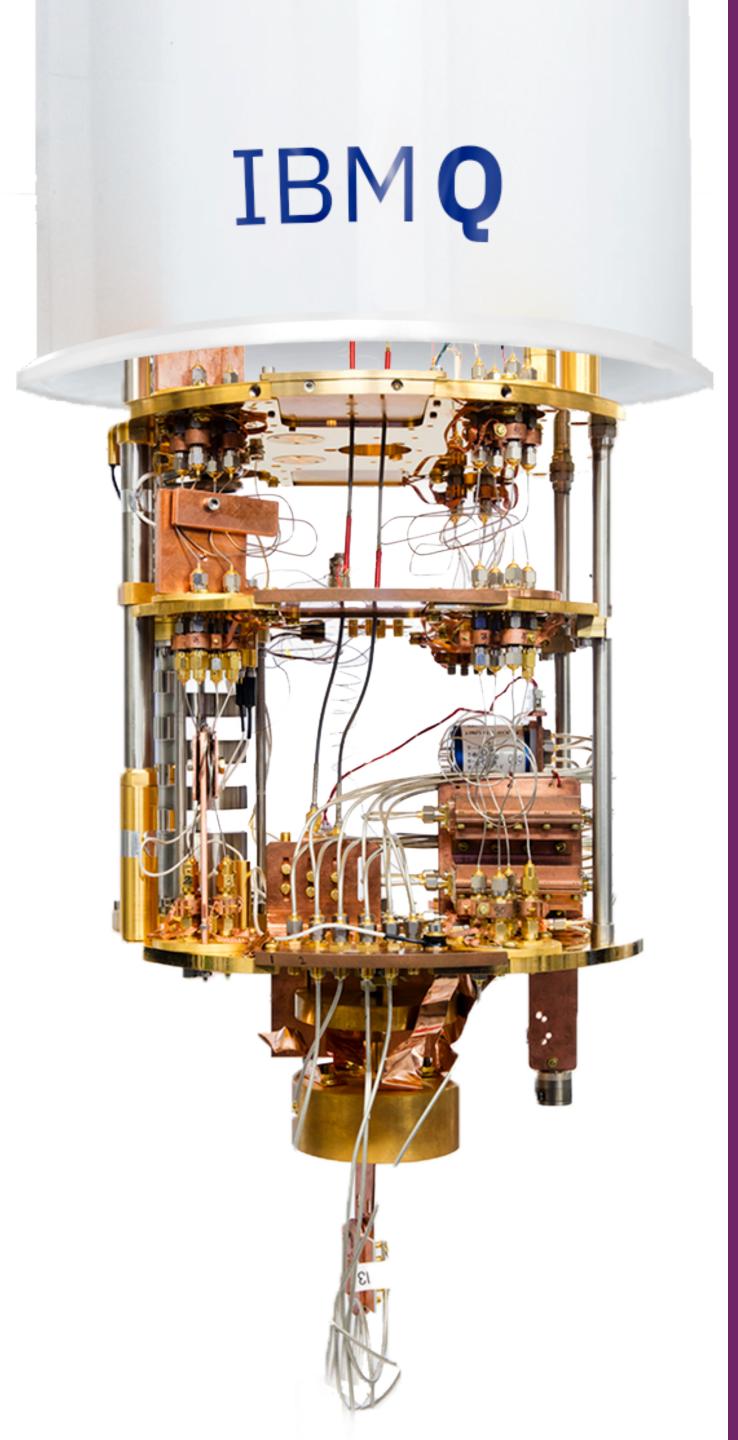
$$\Delta(t_n, t) = \exp\left(-\int_t^{t_n} dt d\xi \frac{d\phi}{2\pi} C \frac{\alpha_s}{2\pi} \frac{2s_{ik}(t, \xi)}{s_{ij}(t, \xi)s_{jk}}\right)$$

Master Equation

 $+ \int^{c_n} dt d\xi \frac{d\phi}{2\pi} C \frac{\alpha_s}{2\pi} \frac{2s_{ik}(t,\xi)}{s_{ij}(t,\xi)s_{jk}(t,\xi)} \Delta(t_n,t) \mathcal{F}_n(\Phi_{n+1},t,t_c;O)$

Current interpretations of the veto algorithm treat the phase space variables ξ and t as **continuous**

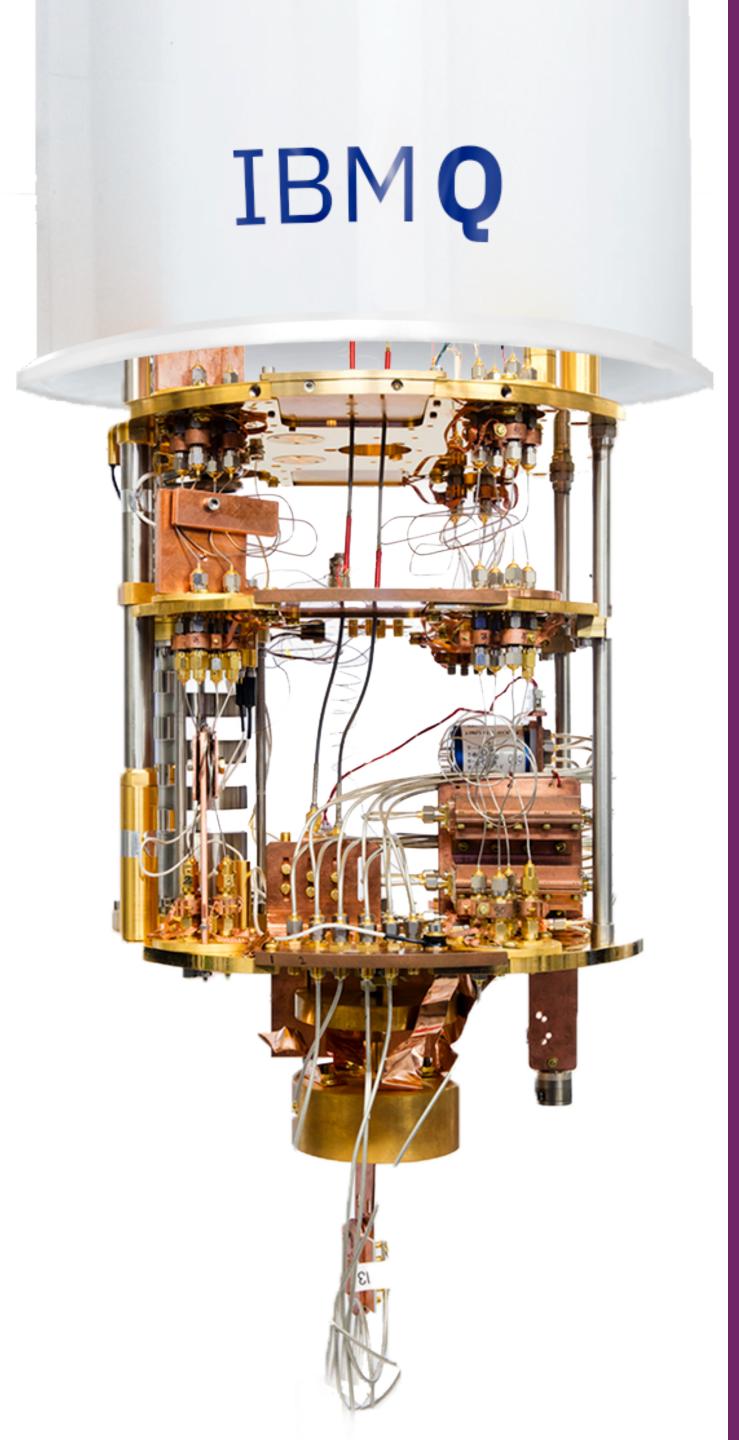




G. Gustafson, S. Prestel, M. Spannowsky and S. Williams, Collider Events on a Quantum Computer, *JHEP* 11 (2022) 035, <u>arXiv:2207.10694</u>

Quantum Parton Shower

Imperial College London



Quantum Parton Shower - Discretising QCD

G. Gustafson, S. Prestel, M. Spannowsky and S. Williams, Collider Events on a Quantum Computer, *JHEP* 11 (2022) 035, <u>arXiv:2207.10694</u>

Imperial College London

• Parameterise phase space in terms of gluon transverse momentum and rapidity:

$$k_{\perp}^2 = \frac{s_{ij}s_{jk}}{s_{\rm IK}}$$
 and $y = \frac{1}{2}\ln x_{\rm IK}$

which leads to the inclusive probability:

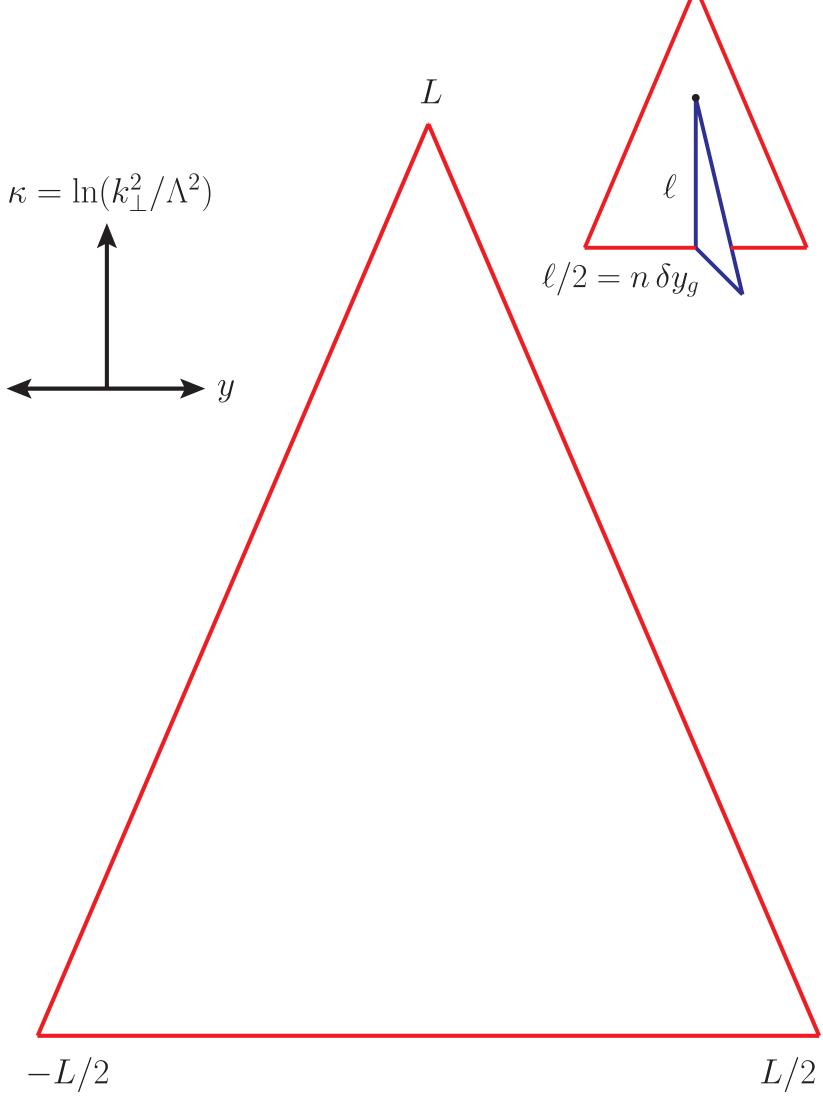
$$d\mathcal{P}\left(q(p_{\mathrm{I}})\bar{q}(p_{\mathrm{K}}) \to q(p_{i})g(p_{j})\bar{q}(p_{k})\right) \simeq = \frac{Cd}{\pi}$$

where $\kappa = \ln \left(\frac{k_{\perp}^2}{\Lambda^2}\right)$ and Λ is an arbitrary mass scale

Due to the colour charge of emitted gluons, the rapidity span for subsequent dipole decays is increased. This is interpreted as "folding out"

Simon Williams - simon.j.williams@durham.ac.uk

 $\frac{\kappa_s}{-}d\kappa dy$



2. Neglect $g \rightarrow q\overline{q}$ splittings and examine transversemomentum-dependent running coupling

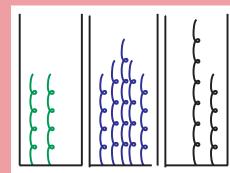
$$\alpha_s(k_{\perp}^2) = \frac{12\pi}{33 - 2n_f} \frac{1}{\ln(k_{\perp}^2 / \Lambda_{\rm QCD}^2)}$$

leads to the inclusive probability

$$d\mathcal{P}\left(q(p_{\mathrm{I}})\bar{q}(p_{\mathrm{K}}) \to q(p_{i})g(p_{j})\bar{q}(p_{k})\right) \simeq = \frac{d\kappa}{\kappa}\frac{dy}{\delta y_{g}} \quad \text{with}$$

Interpreting the running coupling renormalisation group as a gainloss equation:

Gluons within δy_g **act coherently** as one effective gluon

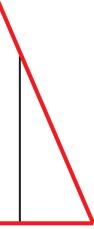


Simon Williams - simon.j.williams@durham.ac.uk

δy_q

 $\kappa = \ln(k_\perp^2 / \Lambda^2)$

 $\delta y_g = \frac{11}{6}$



2. Neglect $g \rightarrow q\overline{q}$ splittings and examine transversemomentum-dependent running coupling

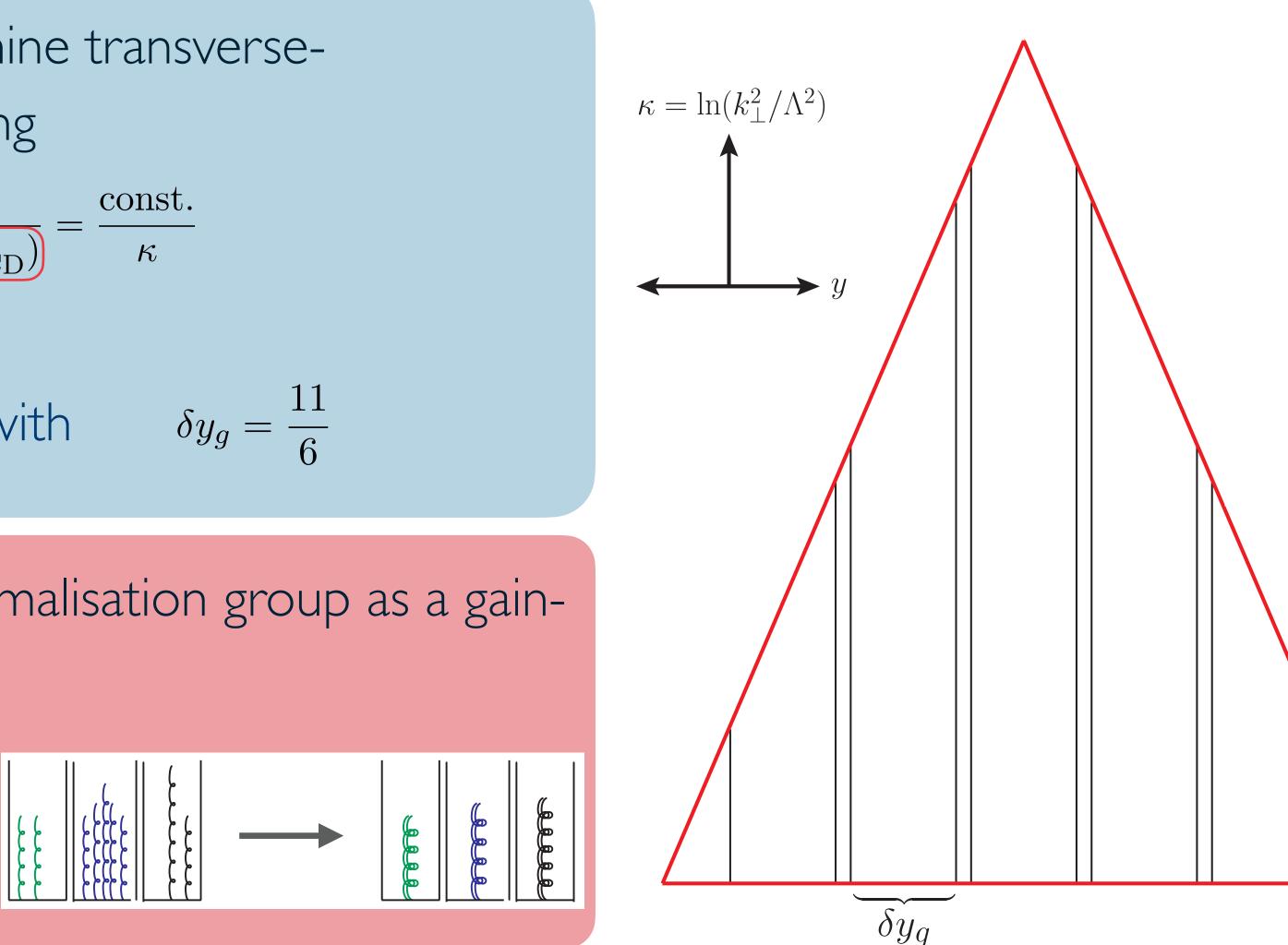
$$\alpha_s(k_\perp^2) = \frac{12\pi}{33 - 2n_f} \frac{1}{\ln(k_\perp^2/\Lambda_{\rm QCD}^2)} = \frac{\rm const}{\kappa}$$

leads to the inclusive probability

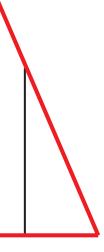
$$d\mathcal{P}\left(q(p_{\mathrm{I}})\bar{q}(p_{\mathrm{K}}) \to q(p_{i})g(p_{j})\bar{q}(p_{k})\right) \simeq = \frac{d\kappa}{\kappa}\frac{dy}{\delta y_{g}} \quad \text{with} \quad \delta y_{g}$$

Interpreting the running coupling renormalisation group as a gainloss equation:

Gluons within δy_g **act coherently** as one effective gluon



Simon Williams - simon.j.williams@durham.ac.uk



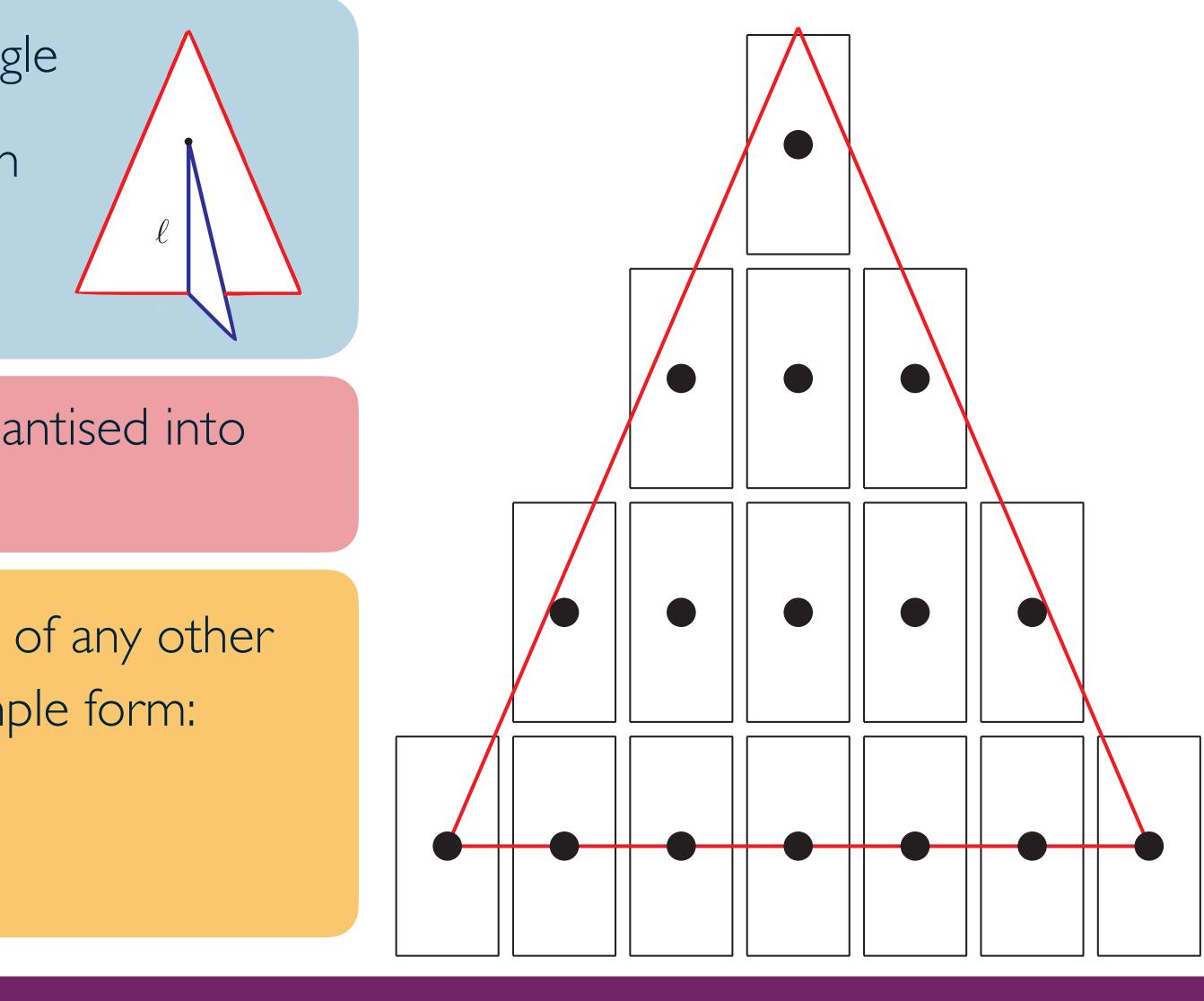
Folding out extends the baseline of the triangle to positive y by $\frac{l}{2}$, where l is the height at which to emit effective gluons

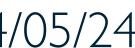
A consequence of folding is that the κ axis is quantised into multiples of $2\delta y_{o}$

Each rapidity slice can be treated independently of any other slice. The exclusive rate probability takes the simple form:

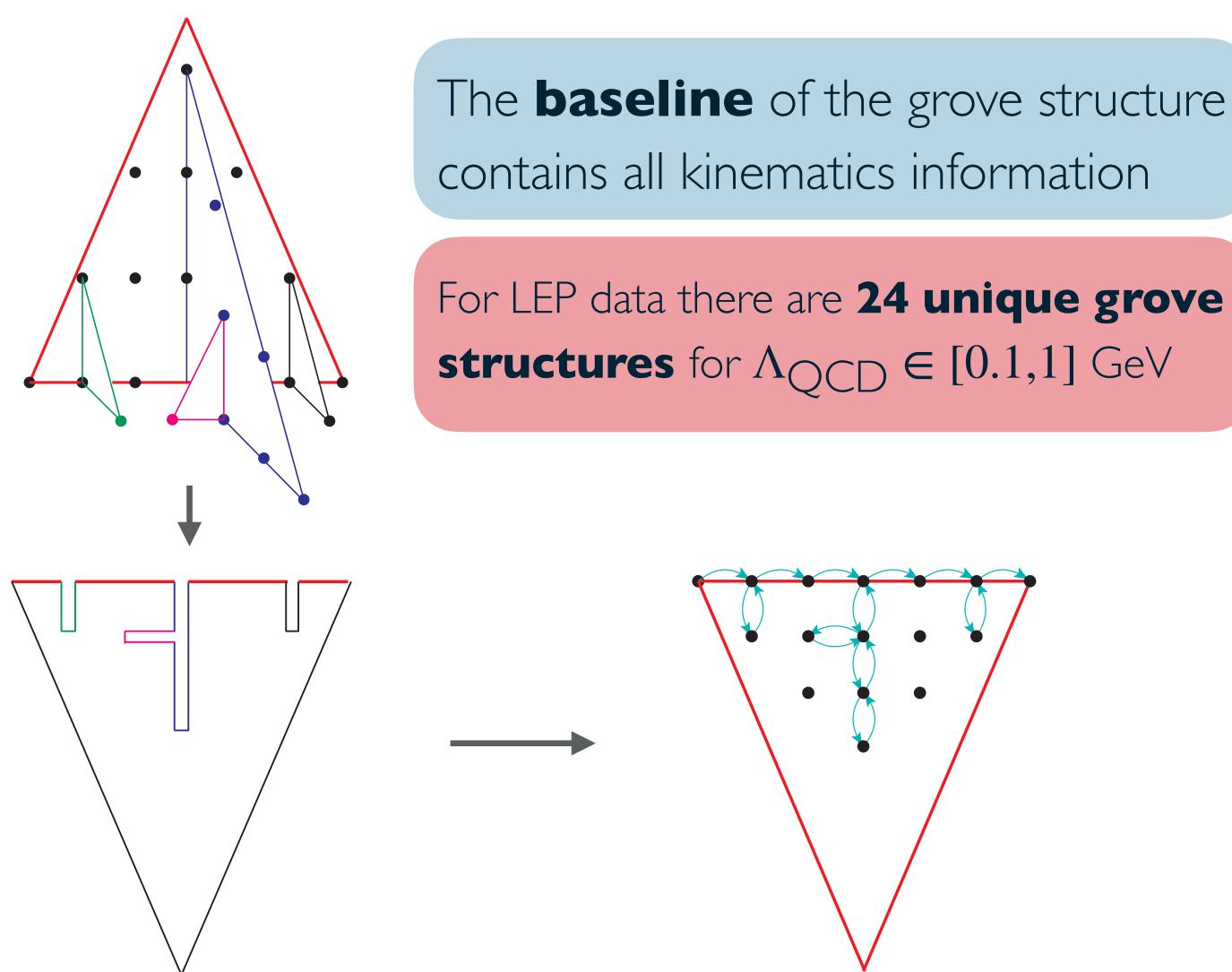
$$\frac{d\kappa}{\kappa} \exp\left(-\int_{\kappa}^{\kappa_{max}} \frac{d\bar{\kappa}}{\bar{\kappa}}\right) = \frac{d\kappa}{\kappa_{max}}$$

Simon Williams - simon.j.williams@durham.ac.uk



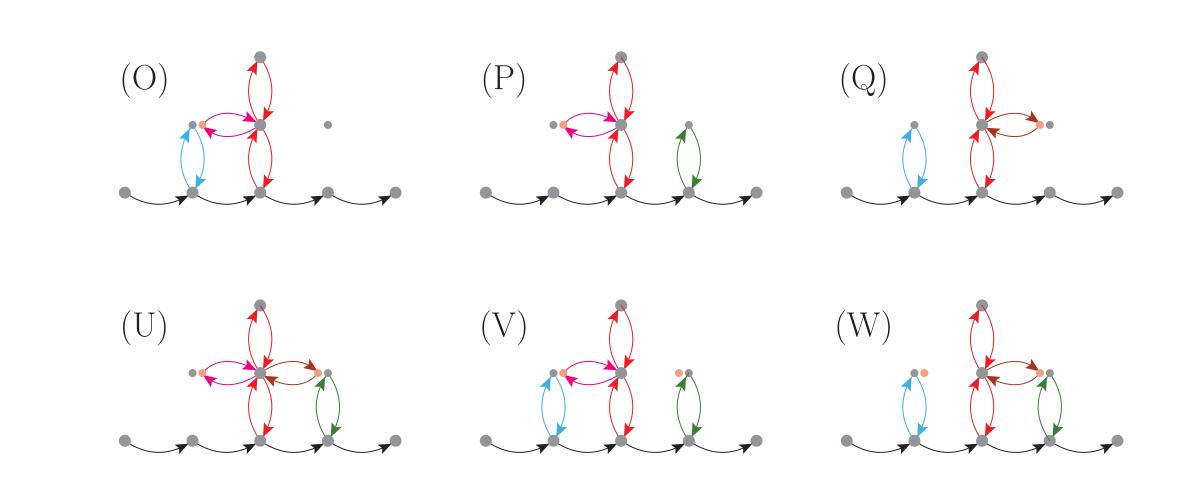


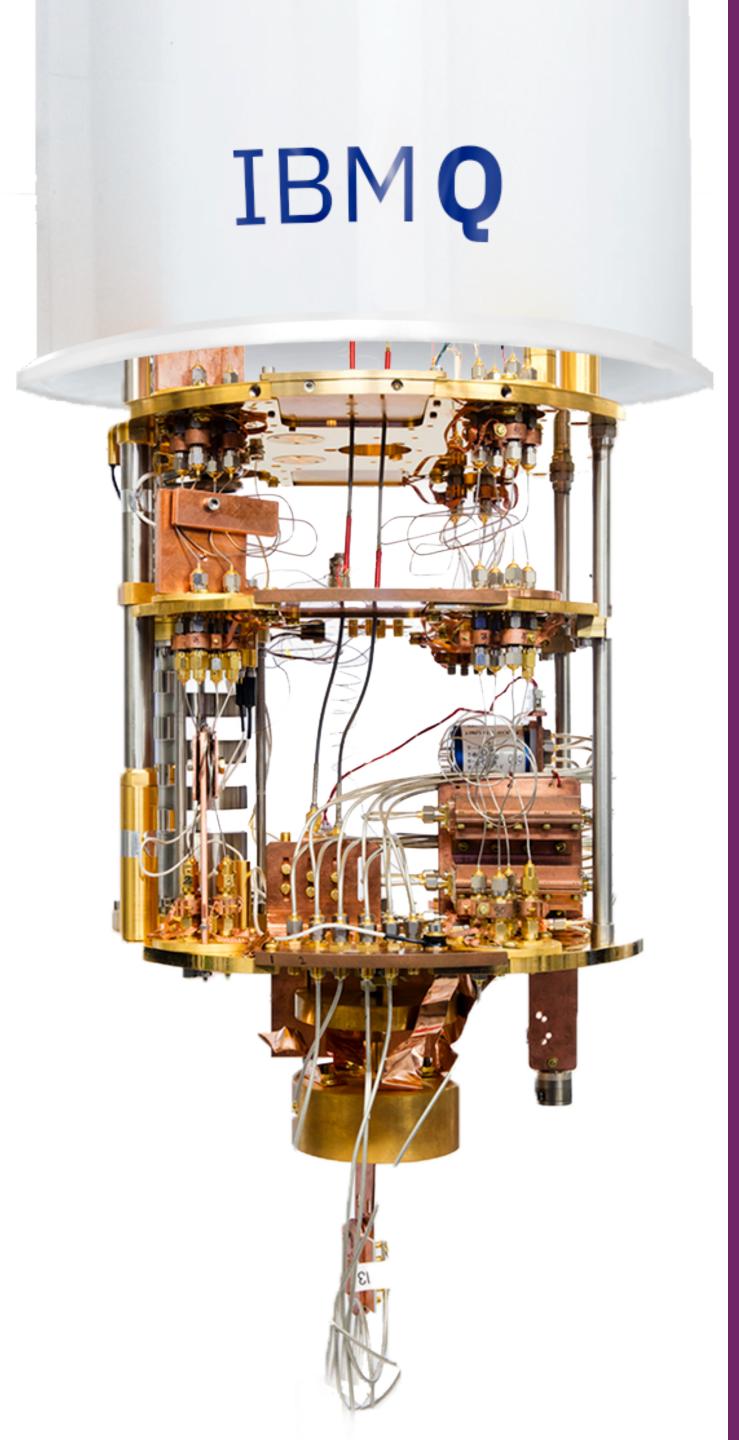
Discrete QCD as a Quantum Walk



Simon Williams - simon.j.williams@durham.ac.uk

The groves can be **constructed** and enumerated to achieve an efficient sampling algorithm for the dipole shower



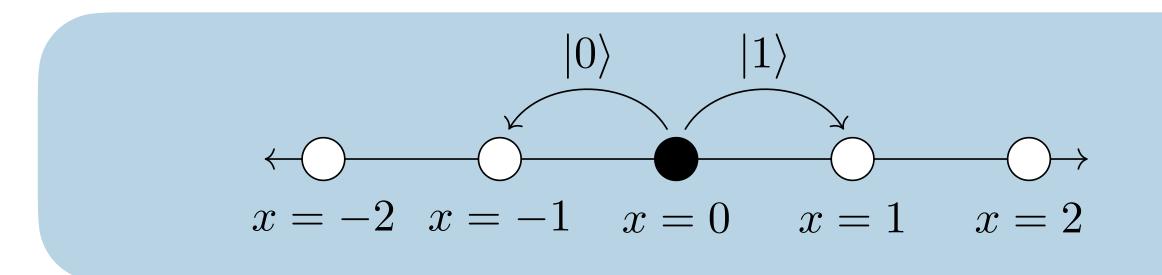


Quantum Parton Shower - Discretising QCD - Parton Shower as a Quantum Walk

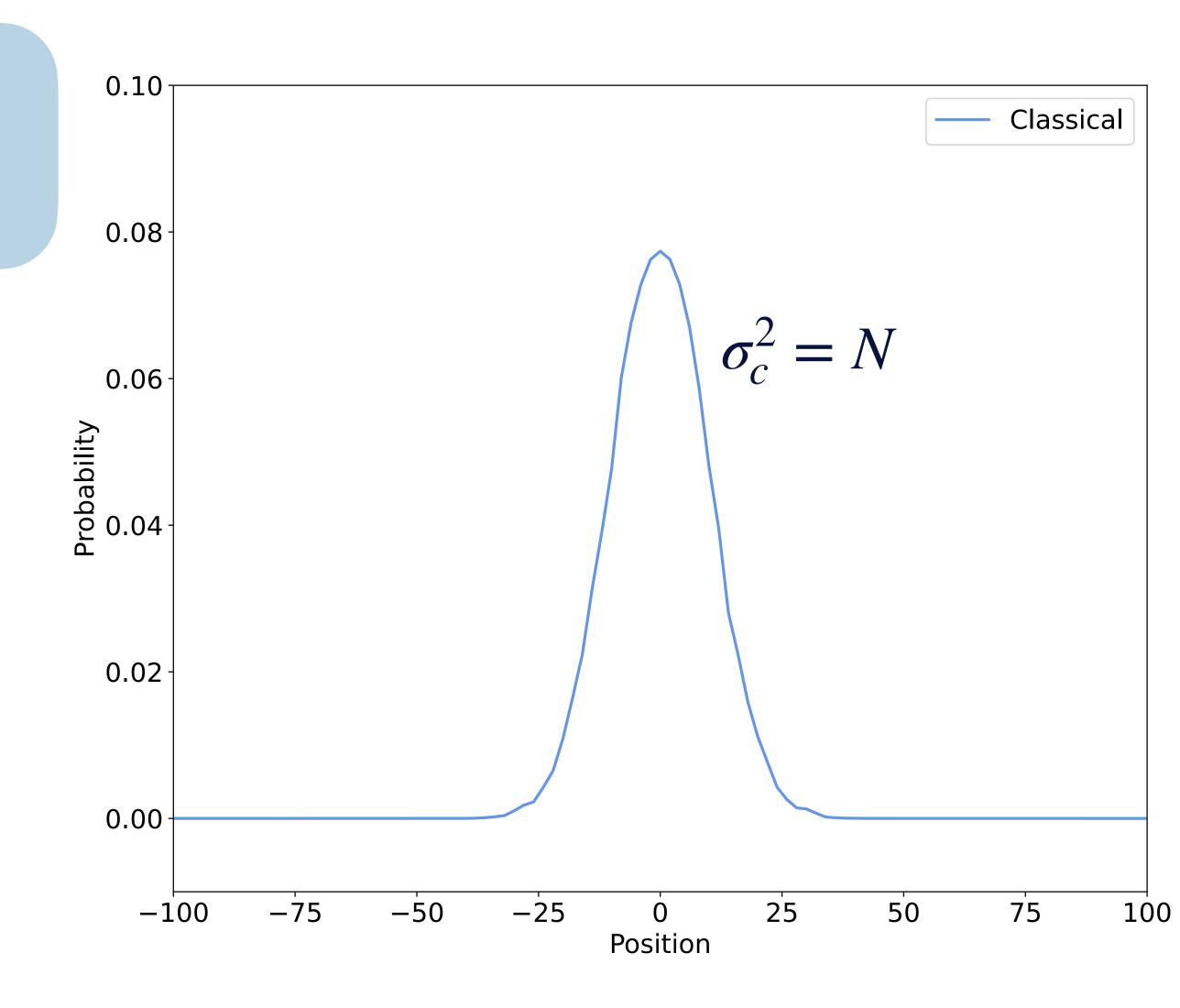
G. Gustafson, S. Prestel, M. Spannowsky and S. Williams, Collider Events on a Quantum Computer, *JHEP* 11 (2022) 035, <u>arXiv:2207.10694</u>

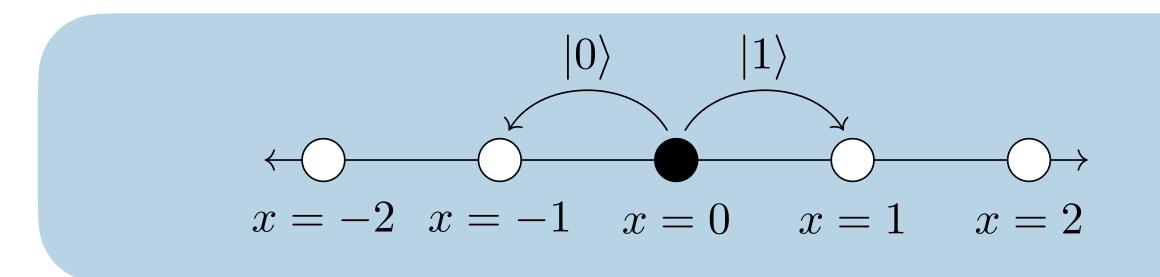
Imperial College London

Simon Williams - simon.j.williams@durham.ac.uk



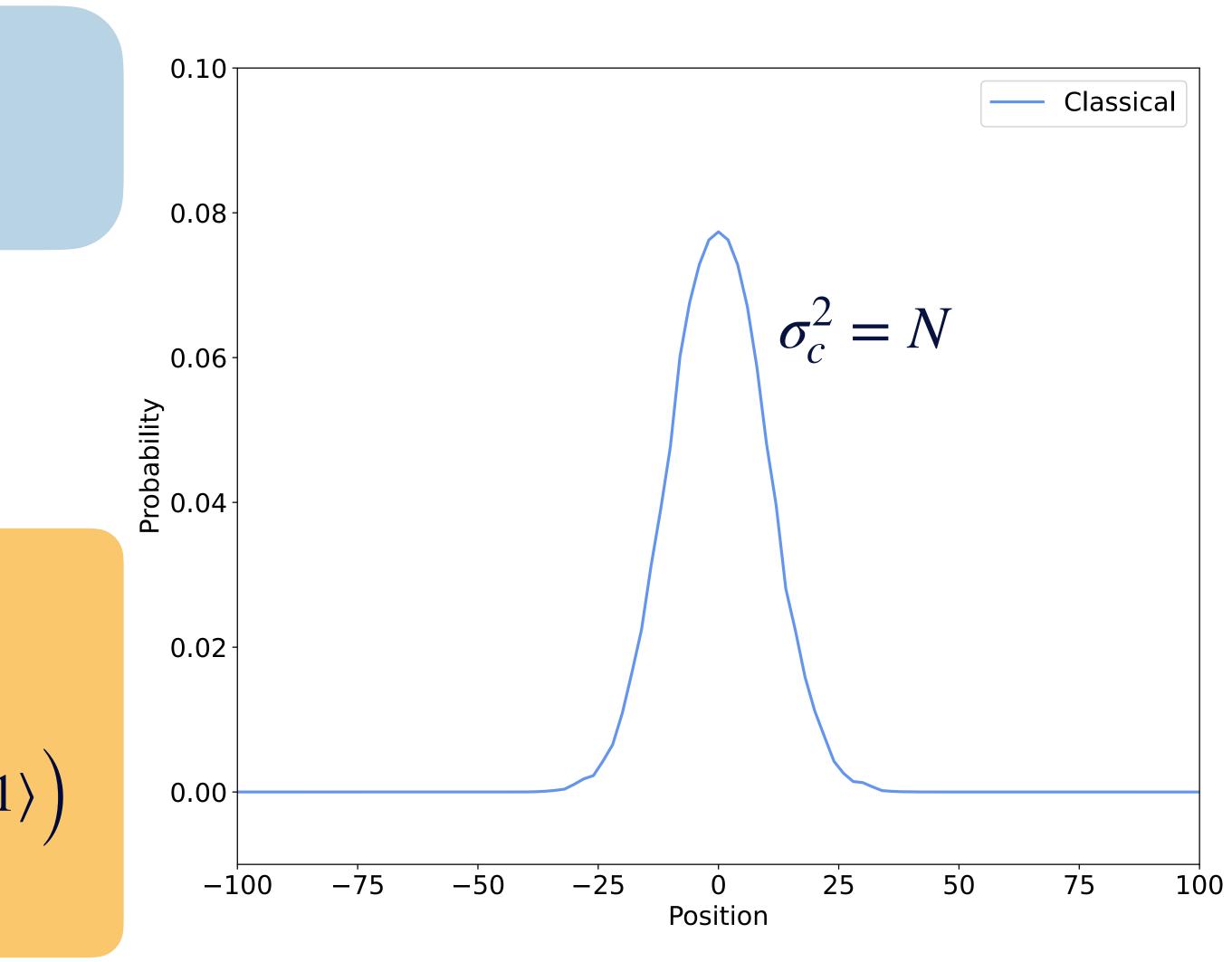
Simon Williams - simon.j.williams@durham.ac.uk

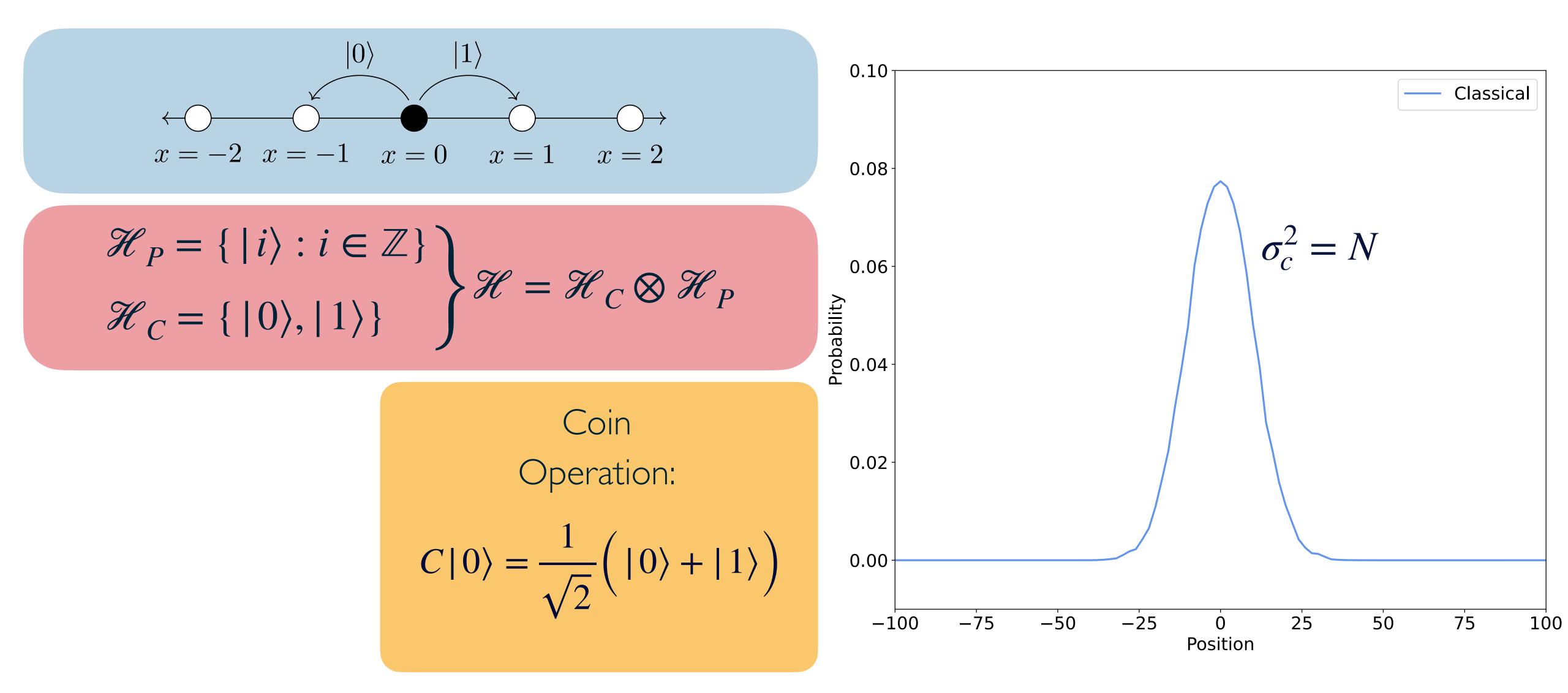




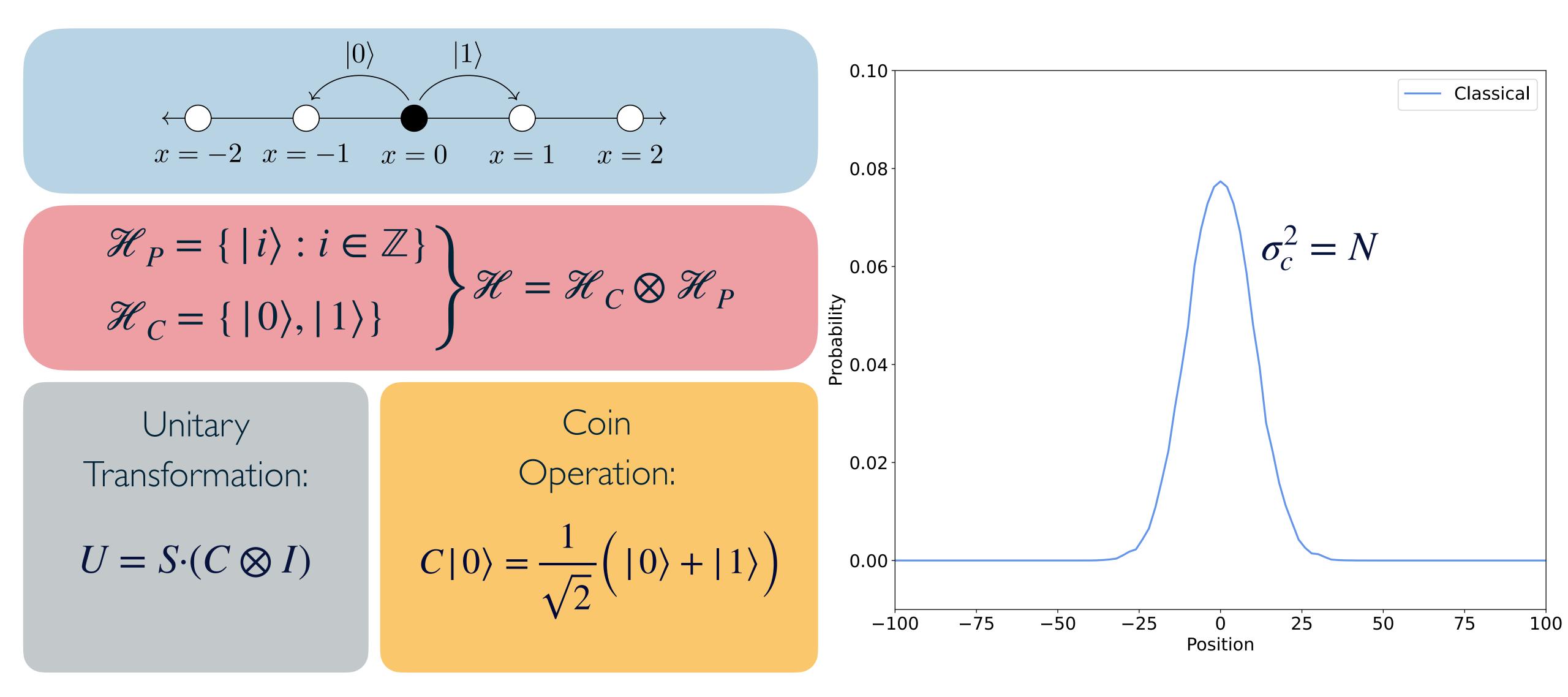
Coin Operation: $C|0\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle\right)$

Simon Williams - simon.j.williams@durham.ac.uk

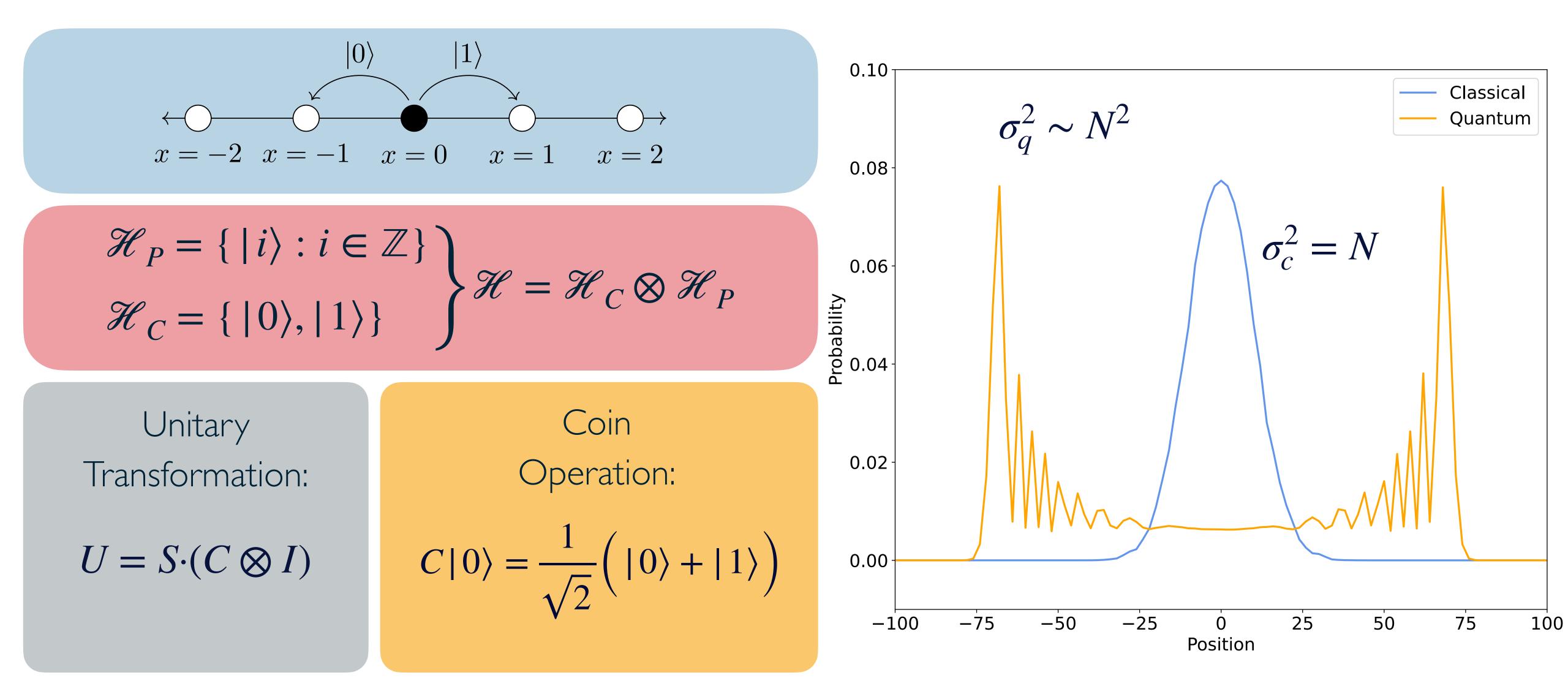




Simon Williams - simon.j.williams@durham.ac.uk

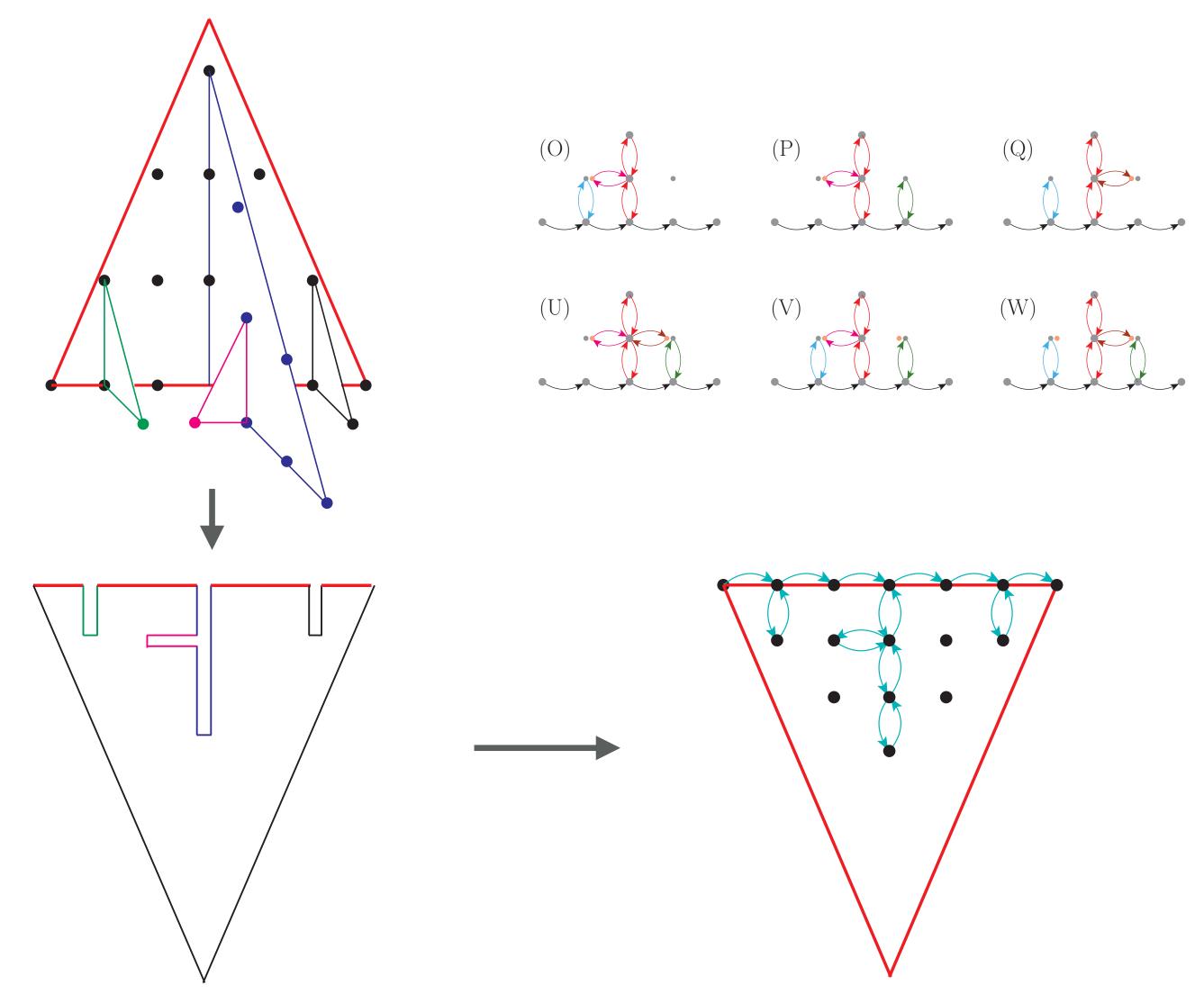


Simon Williams - simon.j.williams@durham.ac.uk



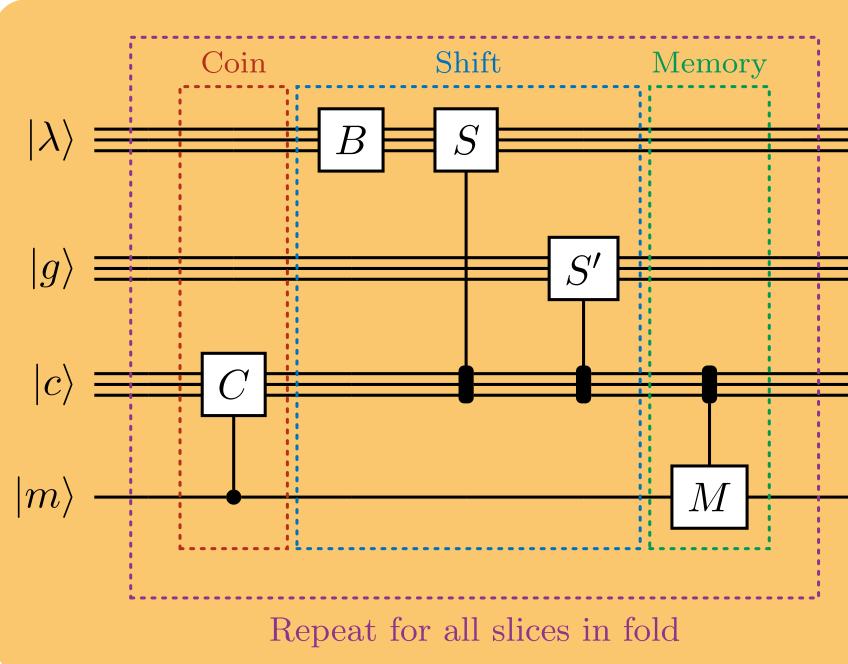
Simon Williams - simon.j.williams@durham.ac.uk

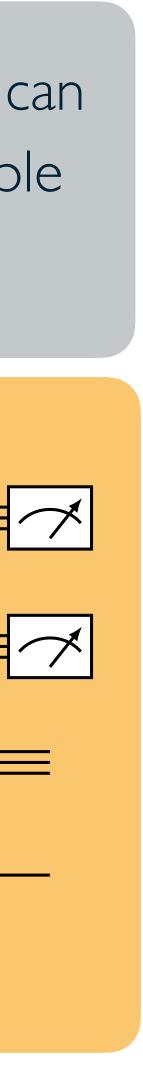
Discrete QCD as a Quantum Walk

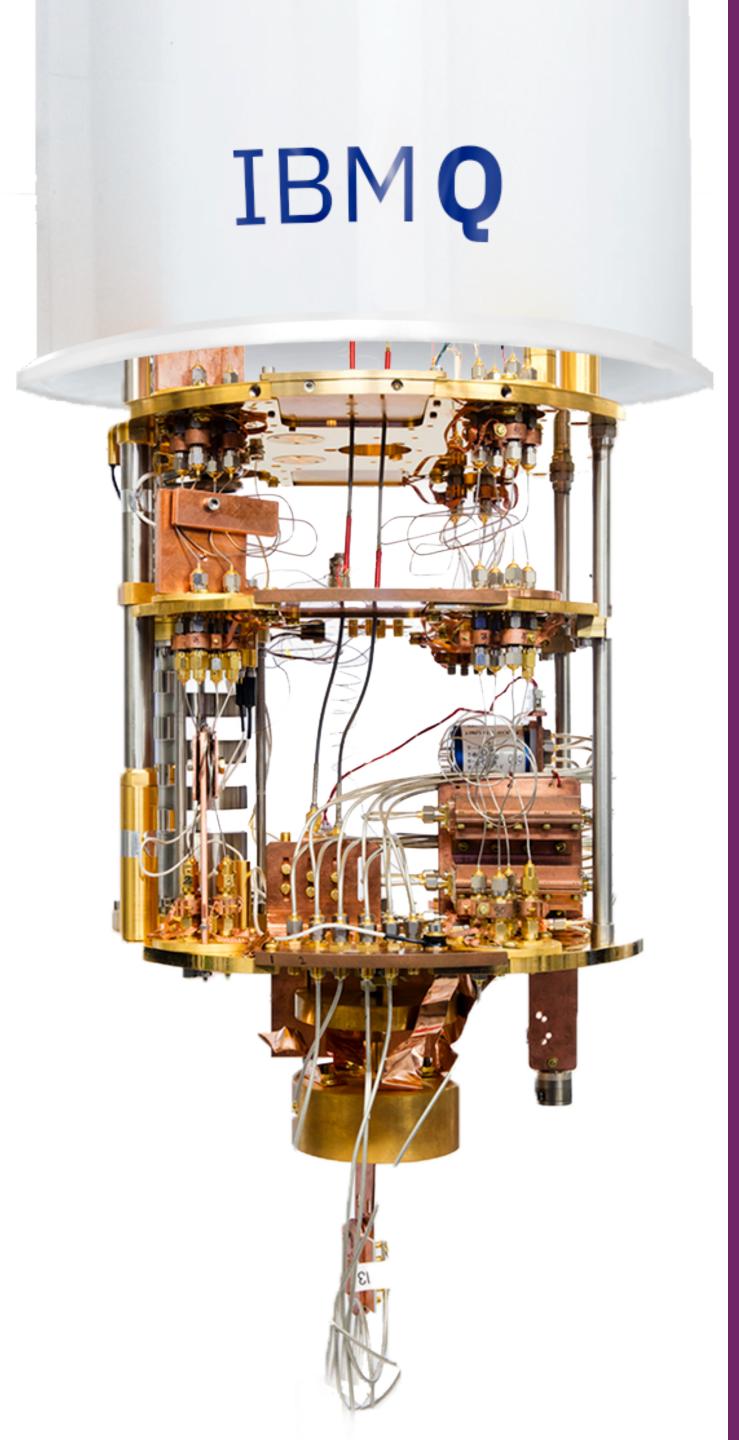


Simon Williams - simon.j.williams@durham.ac.uk

The Discrete-QCD dipole cascade can therefore be implemented as a simple **Quantum Walk**







Quantum Parton Shower - Discretising QCD - Parton Shower as a Quantum Walk

G. Gustafson, S. Prestel, M. Spannowsky and S. Williams, Collider Events on a Quantum Computer, *JHEP* 11 (2022) 035, <u>arXiv:2207.10694</u>

- Generate Scattering Events

Imperial College London

Generating Scattering Events from Groves

Once the grove structure has been selected, event data can be synthesised in the following steps using the baseline:

- I. Create the highest κ effective gluons first (i.e. go from top to bottom in phase space)
- from the grove

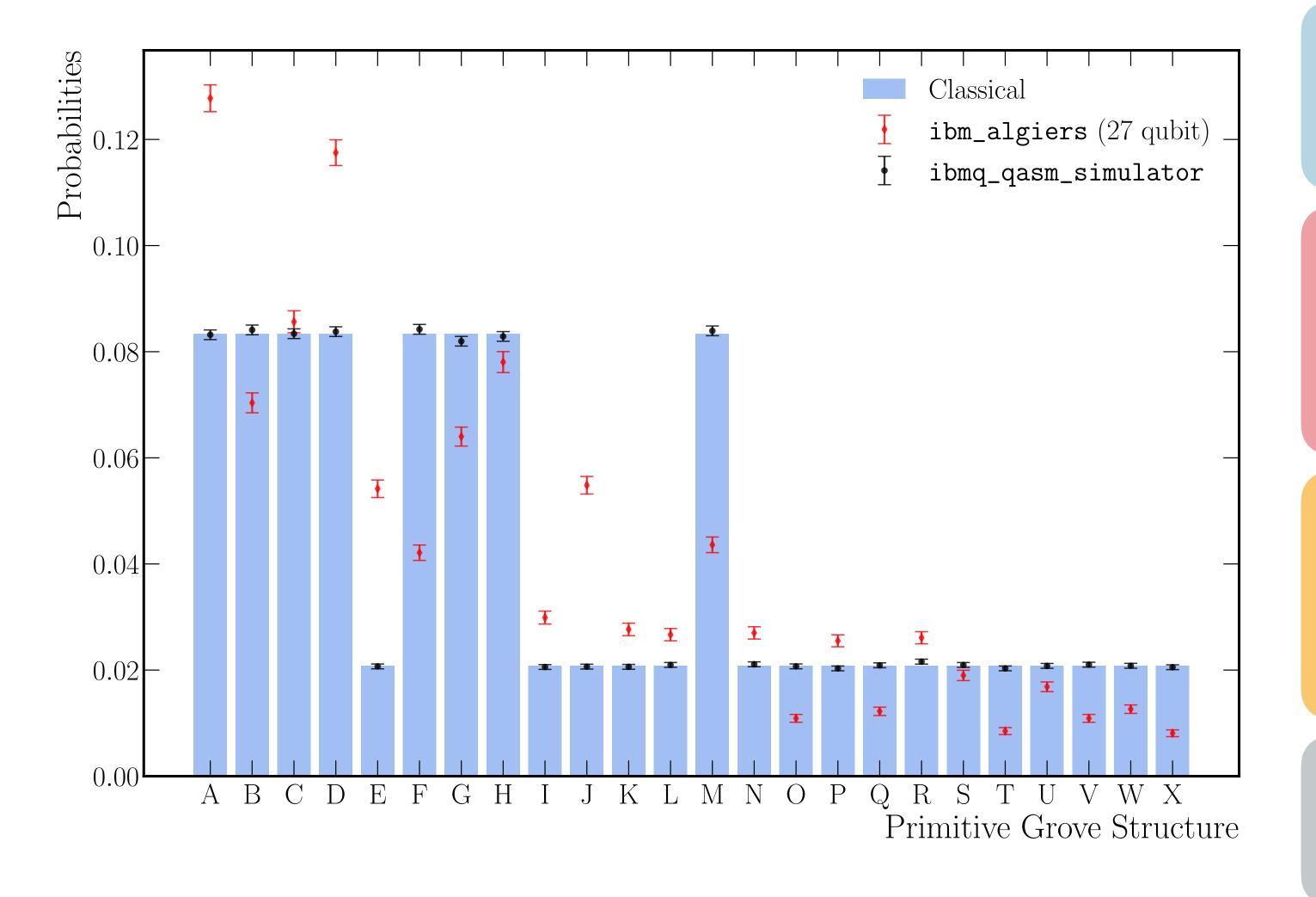
The algorithm has been run on both the ibm_qasm_simulator and the ibm_algiers 27 qubit device. A like-for-like classical implementation has been used as a comparison.

Simon Williams - simon.j.williams@durham.ac.uk

2. For each effective gluon j that has been emitted from a dipole IK, read off the values s_{ii} , s_{ik} and s_{IK}

3. Generate a uniformly distributed azimuthal decay angle ϕ , and then employ momentum mapping (here we have used Phys. Rev. D 85, 014013 (2012), 1108.6172) to produce post-branching momenta

Discrete QCD as a Quantum Walk - Raw Grove Simulation



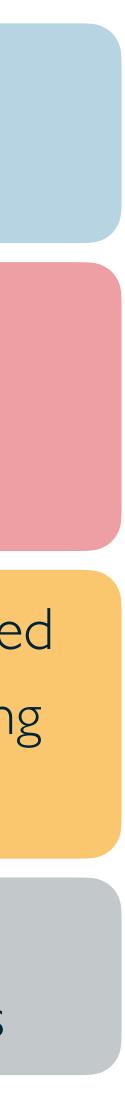
Simon Williams - simon.j.williams@durham.ac.uk

The algorithm has been run on the **IBM Falcon 5.11r chip**

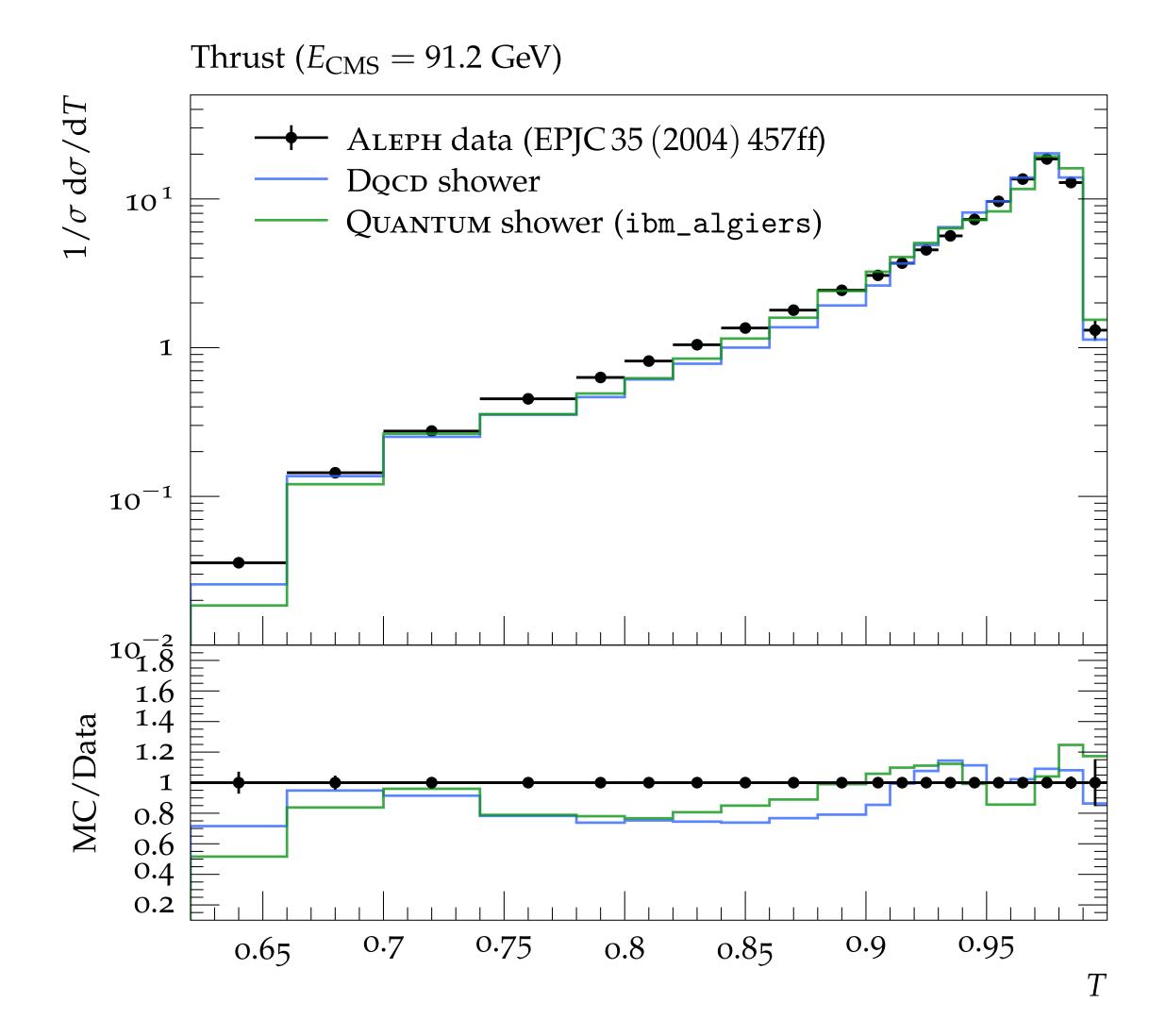
The figure shows the uncorrected performance of the **ibm_algiers** device compared to a simulator

The 24 grove structures are generated for a $E_{CM} = 91.2$ GeV, corresponding to typical collisions at LEP.

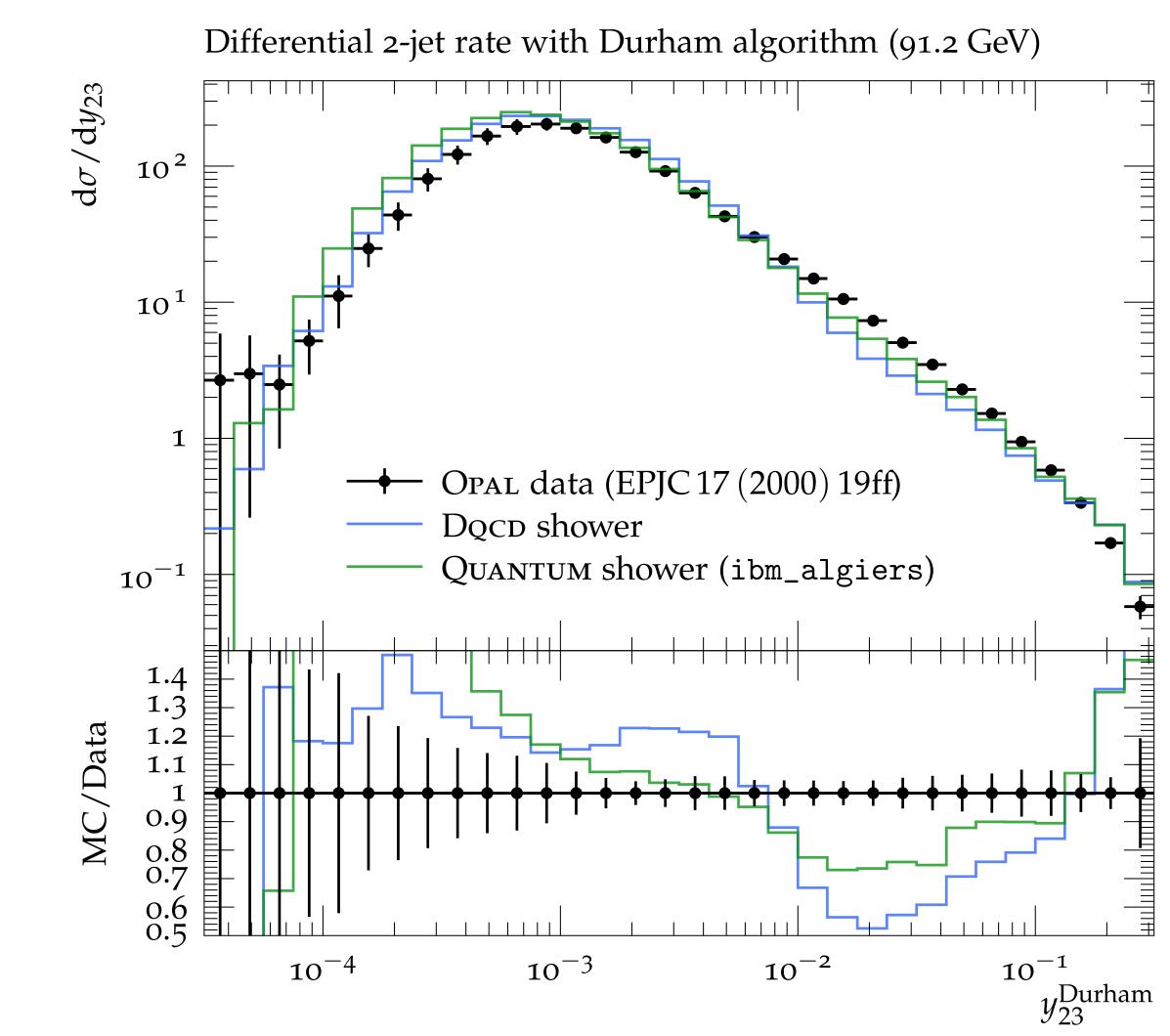
Main source of error from CNOT errors from large amount of SWAPs

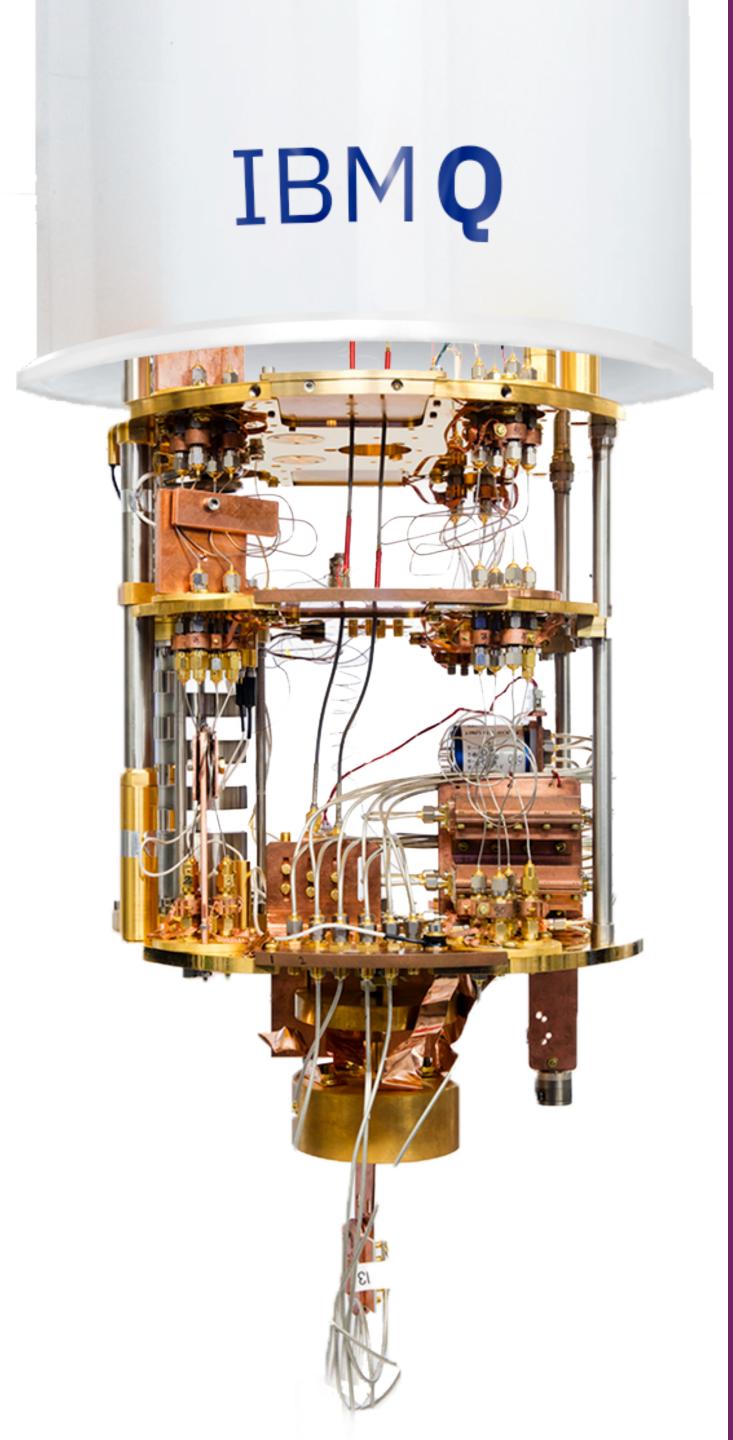


Collider Events on a Quantum Computer



Simon Williams - simon.j.williams@durham.ac.uk



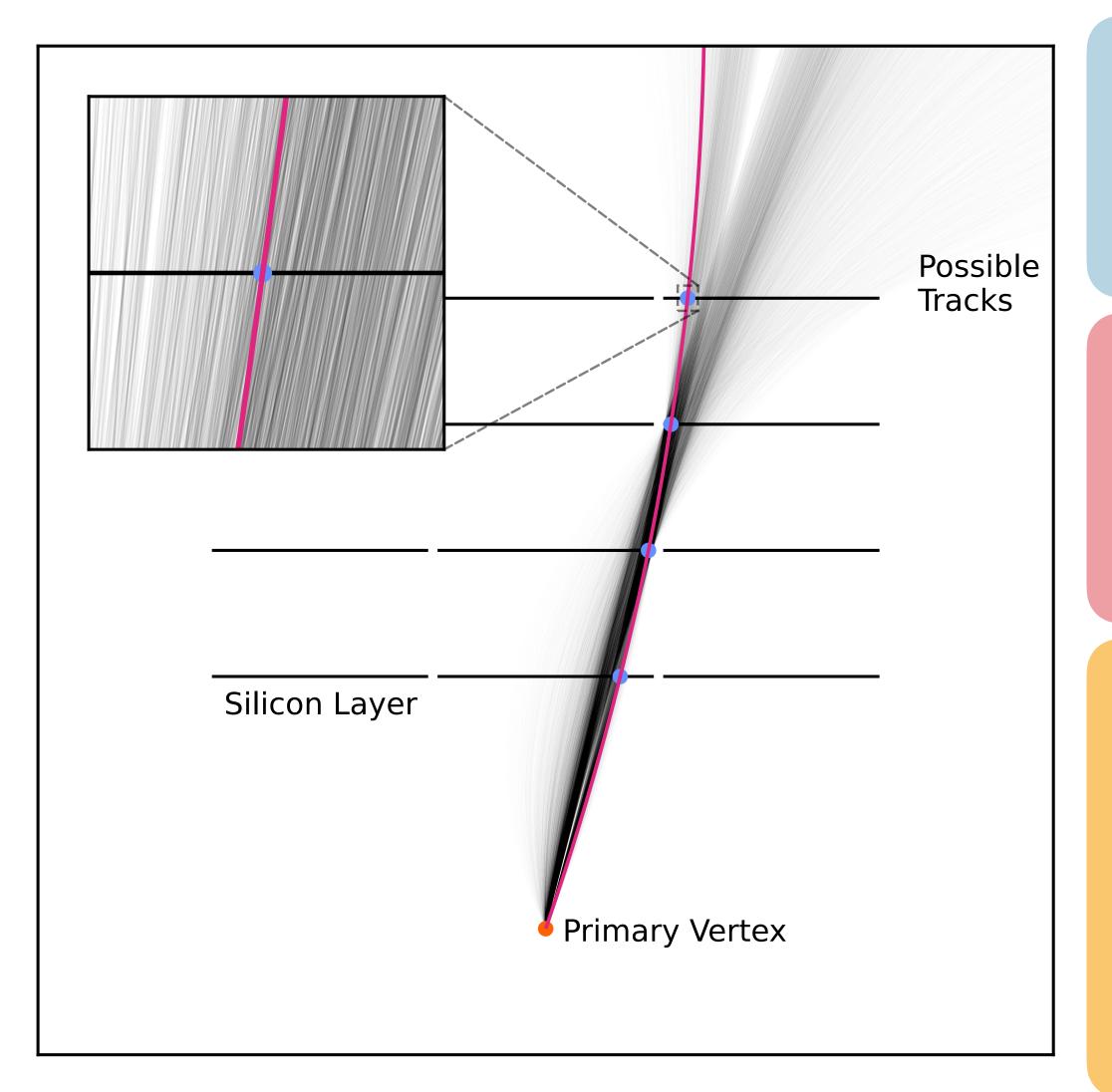


C. Brown, M. Spannowsky, A. Tapper, S. Williams and I. Xiotidis (2024) Quantum pathways for charged track finding in high-energy collisions. Front. Artif. Intell. 7:1339785. <u>arXiv:2311.00766</u>

Quantum Charged Track Finding

Imperial College London

Track Finding via Associative Memory

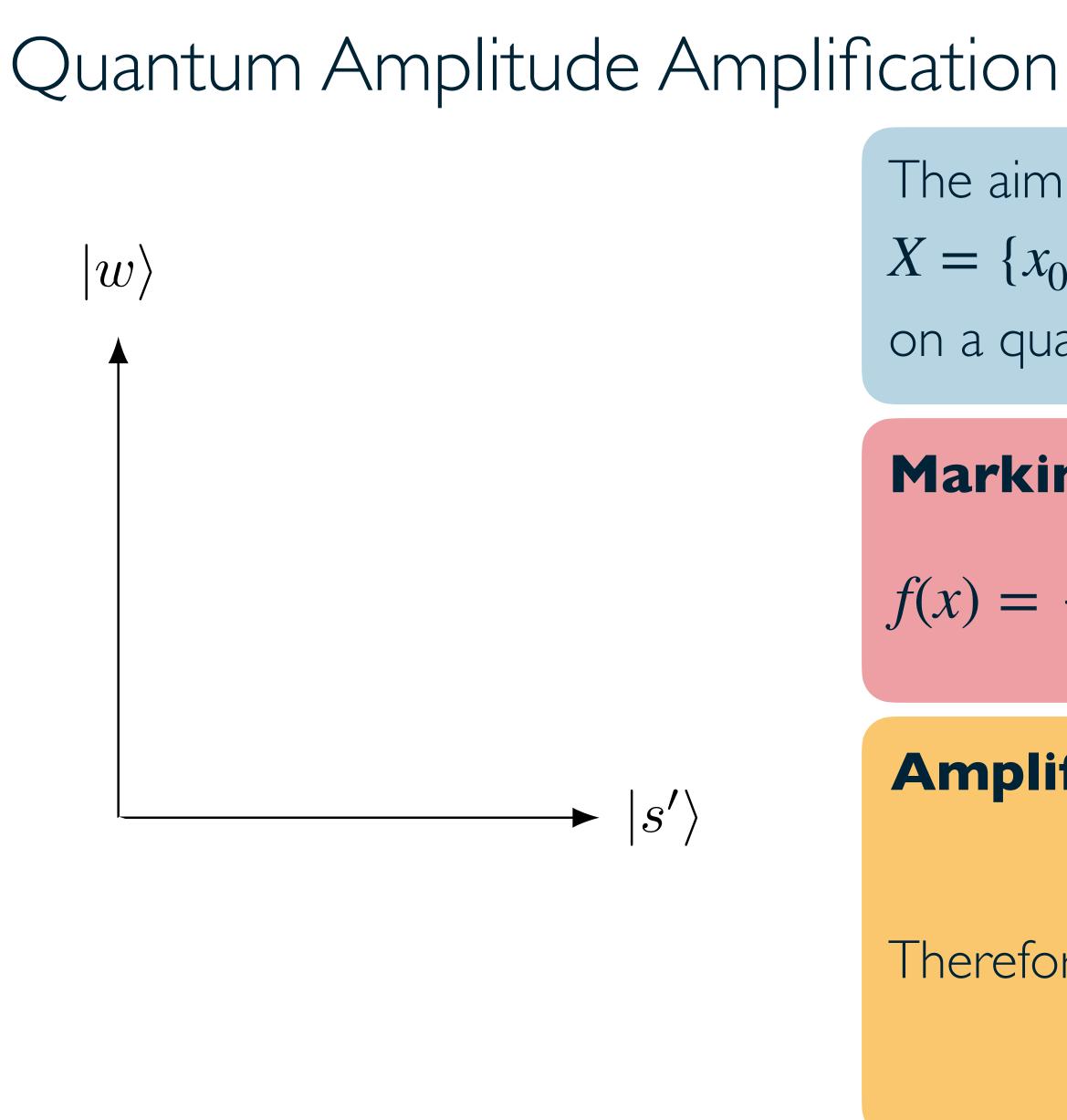


Simon Williams - simon.j.williams@durham.ac.uk

A critical stage of event reconstruction and classification in modern colliders is the identification of charged particle trajectories

Highly granular detectors are used to efficiently measure the **position** of **charged particles** as they move through the detector

Classical techniques like Associative Memory have been shown to be **highly effective**, but **new approaches** are required as collider **energy** and luminosity increase to handle the growing number of tracks and combinatorics



Simon Williams - simon.j.williams@durham.ac.uk

The aim is to **identify** interesting states in a database $X = \{x_0, x_1, \dots, x_N\}$ with **interesting states** m_i encoded on a quantum device as $|s\rangle = \mathscr{A} |0\rangle^{\otimes n}$

ing interesting states,
$$|m\rangle$$
 using the **oracle**

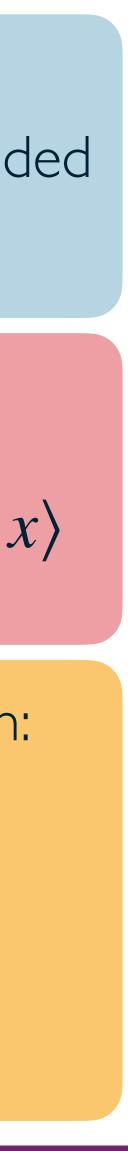
$$\begin{cases}
1 & \text{if } x = m, \\
0 & \text{otherwise.}
\end{cases} \xrightarrow{W} S_f |x\rangle = (-1)^{f(x)}|$$

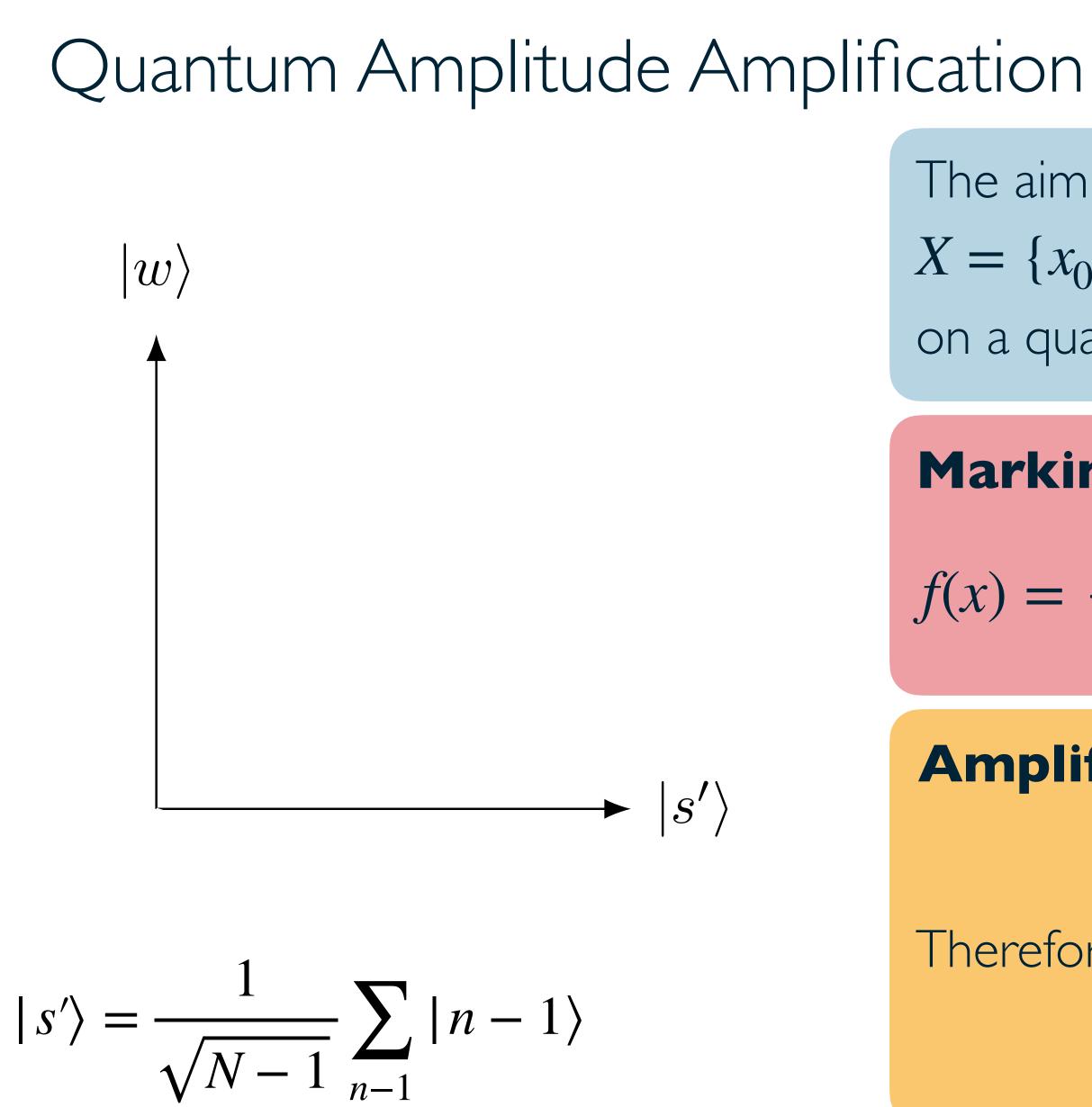
Amplify marked states using the diffusion operation:

$$D = \mathscr{A}^{\dagger} S_0 \mathscr{A}$$

Therefore, can iteratively apply the **Grover Iterator**:

$$Q = \mathscr{A}^{\dagger} S_0 \mathscr{A} S_f$$





Simon Williams - simon.j.williams@durham.ac.uk

The aim is to **identify** interesting states in a database $X = \{x_0, x_1, \dots, x_N\}$ with **interesting states** m_i encoded on a quantum device as $|s\rangle = \mathscr{A} |0\rangle^{\otimes n}$

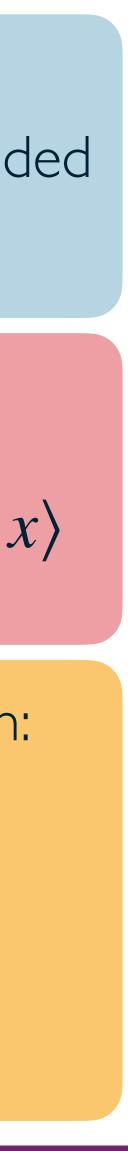
ing interesting states,
$$|m\rangle$$
 using the **oracle**

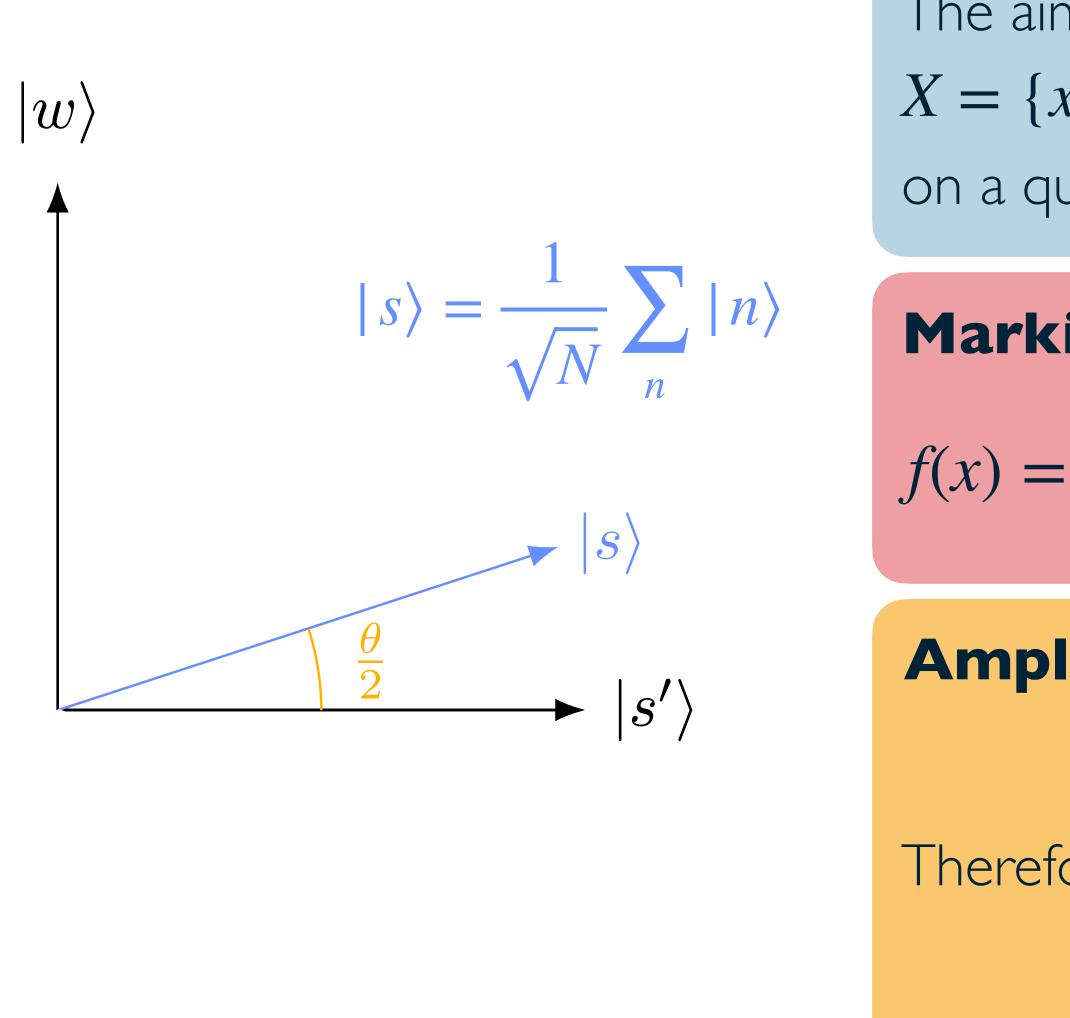
$$\begin{cases}
1 & \text{if } x = m, \\
0 & \text{otherwise.}
\end{cases} \xrightarrow{W} S_f |x\rangle = (-1)^{f(x)}|$$

Amplify marked states using the diffusion operation:

$$D = \mathscr{A}^{\dagger} S_0 \mathscr{A}$$

$$Q = \mathscr{A}^{\dagger} S_0 \mathscr{A} S_f$$





Simon Williams - simon.j.williams@durham.ac.uk

The aim is to **identify** interesting states in a database $X = \{x_0, x_1, \dots, x_N\}$ with **interesting states** m_i encoded on a quantum device as $|s\rangle = \mathscr{A} |0\rangle^{\otimes n}$

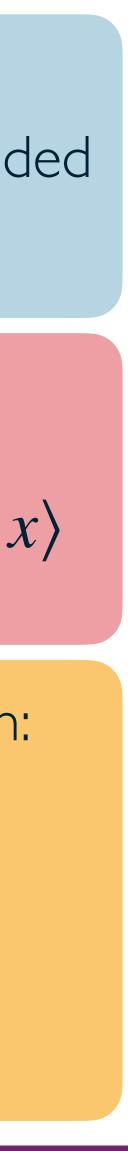
ing interesting states,
$$|m\rangle$$
 using the **oracle**

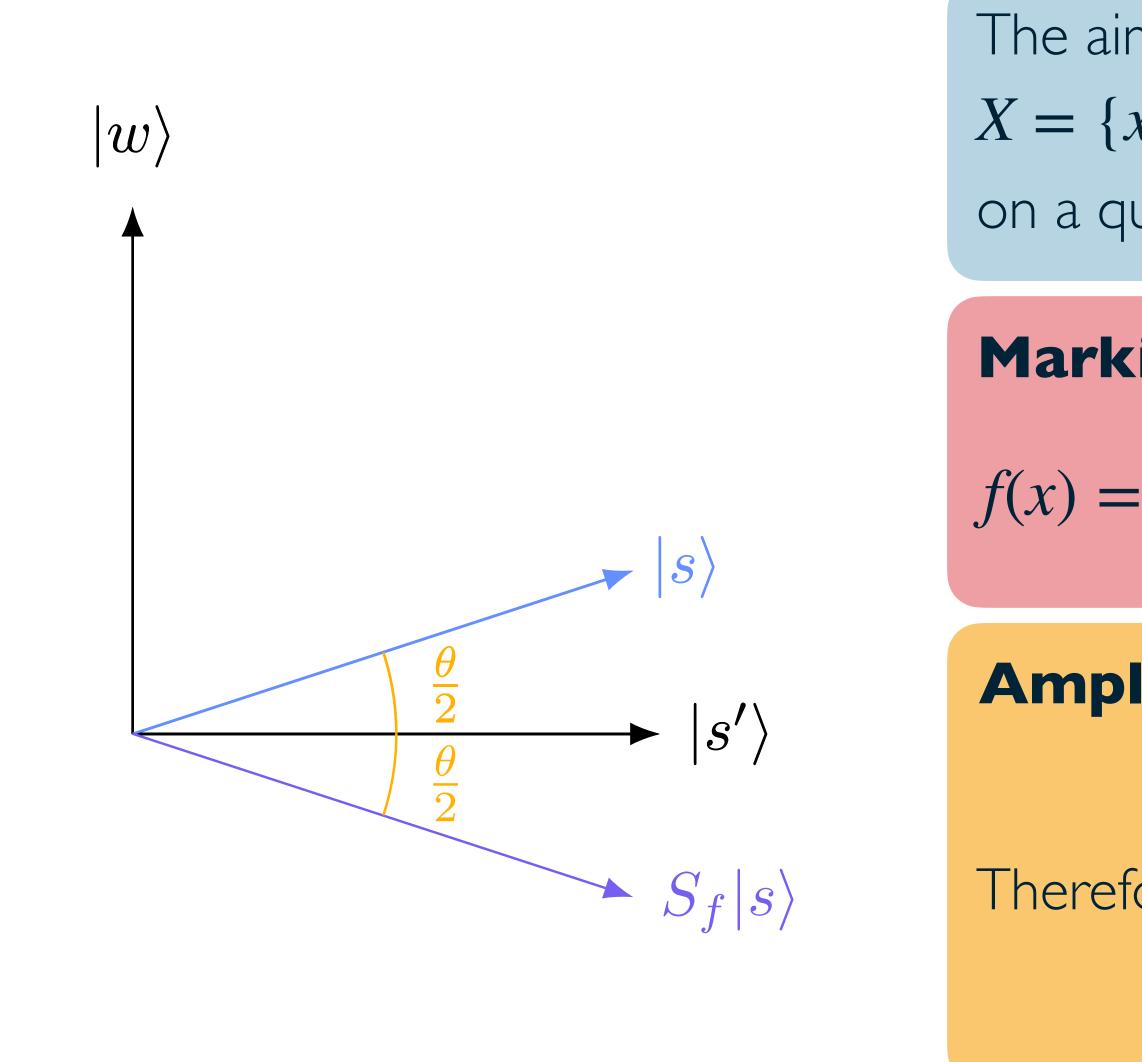
$$\begin{cases}
1 & \text{if } x = m, \\
0 & \text{otherwise.}
\end{cases} \xrightarrow{W} S_f |x\rangle = (-1)^{f(x)}|$$

Amplify marked states using the diffusion operation:

$$D = \mathscr{A}^{\dagger} S_0 \mathscr{A}$$

$$Q = \mathscr{A}^{\dagger} S_0 \mathscr{A} S_f$$





Simon Williams - simon.j.williams@durham.ac.uk

The aim is to **identify** interesting states in a database $X = \{x_0, x_1, \dots, x_N\}$ with **interesting states** m_i encoded on a quantum device as $|s\rangle = \mathscr{A} |0\rangle^{\otimes n}$

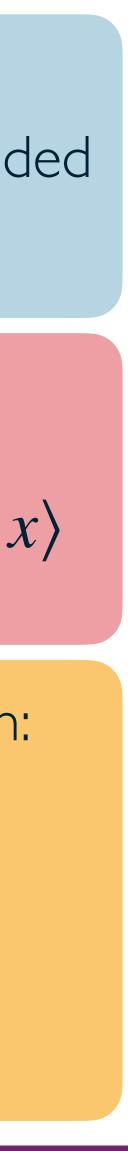
ing interesting states,
$$|m\rangle$$
 using the **oracle**

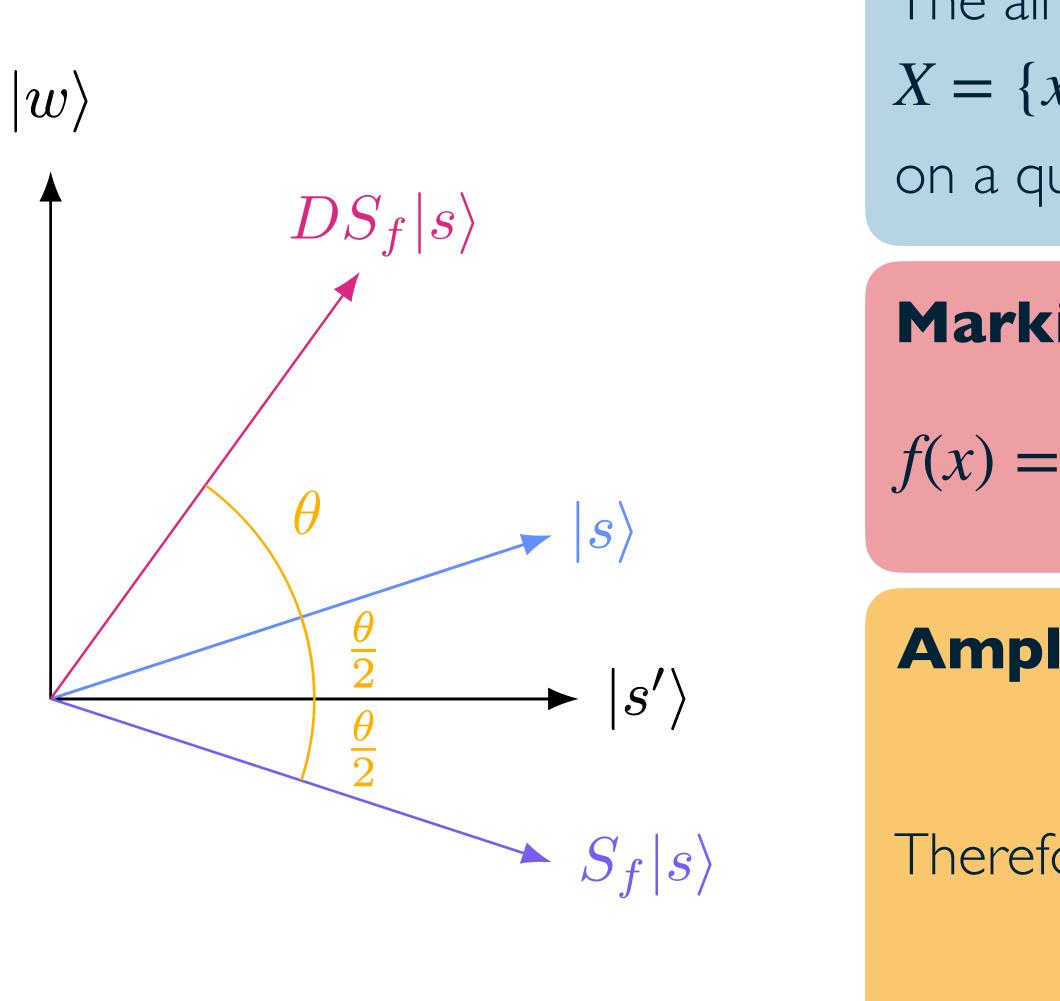
$$\begin{cases}
1 & \text{if } x = m, \\
0 & \text{otherwise.}
\end{cases} \xrightarrow{W} S_f |x\rangle = (-1)^{f(x)}|$$

Amplify marked states using the diffusion operation:

$$D = \mathscr{A}^{\dagger} S_0 \mathscr{A}$$

$$Q = \mathscr{A}^{\dagger} S_0 \mathscr{A} S_f$$





Simon Williams - simon.j.williams@durham.ac.uk

The aim is to **identify** interesting states in a database $X = \{x_0, x_1, \dots, x_N\}$ with **interesting states** m_i encoded on a quantum device as $|s\rangle = \mathscr{A} |0\rangle^{\otimes n}$

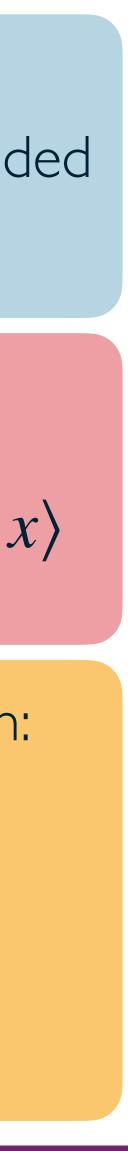
ing interesting states,
$$|m\rangle$$
 using the **oracle**

$$\begin{cases}
1 & \text{if } x = m, \\
0 & \text{otherwise.}
\end{cases} \xrightarrow{W} S_f |x\rangle = (-1)^{f(x)}|$$

Amplify marked states using the diffusion operation:

$$D = \mathscr{A}^{\dagger} S_0 \mathscr{A}$$

$$Q = \mathscr{A}^{\dagger} S_0 \mathscr{A} S_f$$



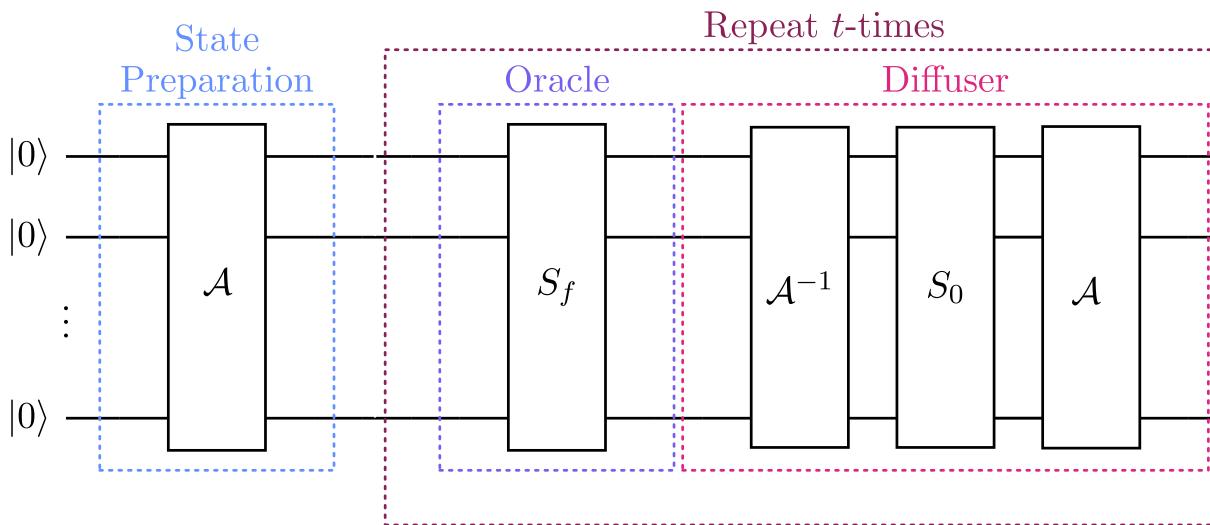
The optimal number of iterations of the QAA routine Q is given by

$$t = \left\lfloor \frac{\pi}{4} \sqrt{\frac{N}{m}} \right\rfloor$$

After t iterations of Q, measurement will return a marked state with high probability

QAA therefore scales as $\mathcal{O}(\sqrt{N})$, thus achieving a **polynomial speedup** over classical search algorithms, which scale as $\mathcal{O}(N)$

Simon Williams - simon.j.williams@durham.ac.uk



Oracle Construction

Consider a two qubit example where $|11\rangle$ is the marked state

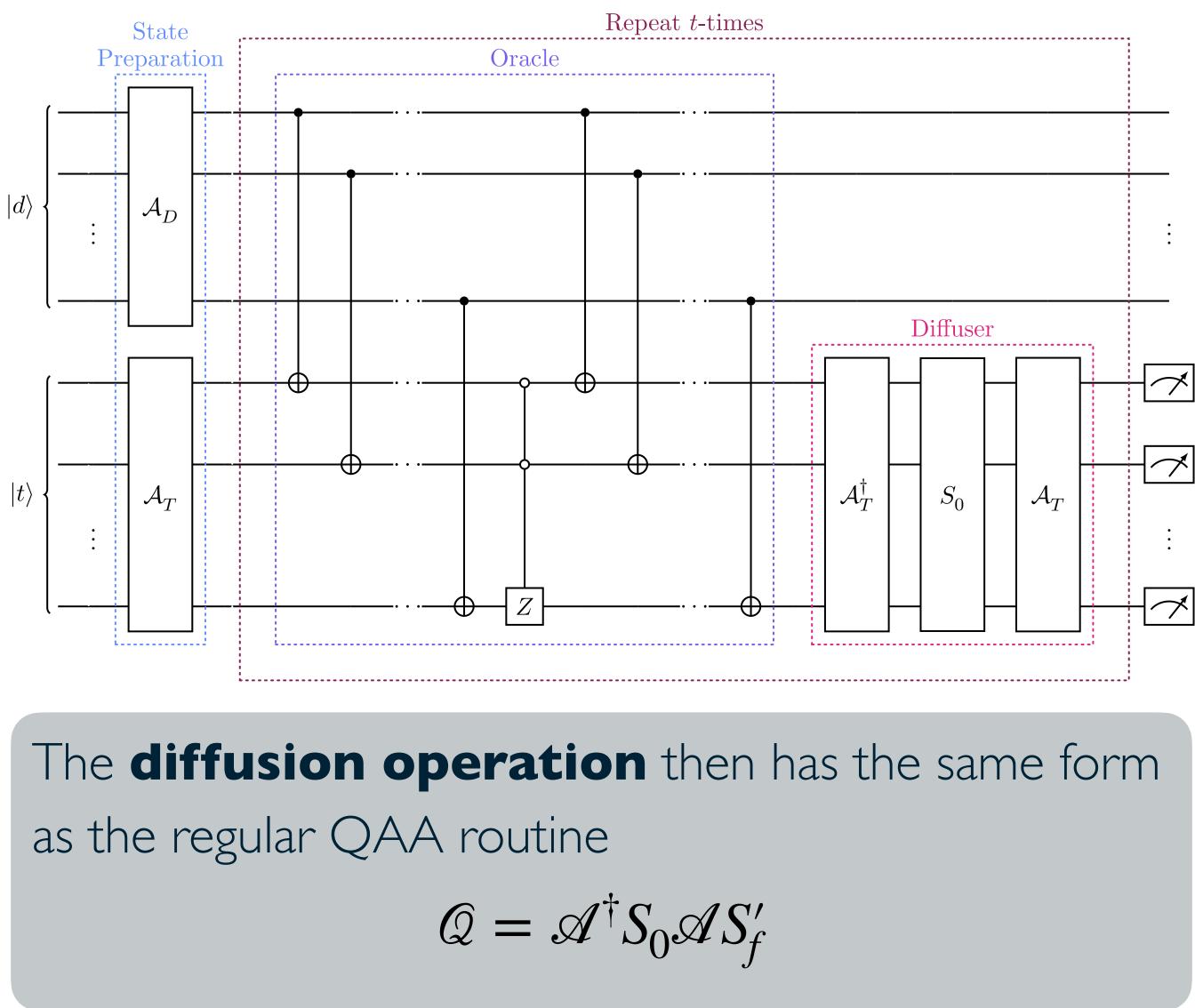
$$S_f: I \otimes |0\rangle \langle 0| + Z \otimes |1\rangle \langle$$

Quantum Template Matching

The perform template matching, we must **abstract** the QAA routine by constructing a new oracle

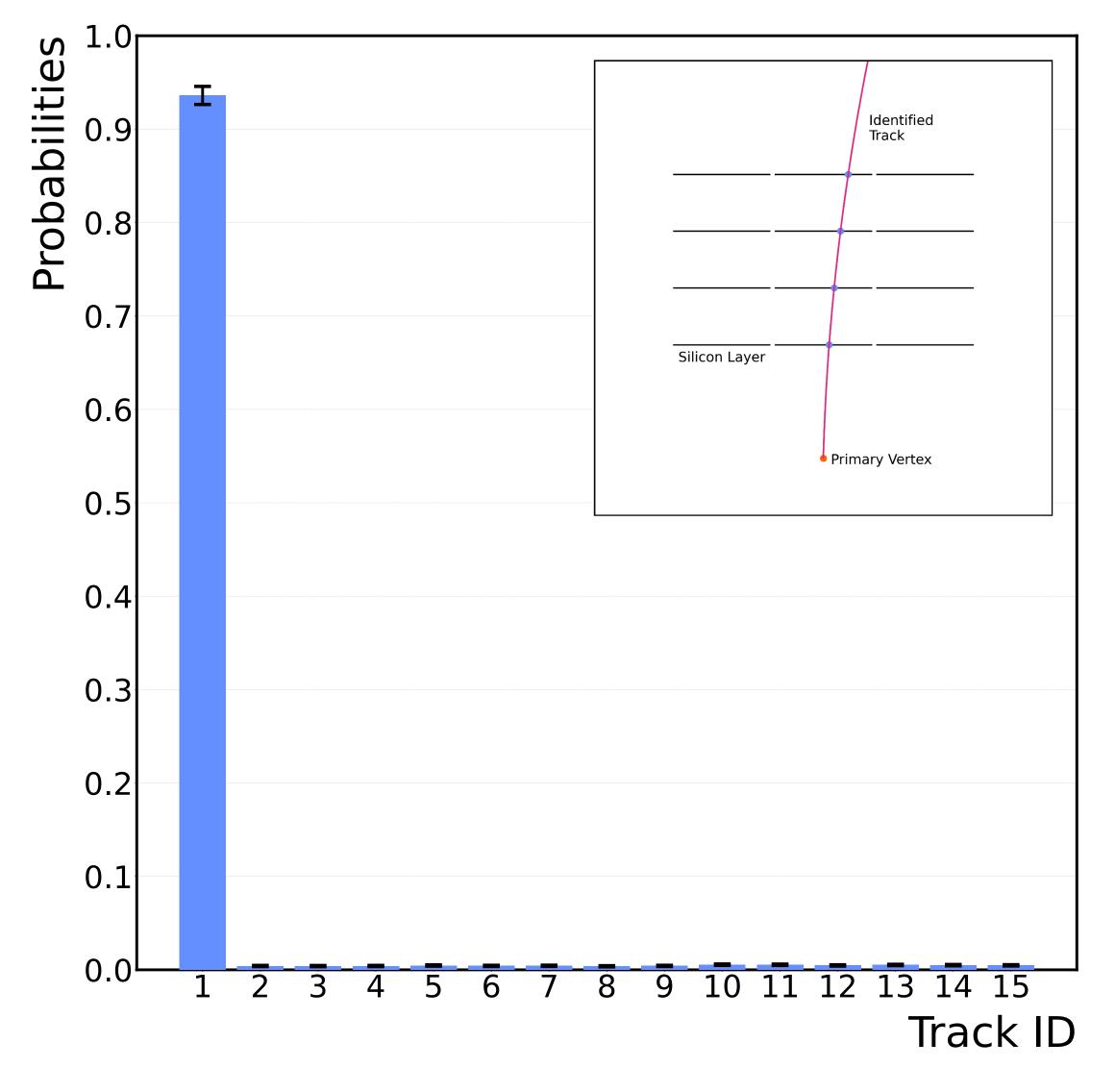
Introducing a new **data register** and acting the oracle across two registers allows for data to be parsed directly to the algorithm

The oracle is constructed from a series of **CNOT** gates and a phase inversion about the zero state on the template register

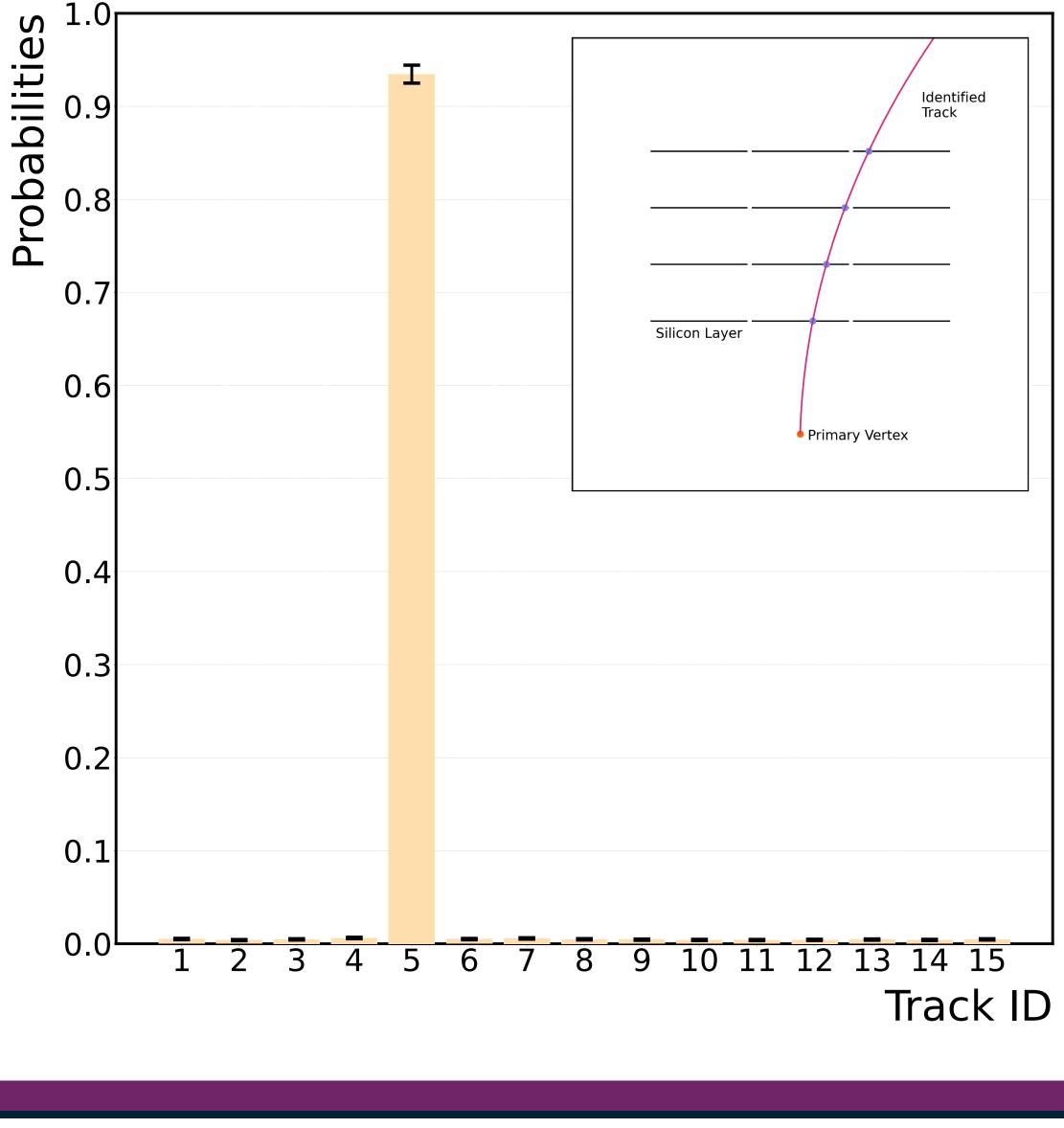


$$Q = \mathscr{A}^{\dagger} S_0 \mathscr{A} S_f'$$

Quantum Template Matching for Track Finding



Simon Williams - simon.j.williams@durham.ac.uk



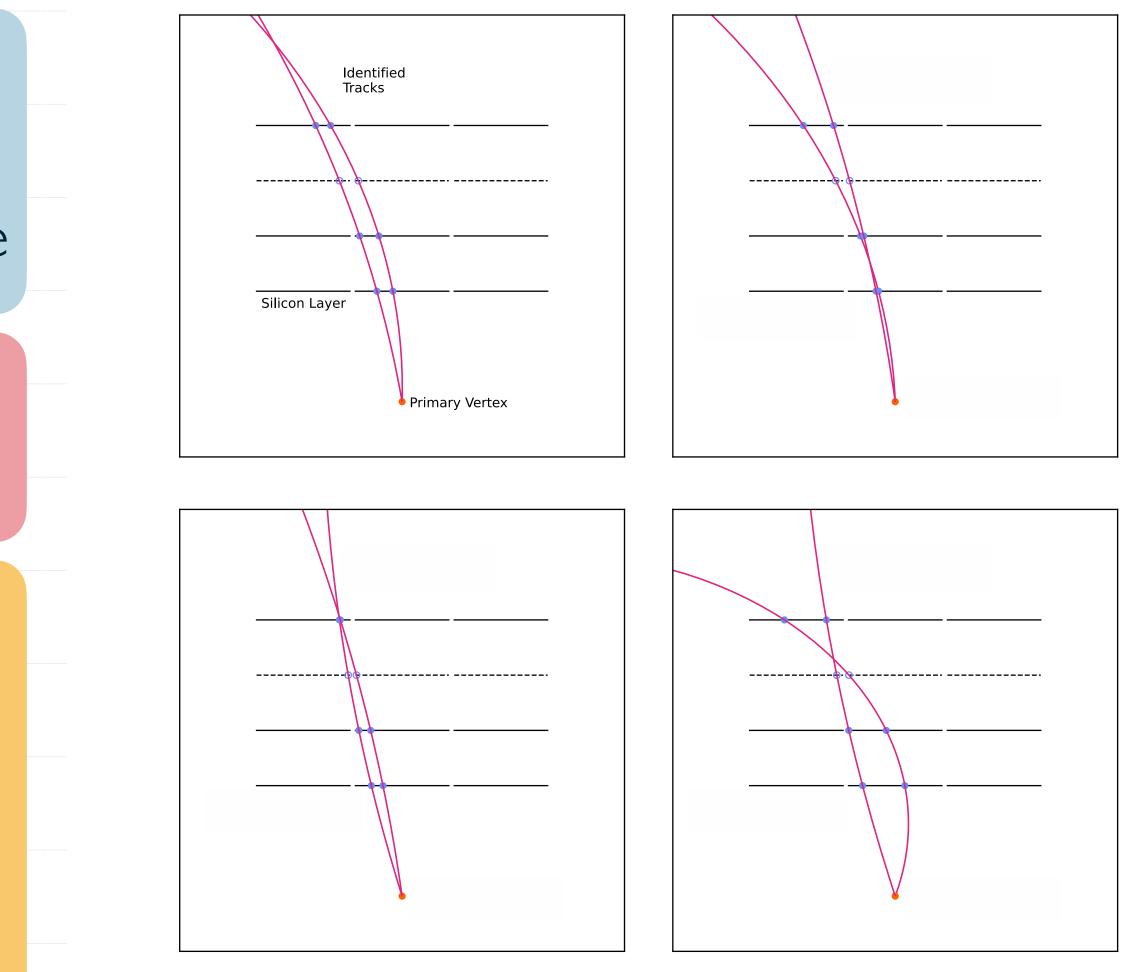
Quantum Track Finding with Missing Hits

A primary challenge for track finding algorithms is when a particle traverses a detector without registering a hit in one or more detector module

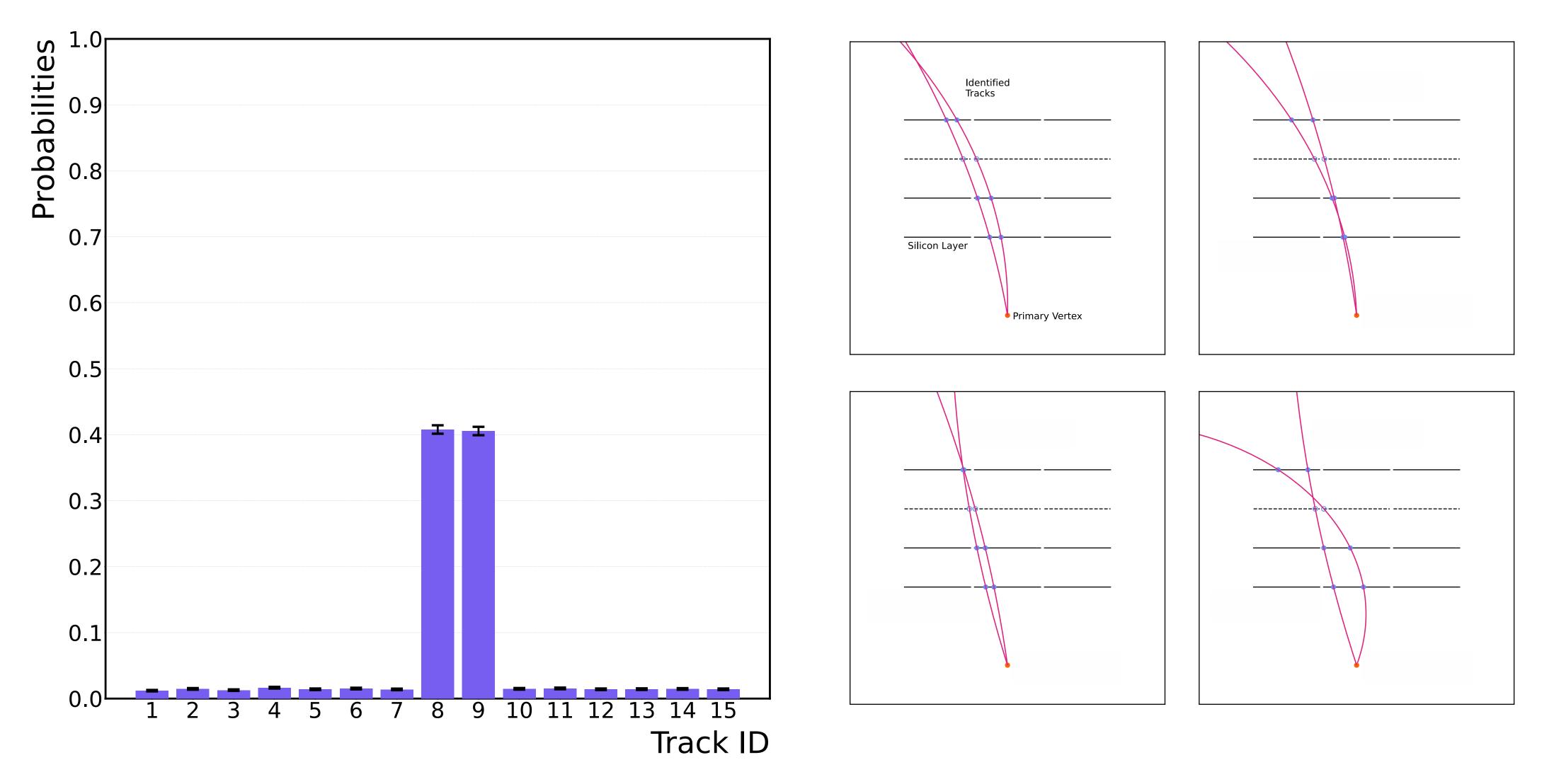
An Associative Memory approach to track finding cannot manage missing hit data

Modifying the oracle allows for the quantum template algorithm to efficiently search on missing hit data, without an increase in resources and retaining the high accuracy and speedup

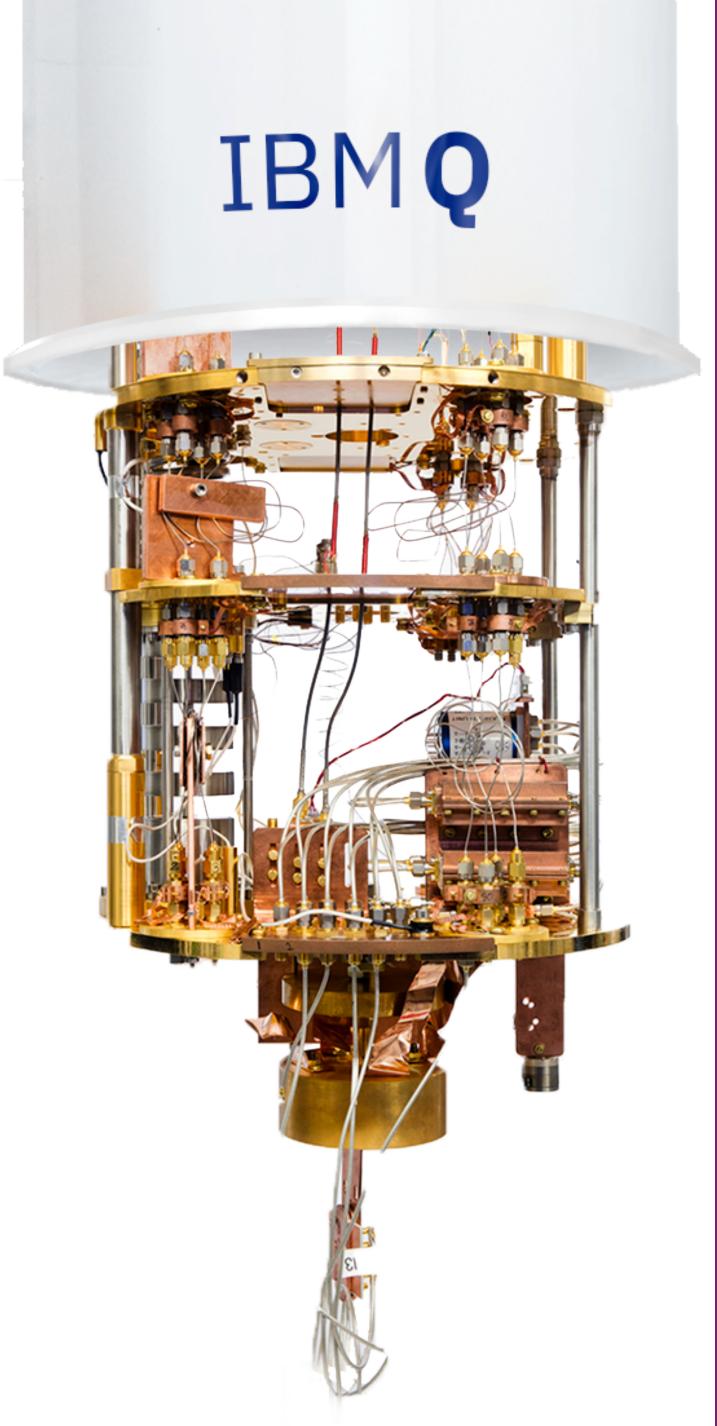
Simon Williams - simon.j.williams@durham.ac.uk



Quantum Track Finding with Missing Hits



Simon Williams - simon.j.williams@durham.ac.uk



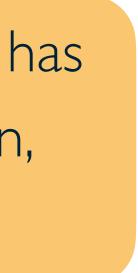
Summary

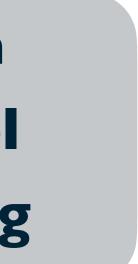
High Energy Physics is on the edge of a computational frontier, the High Luminosity Large Hadron Collider and FCC will provide unprecedented amounts of data

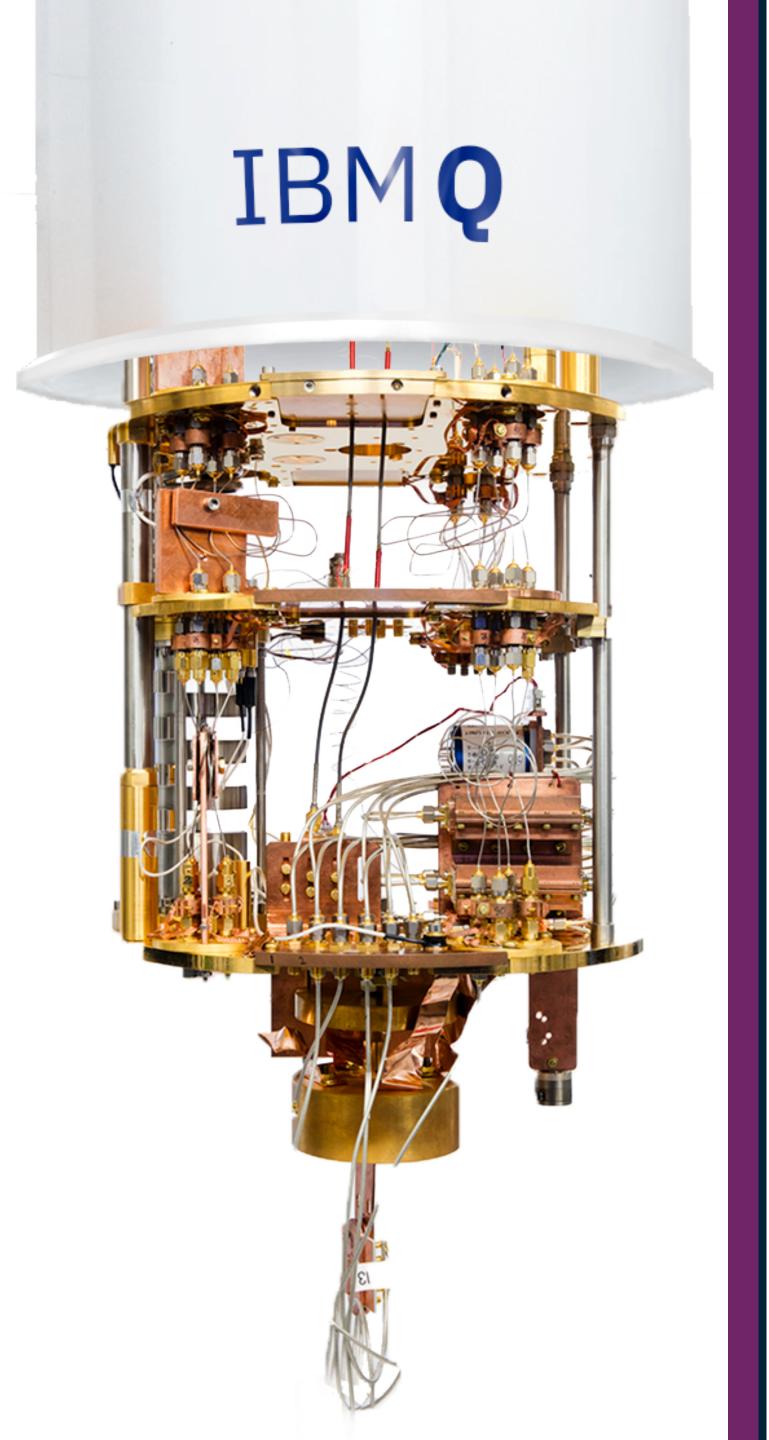
Quantum Computing offers an impressive and powerful tool to combat computational bottlenecks, both for theoretical and experimental purposes

We present an efficient approach to track finding using quantum computers by exploiting the **QAA** routine and employing a **novel** oracle paving the way for practical quantum track finding

The first realistic simulation of a high energy collision has been presented using a compact quantum walk implementation, allowing for the algorithm to be run on a **NISQ device**







Backup Slides

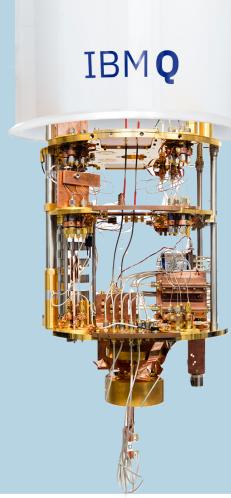
Simon Williams

Future Colliders, Corfu Summer Institute, 24th May 2024

Noisy Intermediate-Scale Quantum Devices

NISQ devices:

No continuous quantum error correction, prone to large noise effects from environment.



Transpilation:

Loading the circuit onto the backend, transpilation can be used to optimise the circuit: qubit and coupling mapping, noise models, etc.

Simon Williams - simon.j.williams@durham.ac.uk

Quantum errors:

Mutliqubit qubit gates: CNOT gates have higher associated errors than single qubit gates.

SWAP errors: SWAP operations require 3 CNOT gates

TI times: The time it takes for an excited qubit to decay back to the ground state.

Circuit depth! - Compact circuits needed!

Speed up via Quantum Walks

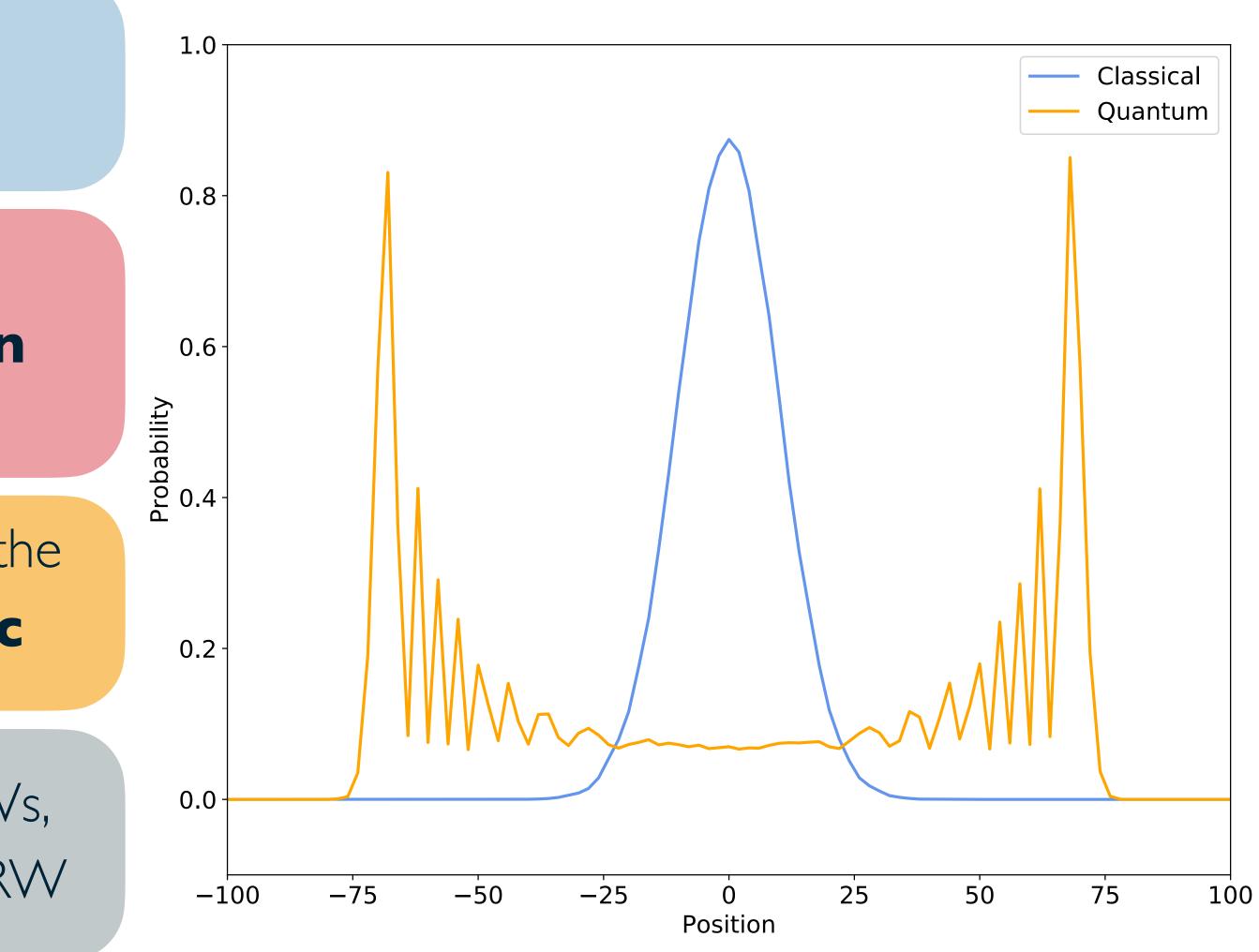
Quantum Walks have long be conjectured to achieved at least quadratic speed up

Szegedy Quantum Walks have been proven to achieve quadratic speed up for Markov Chain **Monte Carlo**

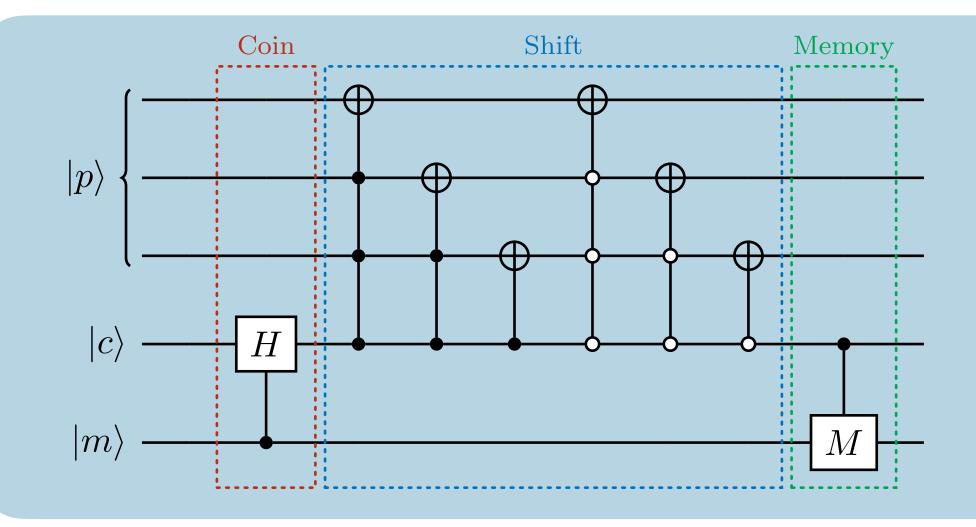
This has been proven under the condition that the MCMC algorithm is **reversible and ergodic**

Work is ongoing to prove this is true for all QWs, but latest upper limits are on par with classical RW

Simon Williams - simon.j.williams@durham.ac.uk



Quantum Walks with Memory



Advantages:

- Arbitrary dynamics
- Classical dynamics in unitary evolution

Disadvantages:

- Tight conditions on quantum advantage

Simon Williams - simon.j.williams@durham.ac.uk

Qubit model:

Augment system further by adding an additional memory space

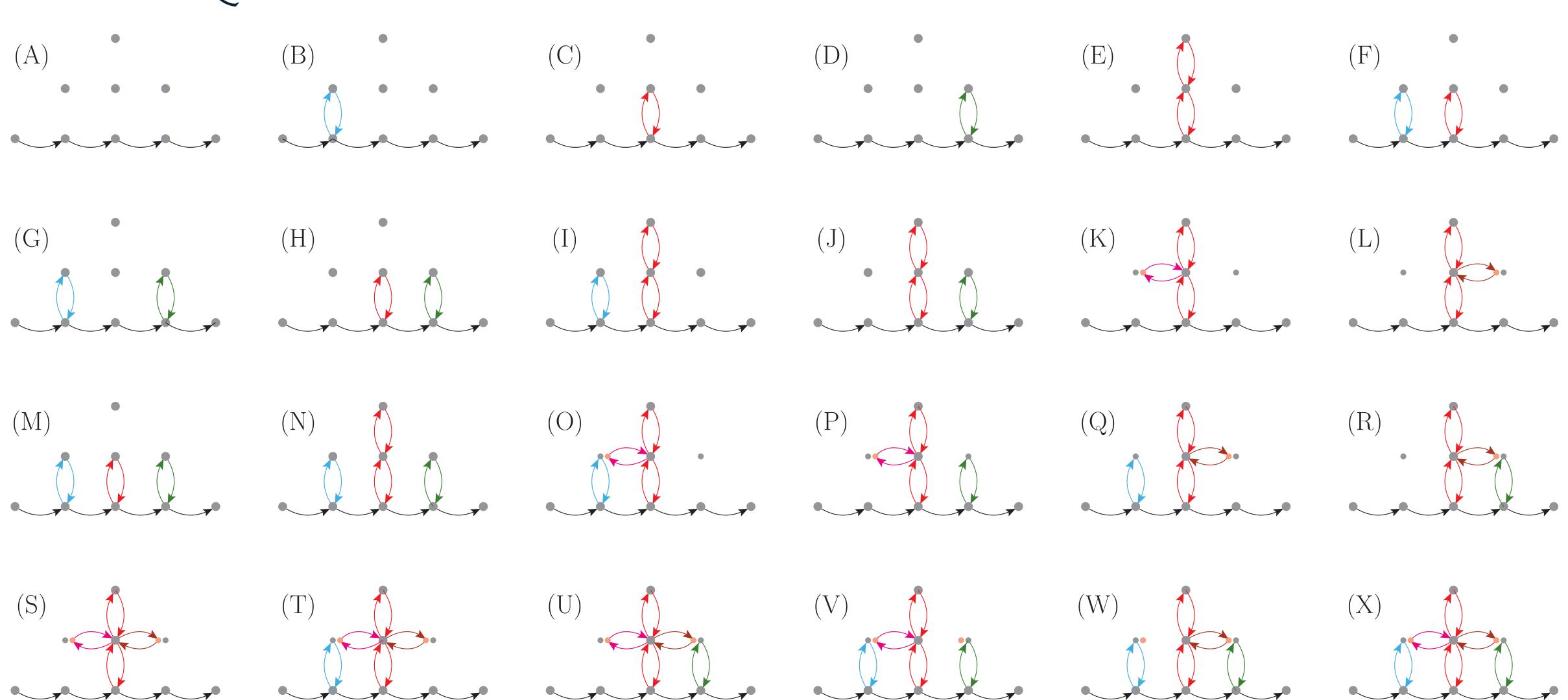
 $\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_C \otimes \mathcal{H}_M$

Quantum Parton Showers:

Quantum Walks with memory have proven to be very useful for quantum parton showers.

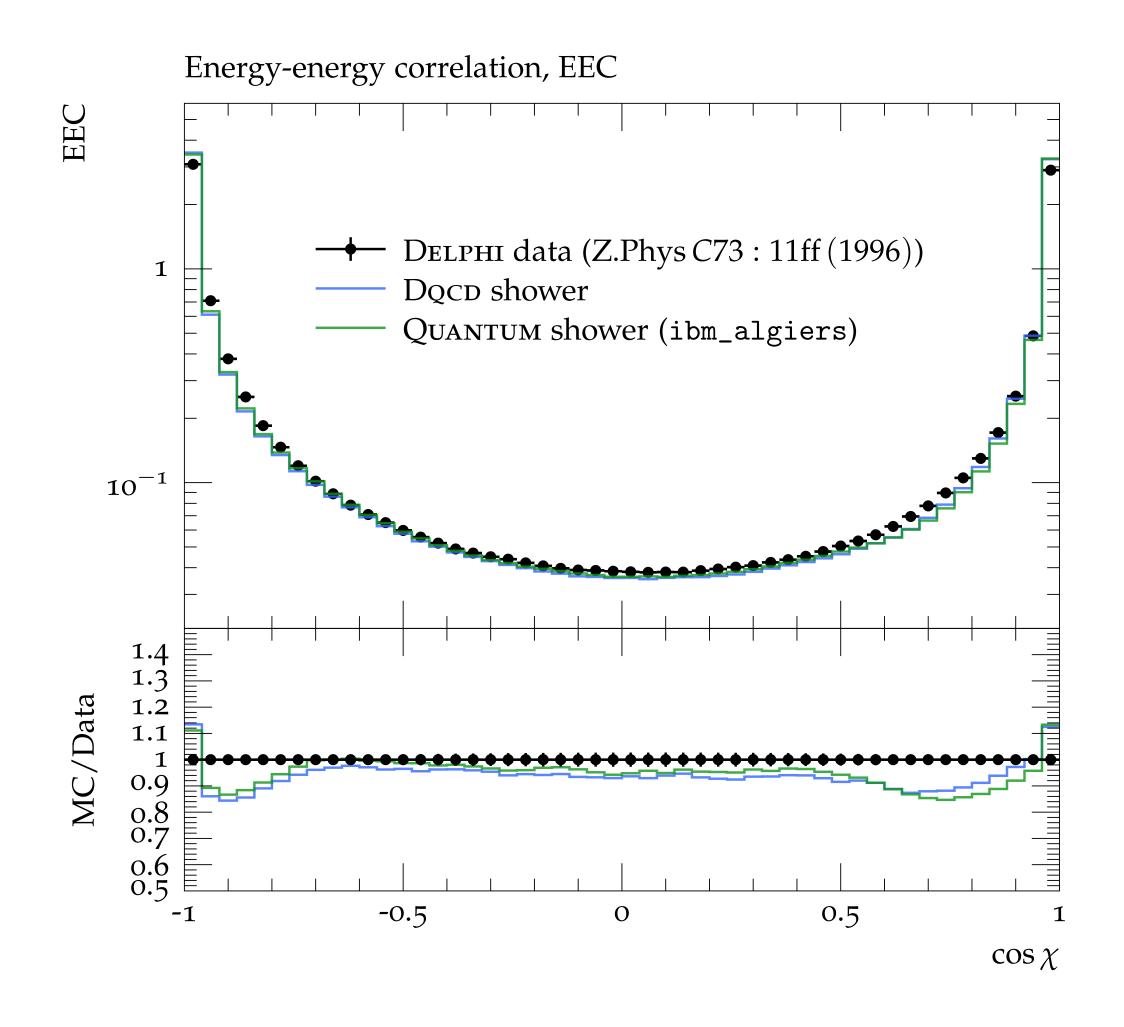
K. Bepari, S. Malik, M. Spannowsky and SW, Phys. Rev. D 106 (2022) 5,056002

Discrete QCD - Grove Structures

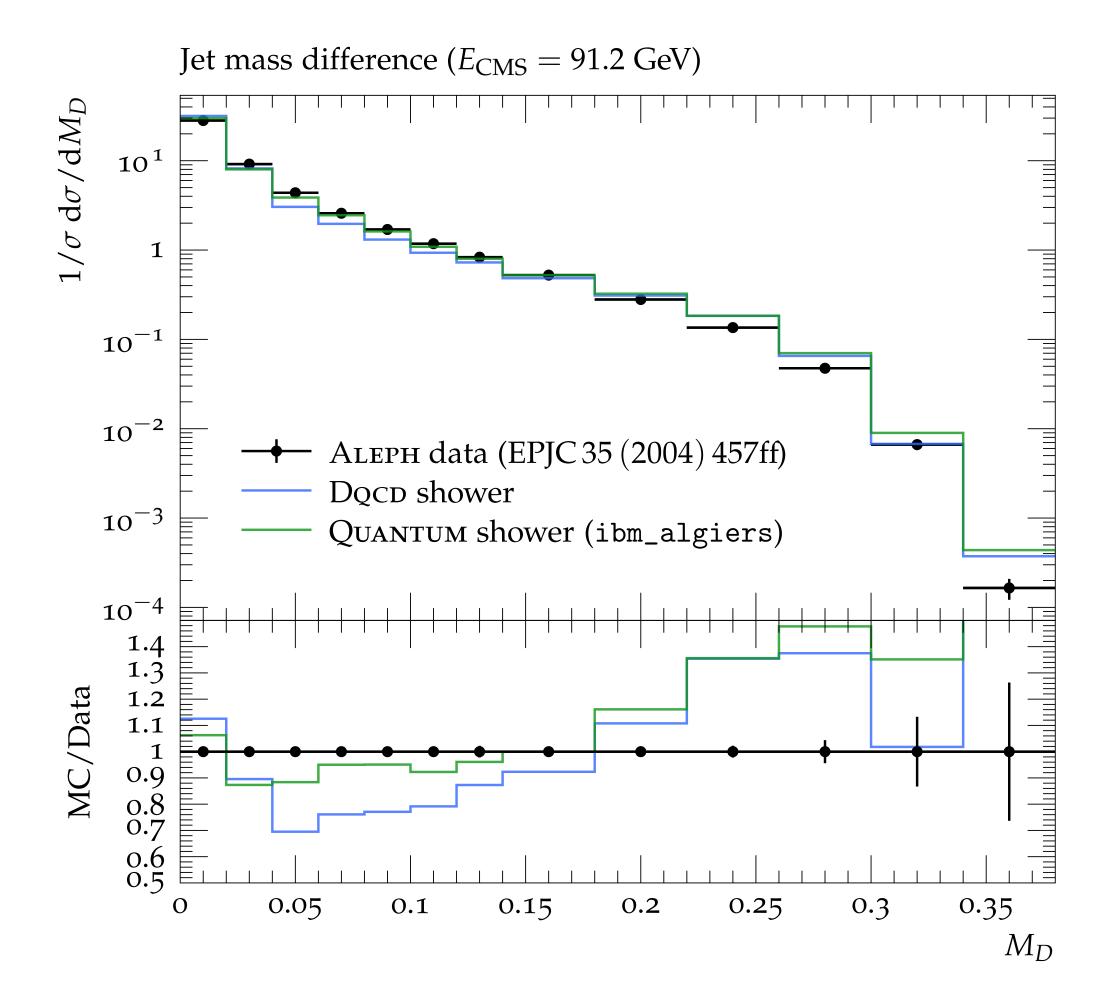


Simon Williams - simon.j.williams@durham.ac.uk

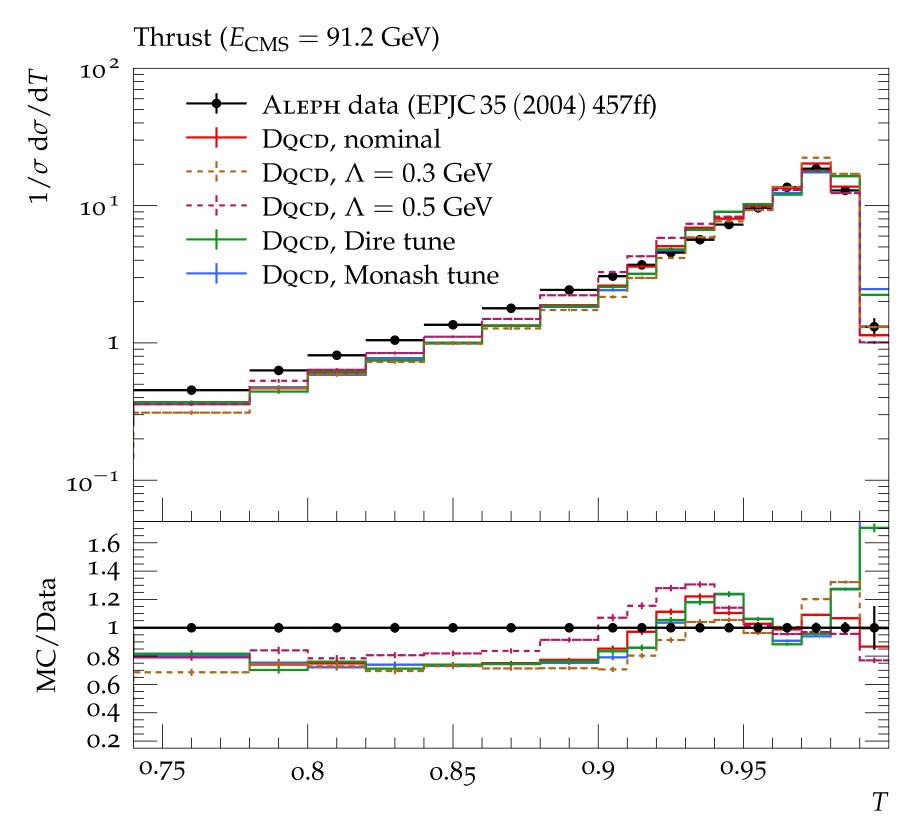
Collider Events on a Quantum Computer



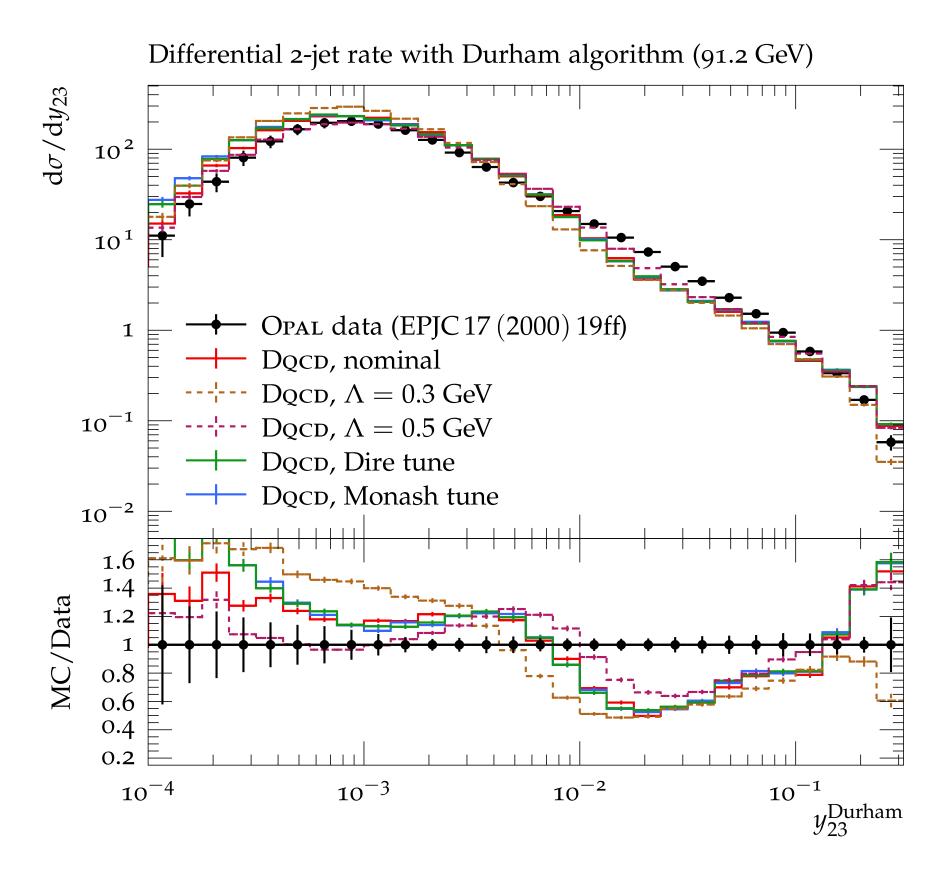
Simon Williams - simon.j.williams@durham.ac.uk

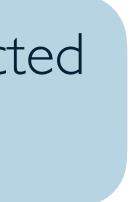


Collider Events on a Quantum Computer - Varying Λ

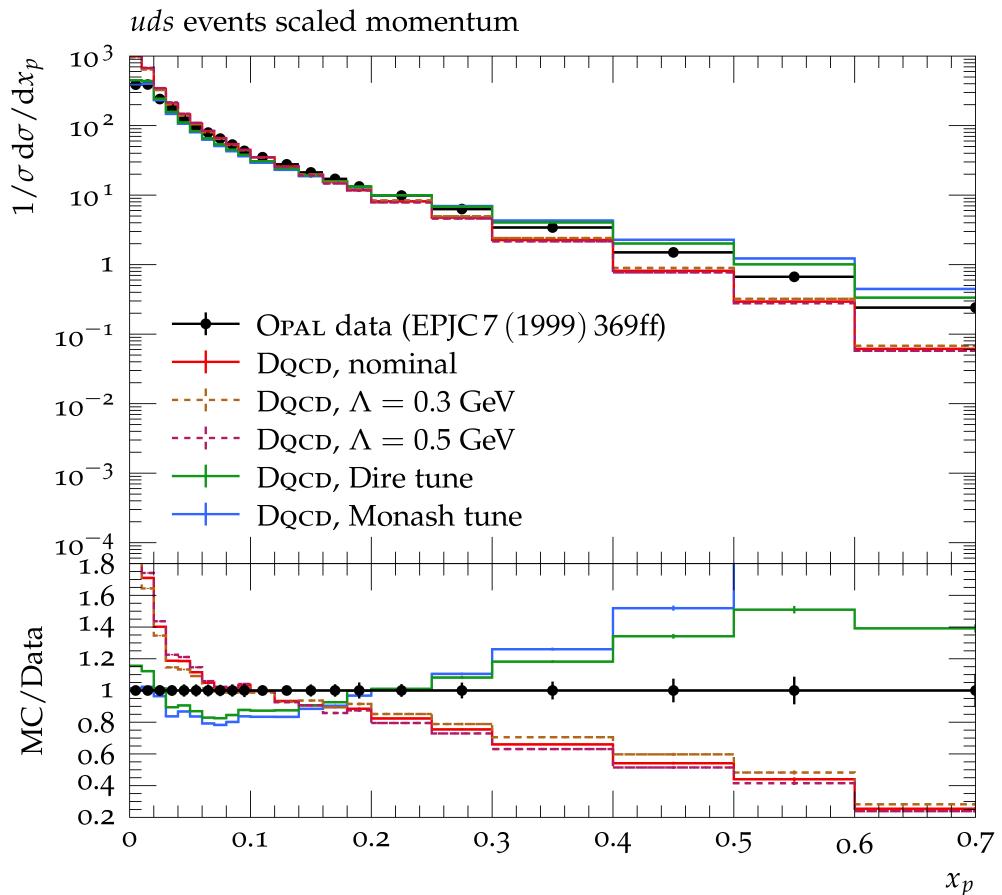


Varying values for the mass scale Λ . This leads to non-negligible uncertainties, however this is expected from a leading logarithm model.

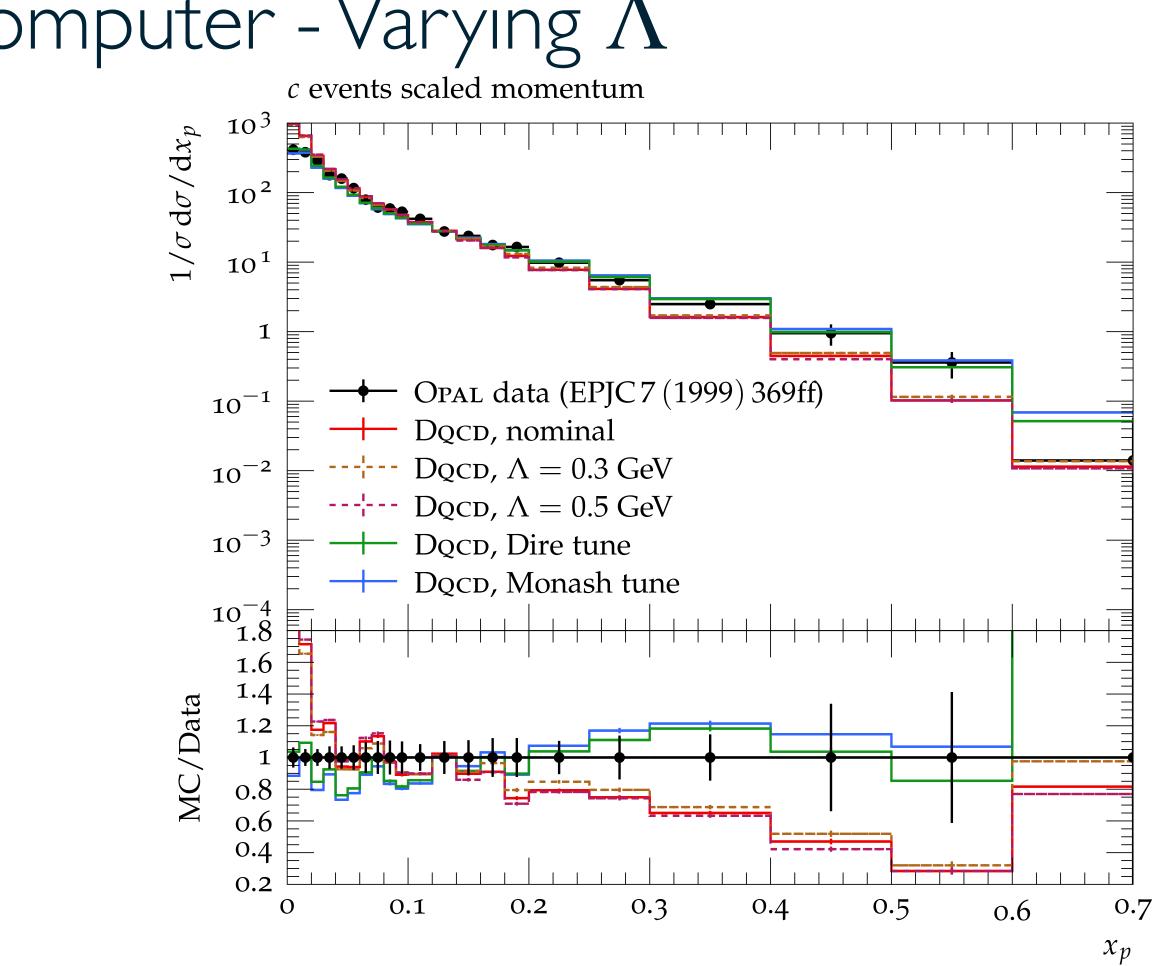




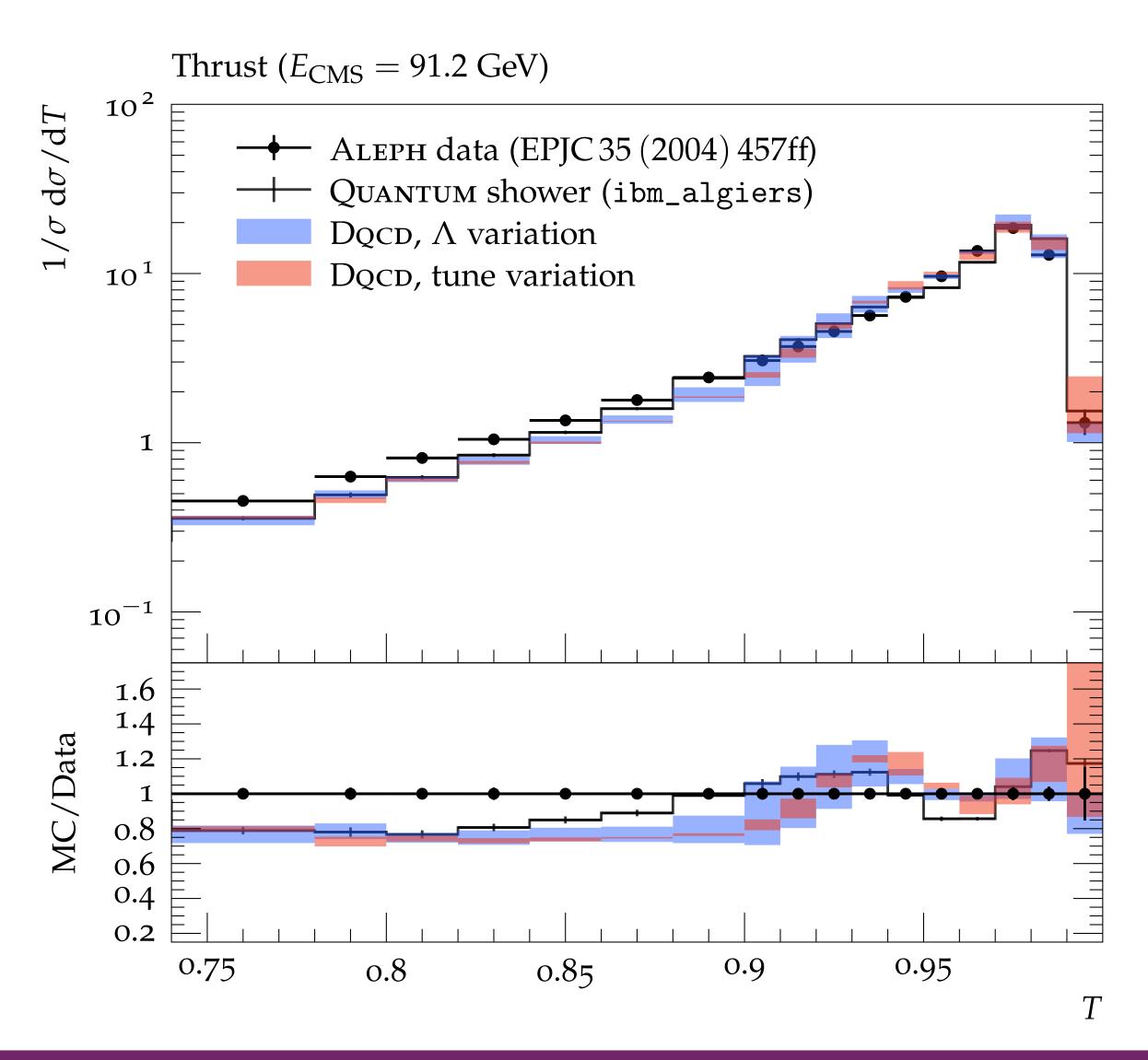
Collider Events on a Quantum Computer - Varying Λ



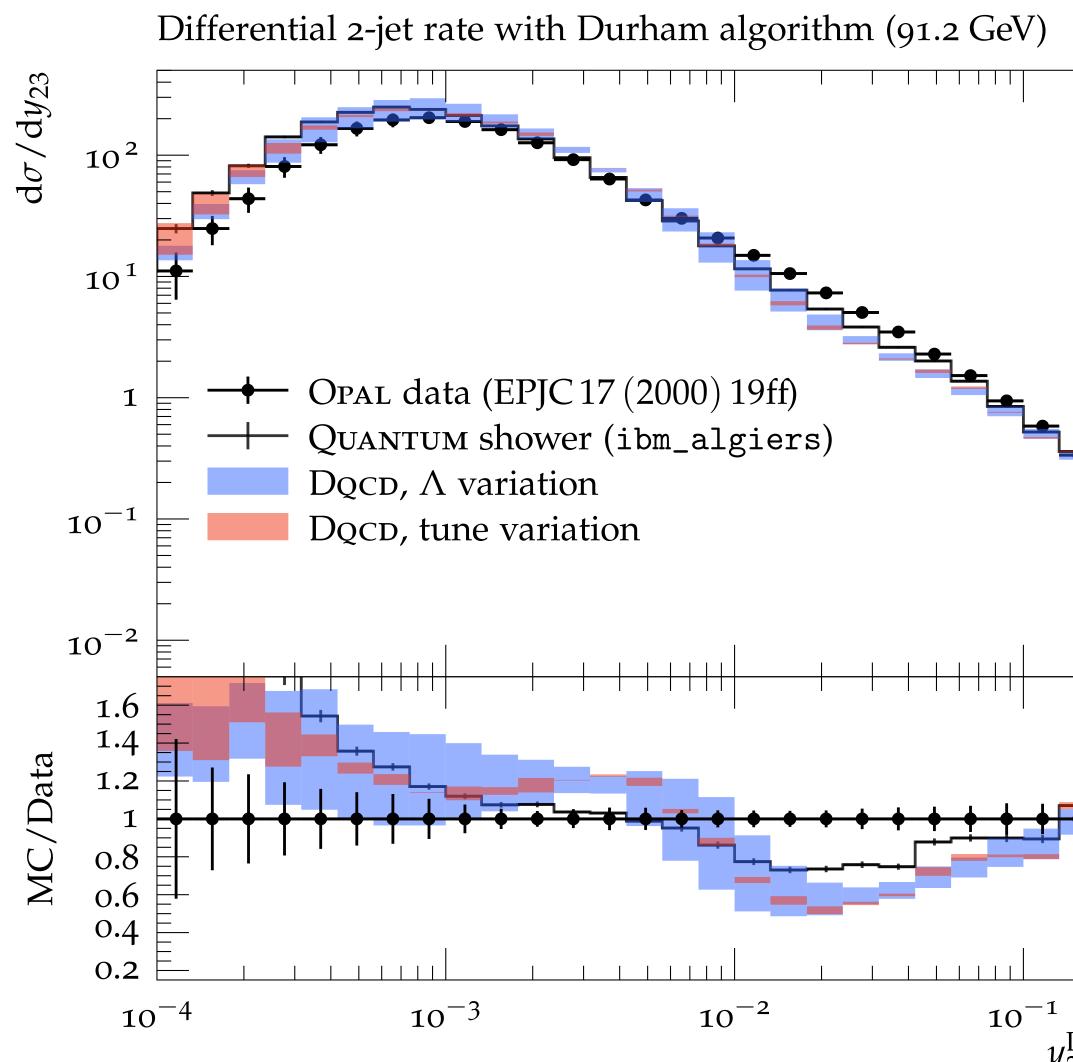
Varying values for the mass scale Λ . This leads to non-negligible uncertainties, however this is expected from a leading logarithm model.

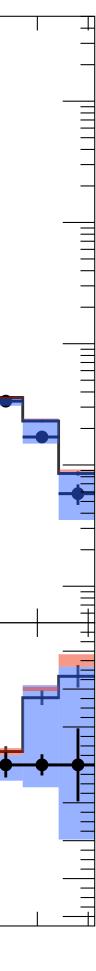


Collider Events on a Quantum Computer

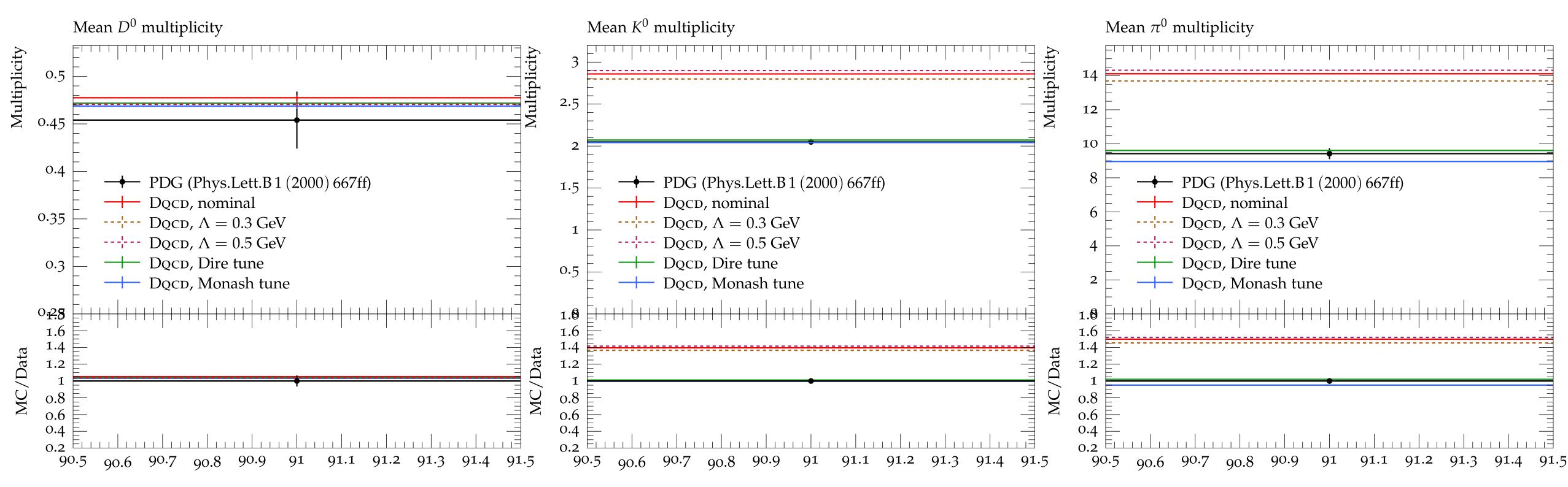


Simon Williams - simon.j.williams@durham.ac.uk





Collider Events on a Quantum Computer - Changing tune



Observables dominated by non-perturbative dynamics show mild dependence on the mass scale Λ , but are highly sensitive to changes in the tune.

