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Physics at a muon collider



What is a muon collider?
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✦ A muon collider is not yet feasible as of today! 

✦ Several technical challenges that require major R&D effort

Fast acceleration

Beam-induced 
backgroundMuon cooling

Muon production

Neutrino flux

… it should not be compared with shovel-ready projects (like e+e- Higgs/EW factory)



What is a muon collider?
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✦ A muon collider is not science-fiction either! 

✦ Several technical challenges that require major R&D effort

High energy lepton collider (10 TeV or more) is a dream for particle physics… 

… dedicated R&D program crucial to establish feasibility in the next years!

Few-MW target

High-field solenoid

Ionization cooling:

106 emittance reduction 
(demonstrator)

Fast-ramping magnets

Larger aperture

MDI, detector design

Accelerator design, 
mitigation systems

☛  talk by Nadia



Colored physics

EW physics

Energy at which σpp = σμμ

Delahaye et al. 2019

Why a muon collider?
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✦ Lepton colliders are ideal probes of short-distance physics


‣ elementary: no energy lost in PDFs, 
all beam energy is available for hard scattering 

‣ no strong interactions: 
no QCD background, high S/B


collision rate 1000x smaller than LHC, but can produce 107-108 Higgs bosons

Colored particles: 
14 TeV µµ ~ 100 TeV pp

EW particles: 
14 TeV µµ ~ 200 TeV pp



Why a muon collider?
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✦ Lepton colliders are ideal probes of short-distance physics


✦ Muons are elementary and heavy (207 x electrons)


‣ negligible energy loss in synchrotron radiation


‣ negligible beamstrahlung


But they decay…


✦ Luminosity increases with the 
square of beam energy


‣ muon lifetime increases


‣ transverse emittance decreases

ℒ ∼ PradE−3.5

ℒ ∼ PRF

ℒ/P ∼ γ ∼ E



✦ A muon collider has high energy AND precision 

Why a muon collider?
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Direct 
searches

High-rate SM 
measurements

High-energy SM 
measurements

high energy to 
search for heavy 

new particles

high statistics 
for precise 

measurements

high energy to 
look for NP in 
SM processes

Goal: explore physics at least up to �MNP ≈ 10 TeV

☛  talk by Patrick



✦ A muon collider has high energy AND precision 


✦ What causes EWSB?      i.e. does the SM hold up to few TeV?


Why a muon collider?
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?H H MNP ≲ 4πv ≈ 3 TeV

rough estimate! there can 
easily be some O(1) factor

Direct 
searches

High-rate SM 
measurements

High-energy SM 
measurements

high energy to 
search for heavy 

new particles

high statistics 
for precise 

measurements

high energy to 
look for NP in 
SM processes

Goal: explore physics at least up to �MNP ≈ 10 TeV



✦ A muon collider has high energy AND precision 


✦ What causes EWSB? 


✦ What is dark matter? Is it a WIMP?

Why a muon collider?
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MDM ≈ 1 − 15 TeV

Direct 
searches

High-rate SM 
measurements

High-energy SM 
measurements

high energy to 
search for heavy 

new particles

high statistics 
for precise 

measurements

high energy to 
look for NP in 
SM processes

Goal: explore physics at least up to �MNP ≈ 10 TeV



✦ A muon collider has high energy AND precision 


✦ What causes EWSB? 


✦ What is dark matter? Is it a WIMP? 


✦ Observe restoration of EW symmetry 

(EW radiation)

Why a muon collider?
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E ≈ 10 TeV

Direct 
searches

High-rate SM 
measurements

High-energy SM 
measurements

high energy to 
search for heavy 

new particles

high statistics 
for precise 

measurements

high energy to 
look for NP in 
SM processes

Goal: explore physics at least up to �MNP ≈ 10 TeV



✦ A muon collider has high energy AND precision 

Why a muon collider?
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Direct 
searches

High-rate SM 
measurements

High-energy SM 
measurements

high energy to 
search for heavy 

new particles

high statistics 
for precise 

measurements

high energy to 
look for NP in 
SM processes

SM

SM

Luminosity goal:    �  

 
necessary to perform SM measurements with ~ % precision (10k events)

ℒ ≳ 10 ab−1 × ( E
10 TeV )

2



✦ Main motivation for a muon collider: ability to collide elementary 
particles at very high energies   ⟹  directly explore physics at 10+ TeV


✦ Produce pairs of EW particles up to 
kinematical threshold: no loss of energy 
due to parton distribution functions!

Direct searches
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X5/3

T2/3

h~W
~

tL
~

tR
~

NP



✦ Weakly Interacting Massive Particle: most general EW multiplet 
with DM candidate that is


(a) stable,


(b) without coupling to 𝛾 & Z,


(c) calculable (perturbative).


✦ Mass fixed by freeze-out DM abundance

Example: WIMP Dark Matter
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Cirelli, Fornengo, Strumia hep-ph/0512090
similar to Minimal DM:

w/ m
as

s s
plitt

ing

Bottaro, DB, Costa, Franceschini, Panci, 
Redigolo, Vittorio  2107.09688, 2205.04486

EW n-plet Mass [TeV]
21/2 1.08
30 2.86

41/2 4.8
50 13.6
51 9.9

61/2 31.8
70 48.8
90 113

Energies of several TeV crucial 
to probe these WIMP candidates!

χn = ( ⋯, χ−, χ0, χ+, ⋯ )

☛  talks by Raki 
and Paolo



✦ Mono-𝛾/W/Z signals: 
DM pair production + EW radiation


✦ Disappearing tracks: charged components 
of �  can be long-livedχ

Example: WIMP Dark Matter

�13
FCC physics study

Han et al. 2009.11287
Bottaro et al.  2107.09688, 2205.04486

w/ m
as

s s
plitt

ing

More difficult at hadron colliders, 
due to PDF suppression

χ± → χ0π±

Capdevilla et al. 2102.11292

μμ̄ → χχ̄ + X

µC can probe all 
relevant WIMP candidates!
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The µ-collider is a “vector boson collider”

Resonances in VBF

‣ Example: singlet scalar,

cross-section grows at high energy due to longitudinal W-fusion

𝜙 is like a heavy Higgs with narrow width + hh decay
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≈
E2

m2
ϕ

log
E2

m2
ϕ

enhanced if the 
resonance is “light”
mϕ ≪ E

Dawson 1985

B, Redigolo, Sala, Tesi  1807.04743

Costantini et al. 2005.10289

Al Ali, Arkani-Hamed et al. 2103.14043

Hunting the singlet Higgs bosons

Higgs couplings

h

cos �

universal tree-level shift

Direct searches

⇥

sin �

same h-BR (below 2mh)

Parametrization is simple enough to make simple ”projections”:
sin � and m�

[in EFT approach the comparison with direct searches is lost]

σℓℓ→ϕνν ≈
g2 sin2 γ
256π3v2

log
s

m2
ϕ

𝛾 mixing angle between 
SM Higgs h and singlet 𝜙

ℓ+ℓ− → ϕνν̄Hunting the singlet Higgs bosons

Higgs couplings

h

cos �

universal tree-level shift

Direct searches

⇥

sin �

same h-BR (below 2mh)

Parametrization is simple enough to make simple ”projections”:
sin � and m�

[in EFT approach the comparison with direct searches is lost]

one single parameter controls resonance production, decay, & Higgs couplings

ℒint ∼ ϕ |H |2

ϕ → hh, WW, ZZ



Compare direct and indirect reach of different colliders

sin2 � ⇡ �µh/µ
SM
h ⇡ �V V!�/�

SM
V V!h

For this class of models, a high-energy µ+µ- collider has an amazing reach 
if compared to single Higgs (or even direct searches at a 100 TeV pp collider)

B, Redigolo, Sala, Tesi  1807.04743

update for the “Muons Smasher’s guide” 2103.14043

Example: scalar singlet
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� � �� �� �� ��
��-�

��-�

��-�

��-�
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� γ
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�γ = �� /�ϕ�γ = ��
� /�ϕ�



Compare direct and indirect reach of different colliders

sin2 � ⇡ �µh/µ
SM
h ⇡ �V V!�/�

SM
V V!h

For this class of models, a high-energy µ+µ- collider has an amazing reach 
if compared to single Higgs (or even direct searches at a 100 TeV pp collider)

can be probed by single Higgs

B, Redigolo, Sala, Tesi  1807.04743

update for the “Muons Smasher’s guide” 2103.14043

Example: scalar singlet
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High rate probes
✦ High rate: more events = better precision
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CV V ⇡ s

ŝ
log

s

ŝ For “soft” SM final state
cross-section is enhanced

̂s ∼ m2
EW

A High Energy Lepton Collider 
is a “vector boson collider”

✦ Huge single Higgs rate 
in vector-boson-fusion: 
107-108 Higgs bosons at 10-30 TeV

Above few TeV the VBF 
cross-section dominates 
over the hard 2 → 2

Dawson 1985



A 10+ TeV muon collider is a perfect Higgs factory!


✦ Signal-only estimate: ~ 107 Higgses at 10 TeV + efficiencies, BR

High rate probes: Higgs physics
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☛  rough estimate: 10-3 for dominant decay channels @ 10 TeV

FCC-hh:

few x 1010

Low energy 
e+e- factories

(FCC-ee, CEPC, 
ILC, CLIC380)

TeV-scale 
e+e- factories 
(CLIC, ILC1000)

Muon colliders: 106 – 108

LHC: few x 107

HL-LHC: few x 108

106 107 108 109 1010

# of Higgses

(as a comparison: 1.7 x 107 Z bosons @ LEP)

clean environment:  
can measure “large” Higgs 
BR w/ almost 10-3 precision

large QCD backgrounds:  
only rare modes (BR < 10-3) 
easily accessible



A 10+ TeV muon collider is a perfect Higgs factory!


✦ Signal-only estimate: ~ 107 Higgses at 10 TeV + efficiencies, BR

High rate probes: Higgs physics
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☛  rough estimate: 10-3 for dominant decay channels @ 10 TeV

2103.14043

dominant 
channels 

~ other Higgs 
factories

rare modes 
better 

(~ hadron 
collider)

0.1
0.4
0.7
0.8
7.2
2.3

0.4
3.4
0.6

3.1

☛  talk by Patrick



A 10+ TeV muon collider is a perfect Higgs factory!
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☛  rough estimate: 10-3 for dominant decay channels @ 10 TeV

2103.14043
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Inclusive Higgs search
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✦ Caveat: single Higgs at µC can access only 

             �    (similar to LHC)μf = σh × BRh→f ∼
g2

W × g2
f

Γh

s = (ph + pZ)2

Inclusive measurement, �σh ∼ g2
Z

Hard neutrinos not seen,

WW → h → WW depends 
on gW and Γ

cannot disentangle deviations in the couplings from modifications of total width



Inclusive Higgs search
✦ Try to do an inclusive single Higgs measurement with ZZ → h


✦ Untagged: % sensitivity 

if muons detected at � 


✦ Invisible: 10-3 sensitivity 
if muons detected at �

η ≳ 6

η ≳ 5

✦ cross-section ~ 10x lower than WW


✦ needs forward muon detection!

P. Li, Z. Liu, K. Lyu 2401.08756

s = (ph + pμ1 + pμ2)2

�20

Ruhdorfer, Salvioni, Wulzer 2303.14202

Forslund, Meade 2308.02633



Higgs couplings at muon collider
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✦ A full-fledged Higgs-physics program is possible at a µC


✦ Single Higgs 
couplings 
can more 
easily be 
studied at 
e+e- factory! 
(most likely 
before a µC!)

P. Li, Z. Liu, K. Lyu 2401.08756



✦ High rate: more events = better precision

High rate probes
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CV V ⇡ s

ŝ
log

s

ŝ

A High Energy Lepton Collider 
is a “vector boson collider”

✦ Huge single Higgs rate 
in vector-boson-fusion: 
107 Higgs bosons at 10 TeV

✦ Large double Higgs VBF rate


‣ Higgs 3-linear coupling


✦ Triple Higgs production accessible


‣ Higgs 4-linear coupling (dim. 8 operator, suppressed)
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HL-LHC HL-LHC HL-LHC
+10TeV +10TeV

+ ee

W 1.7 0.1 0.1
Z 1.5 0.4 0.1
g 2.3 0.7 0.6
� 1.9 0.8 0.8

Z� 10 7.2 7.1
c - 2.3 1.1
b 3.6 0.4 0.4
µ 4.6 3.4 3.2
⌧ 1.9 0.6 0.4


⇤
t

3.3 3.1 3.1
⇤

No input used for the MuC

<latexit sha1_base64="8RLmpAJ4CPiKR4h/1t/OFVZrXME=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LvSh4qGA/YLuUbJq2odlkSbJCWfZnePGgiFd/jTf/jWm7B219MPB4b4aZeWHMmTau++0U1tY3NreK26Wd3b39g/LhUVvLRBHaIpJL1Q2xppwJ2jLMcNqNFcVRyGknnDRmfueJKs2keDTTmAYRHgk2ZAQbK/lpT0Vp4/6ukWX9csWtunOgVeLlpAI5mv3yV28gSRJRYQjHWvueG5sgxcowwmlW6iWaxphM8Ij6lgocUR2k85MzdGaVARpKZUsYNFd/T6Q40noahbYzwmasl72Z+J/nJ2Z4HaRMxImhgiwWDROOjESz/9GAKUoMn1qCiWL2VkTGWGFibEolG4K3/PIqaV9Uvctq7aFWqd/kcRThBE7hHDy4gjrcQhNaQEDCM7zCm2OcF+fd+Vi0Fpx85hj+wPn8ATTtkTc=</latexit>

CLIC

<latexit sha1_base64="bIp/zZIofHgtYS9eH8iBKNDDTp8=">AAAB+nicdVDJSgNBEO2JW4xbokcvjUHwYugJISa3YEA8RjALJCH0dHoyTXoWumvUMOZTvHhQxKtf4s2/sbMIKvqg4PFeFVX1nEgKDYR8WKmV1bX1jfRmZmt7Z3cvm9tv6TBWjDdZKEPVcajmUgS8CQIk70SKU9+RvO2M6zO/fcOVFmFwDZOI9306CoQrGAUjDbK5pAf8DpSfXNTrp543nQ6yeVIgBuUynhG7QmxDqtVKsVjF9twiJI+WaAyy771hyGKfB8Ak1bprkwj6CVUgmOTTTC/WPKJsTEe8a2hAfa77yfz0KT42yhC7oTIVAJ6r3ycS6ms98R3T6VPw9G9vJv7ldWNwK/1EBFEMPGCLRW4sMYR4lgMeCsUZyIkhlClhbsXMo4oyMGllTAhfn+L/SatYsMuF0lUpXztfxpFGh+gInSAbnaEaukQN1EQM3aIH9ISerXvr0XqxXhetKWs5c4B+wHr7BLoklFQ=</latexit>

FCC-hh

Fig. 6 Left panel: 1� sensitivities (in %) from a 10-parameter fit in the -framework at a 10 TeV MuC with 10 ab�1, compared
with HL-LHC. The effect of measurements from a 250 GeV e

+
e
� Higgs factory is also reported. Right panel: sensitivity to

�� for different Ecm. The luminosity is as in eq. (1) for all energies, apart from Ecm=3 TeV, where doubled luminosity (of
2 ab�1) is assumed. More details in Section 5.1.1.

pair with more than 9 TeV invariant mass at the FCC-
hh is only 40 ab, while it is 900 ab at a 10 TeV muon
collider. Even with a somewhat higher integrated lumi-
nosity, the FCC-hh just does not have enough statistics
to compete with a 10 TeV MuC.

The right panel of Figure 7 considers a simpler new
physics scenario, where the only BSM state is a heavy
Z 0 spin-one particle. The “Others” line also includes
the sensitivity of the FCC-hh from direct Z 0 produc-
tion. The line exceeds the 10 TeV MuC sensitivity con-
tour (in green) only in a tiny region with MZ0 around
20 TeV and small Z 0 coupling. This result substantiates
our claim in Section 2.2 that a reach comparison based
on the 2 ! 1 single production of the new states is
simplistic. Single 2 ! 1 production couplings can pro-
duce indirect effect in 2 ! 2 scattering by the virtual
exchange of the new particle, and the muon collider is
extraordinarily sensitive to these effects. Which collider
wins is model-dependent. In the simple benchmark Z 0

scenario, and in the motivated framework of Higgs com-
positeness that future colliders are urged to explore, the
muon collider is just a superior device.

We have seen that high energy measurements at
a muon collider enable the indirect discovery of new
physics at a scale in the ballpark of 100 TeV. However
the muon collider also offers amazing opportunities for
direct discoveries at a mass of several TeV, and unique
opportunities to characterise the properties of the dis-
covered particles, as emphasised in Section 2.2. High en-
ergy measurements will enable us take one step further
in the discovery characterisation, by probing the inter-
actions of the new particles well above their mass. For
instance in the Composite Higgs scenario one could first

discover Top Partner particles of few TeV mass, and
next study their dynamics and their indirect effects on
SM processes. This might be sufficient to pin down the
detailed theoretical description of the newly discovered
sector, which would thus be both discovered and theo-
retically characterised at the same collider. Higgs cou-
pling determinations and other precise measurements
that exploit the enormous luminosity for vector boson
collisions, described in Section 2.3, will also play a ma-
jor role in this endeavour.

We can dream of such glorious outcome of the project,
where an entire new sector is discovered and charac-
terised in details at the same machine, only because
energy and precision are simultaneously available at a
muon collider.

2.5 Electroweak radiation

The novel experimental setup offered by lepton colli-
sions at 10 TeV energy or more outlines possibilities
for theoretical exploration that are at once novel and
speculative, yet robustly anchored to reality and to phe-
nomenological applications.

The muon collider will probe for the first time a
new regime of EW interactions, where the scale mw ⇠

100 GeV of EW symmetry breaking plays the role of
a small IR scale, relative to the much larger collision
energy. This large scale separation triggers a number of
novel phenomena that we collectively denote as “EW
radiation” effects. Since they are prominent at muon
collider energies, the comprehension of these phenom-
ena is of utmost importance not only for developing a

✦ Measurement of trilinear coupling: access to the Higgs potential


✦ Precise determination only possible 
at high-energy machines: 
FCC-hh or multi-TeV lepton collider

Double Higgs production

�23

Mangano et al. 2004.03505

B, Franceschini, Wulzer 2012.11555


Costantini et al. 2005.10289 

credits: Craig, Petrossian-Byrne-0.2 -0.1 0.0 0.1 0.2

-0.0004

-0.0002

0.0000

0.0002

0.0004
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0.0008

0.0010
LHC excluded

HL-LHC

µC

‣ very poorly known today!


‣ HL-LHC will only reach 50% 
precision on SM value

Han et al. 2008.12204

CLIC 1901.05897



✦ Double Higgs production depends on trilinear coupling �  but also on 
W-boson couplings �  that enter the production cross-section

κ3

κW, κWW

Double Higgs production
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κWW
κW

κ3

κW
κW
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-0.005

0.000

0.005

0.010

0.015

0.020

0.025

δκ3

δκ
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-6 -4 -2 0 2
-0.008
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-0.004
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δκ3

δκ
W

large degeneracy in total cross-section: 
coefficients not determined 

from hh production alone



✦ Double Higgs production depends on trilinear coupling �  but also on 
W-boson couplings �  that enter the production cross-section


✦ Two dim. 6 operators:  

κ3

κW, κWW

large degeneracy in total cross-section: 
coefficients not determined in general
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Double Higgs production

�25

κ3 = 1 + v2(C6 −
3
2

CH) κW = 1 − v2CH /2 κWW = 1 − 2v2CH



✦ Double Higgs production depends on trilinear coupling �  but also on 
W-boson couplings �  that enter the production cross-section


✦ Two dim. 6 operators:  

κ3

κW, κWW

large degeneracy in total cross-section: 
coefficients not determined in general
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Double Higgs production
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κ3 = 1 + v2(C6 −
3
2

CH)

OH also affects all single Higgs 
couplings universally:

CH can be constrained from Higgs 
couplings ΔκV ∼ CHv2 ≲ few × 10−3

κV, f = 1 − v2CH /2

κW = 1 − v2CH /2 κWW = 1 − 2v2CH



✦ Higgs physics doesn’t mean just couplings. There’s much more 
information in the energy dependence of the interactions! (form factors)


✦ NP effects are more important at high energies (�  high-pT tails at LHC)≈

Higgs at high-energy
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� � � � � �
��� [���]

��
��
��

μ+μ- → ��νν� � = �� ���

𝒜NP ∼ cNPE2/Λ2

Energy [TeV]

𝒜SM
EFT description 
breaks down here

direct searches
Precision 
SM measurements High energy (indirect) probes

Higgs
𝜸*,𝙒*,𝙕* Few(q2)

ℓH ≈ 1/Λ

Δσ(E)
σSM(E)

∝
E2

Λ2
BSM

≈ {10−2, E ∼ 10 TeV
10−6, E ∼ 100 GeV

proton
𝜸* Fem(q2)≈



✦ NP contribution from  (equivalently ) grows as E2: 
high mass tail gives a direct measurement of CH

𝒪H κW, κWW

Double Higgs at high mass
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κ3 = 1 + v2(C6 −
3
2

CH)
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High-energy WW → hh more sensitive than 
Higgs pole physics at energies ≳ 10 TeV

S/B

𝜉 ≡ CHv2

low-precision measurement

(see also Contino et al. 1309.7038)
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Double Higgs at high mass
✦ SM Effective Theory:


✦ Trilinear coupling is affected by two operators:


Differential analysis in pT and Mhh:

OH =
1

2

�
@µ|H|

2
�2

O6 = ��|H|
6
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κ3 = 1 + v2(C6 −
3
2

CH)
ℒEFT = ℒSM + ∑

i

Ci𝒪(6)
i + ⋯
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EW precision
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✦ Higgs & EWSB physics  ⟷  Ew precision measurements

𝒪W = (H†σaDμH) DνWa
μν

𝒪B = (H†DμH) ∂νBμν

sin2 θeff𝒪T = (H†DμH)2 Δρ

✦ LEP: 107 Z bosons,  


✦ FCC-ee: 6 x 1012 Z bosons 
ultimate precision at the Z pole, 
limited by syst. and th. errors

Δ ̂S ≲ 10−3

Δ ̂S ∼
m2

W

M2
NP

≲ few × 10−5



EW precision at high-energy
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✦ NP effects are more important at high energies


✦ Effective at LHC, FCC-hh, CLIC: “energy helps accuracy”…


… taken to the extreme at a µ-collider with 10’s of TeV!

Δσ(E)
σSM(E)

∝
E2

Λ2
BSM

≈ {10−6, E ∼ 100 GeV
10−2, E ∼ 10 TeV

Farina et al. 1609.08157,  Franceschini et al. 1712.01310, …

ℒ = ℒSM +
1

Λ2 ∑ Ci𝒪i

� � � � � �
��� [���]

��
��
��

μ+μ- → ��νν� � = �� ���

𝒜NP ∼ cNPE2/Λ2

Energy [TeV]

𝒜SM
EFT description 
breaks down here

direct searches
Precision 
SM measurements High energy (indirect) probes



✦ Longitudinal 2 → 2 scattering amplitudes at high energy:

Example: high-energy di-bosons
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Determined by the same two 
operators that affect also EWPT 
(in flavor-universal theories):

ℓ V,H

V,Hℓ̄

ℓ+ℓ− → W+
L W−

L

ℓ+ℓ− → ZLH

̂S = m2
W(CW + CB)

related with Z-pole observables

LEP: � ,  FCC: few �10−3 10−5

precision of measurement

µ collider

FCC-ee

FCC-ee+hh

MuC: �10−6

𝒪W = (H†σaDμH) DνWa
μν

𝒪B = (H†DμH) ∂νBμν



✦ All EW multiplets contribute to high-energy 2 → 2 fermion scattering: 
effects that grow with energy, can be tested at µ collider

EW-charged matter

Ŵ ≈ 10−7 × ( 1 TeV
MDM )

2

n3 ∝ 1/n2

̂Y ≈ 10−7 × ( 1 TeV
MDM )

2

Y2n ∝ 1/n4

�32

Franceschini, Zhao 2212.11900

right of blue line: can be tested indirectly

left of blue line: can be tested directly

can be WIMP dark matter if M ~ few TeV

FCC-hh 10 ab−1

μ-collider



✦ High-energy processes at a 10–30 TeV lepton collider are able to 
probe EW new physics scales of 100 TeV or more.


‣ 10x higher than ultimate precision at Z pole


✦ Example: new physics with mass m★ and coupling g★ to Higgs
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Higgs

𝜸*,𝙒*,𝙕* Few(q2)

High-energy probes: EW & Higgs physics
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✦ High-energy processes at a 10–30 TeV lepton collider are able to 
probe EW new physics scales of 100 TeV or more.


‣ 10x higher than ultimate precision at Z pole


✦ Example: heavy resonance with mass mZ’ and coupling gZ’ to fermions

Higgs

𝜸*,𝙒*,𝙕* Few(q2)

High-energy probes: EW & Higgs physics

�34



EW radiation becomes important at multi-TeV energies! 
Especially relevant for muon collider, but also FCC-hh…


✦ mW,Z ≪ E:  , W, Z are all similar!

✦ Multiple gauge boson emission is not suppressed 


Sudakov factor �  for E ~ 10 TeV

γ

α
4π

log2( E2

m2
W

) × Casimir ≈ 1

EW radiation

�35

☛ Which cross-section? Exclusive, (semi-)inclusive, depending on 
amount of radiation included


☛ Initial state is EW-charged: 
(Precise) resummation of double logs needed. Goal: % or ‰ precision


☛ Could one define EW jets? Neutrino “jet tagging”?

see Chen, Glioti, Rattazzi, Ricci, Wulzer 2202.10509

+ +( )



High-energy probes: radiation
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10 TeV

differential WW

total ZH

WWh

B, Franceschini, Wulzer 2012.11555

independent 
measurement of CW

𝜇

𝜇

𝜈

W

Gauge boson radiation important: 
soft W emission allows to access 
charged processes �ℓν → W±Z, W±H

“effective neutrino approximation”

✦ contains new physical information!


✦ need to properly define inclusive 
observables, resummation of logs, …

Chen, Glioti, Rattazzi, Ricci, Wulzer 2202.10509



➡ High-energy probes can be even more 
powerful in this case: enhancement wrt. low 
energy observables can be as large as (E/mµ)2

Flavour: muons vs. electrons

✦ New Physics (especially if related to the Higgs sector) could distinguish 
the different families of fermions. 


✦ EW interactions are flavour-universal: an accidental property of the 
gauge lagrangian, not a fundamental symmetry of nature!


‣ Example: Yukawa couplings, the only non-gauge interactions in the 
SM, violate flavour universality maximally!

A muon collider collides 2nd generation particles: 
could test flavour structure

?

μ

μ

q, ℓ

q′�, ℓ′�

�37

mu ⇠
� �

md ⇠
� �

m` ⇠
� �



✦ Flavor processes: rare decays & tiny effects 
 

➡ need billions of events, usually probed by means of 
high-intensity experiments


✦ Muon-collider: very large number of (clean) EW particles, 
but overall event rate not comparable to flavor factories

Flavor and precision
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BR(Bs → μμ) ∼ 10−9, BR(τ → 3μ) ≲ 10−8, Δaμ ≈ 10−9
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Flavour @ muon collider: the muon g-2
✦ Example: muon g-2. Can it be tested at high energies at a muon collider?


✦ If new physics is heavy: EFT!  

One dim. 6 operator contributes at tree-level:

Δaμ =
4mμv

Λ2
Ceγ ≈ 3 × 10−9 × ( 140 TeV

Λ )
2

Ceγ
Cℓ

eγ

ℓL

ℓ̄R

γ

v

ℓL

ℓ̄R

γZ

Cℓ
eZ

v ℓL

ℓ̄R

γCℓq
T

q = t, c

v

ℓL

ℓ̄R

γ

h

Cℓ
eγ

ℓL

ℓ̄R

Z

h

Cℓ
eZ

ℓL

ℓ̄R

q

q̄

Cℓq
T

At low energy

Cℓ
eγ

ℓL

ℓ̄R

γ

v

ℓL

ℓ̄R

γZ

Cℓ
eZ

v ℓL

ℓ̄R

γCℓq
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q = t, c

v
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γ

h
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eγ
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ℓ̄R

Z

h

Cℓ
eZ

ℓL

ℓ̄R

q

q̄

Cℓq
T

At high energy

σμ+μ−→hγ =
s

48π

|Ceγ |2

Λ4
≈ 0.7 ab( s

30 TeV )
2

(
Δaμ

3 × 10−9 )
2

Nhγ = σ ⋅ ℒ ≈ ( s
10 TeV )

4

(
Δaμ

3 × 10−9 )
2

need E > 10 TeV

Dipole operator generates both ∆aµ and µµ → h𝛾 B, Paradisi 2012.02769

ℒg−2 =
Ceγ

Λ2
H (ℓ̄LσμνeR) eFμν + h.c.

�39

Δaμ = ???



Flavour @ muon collider: the muon g-2
✦ Example: muon g-2. Can it be tested at high energies at a muon collider?


✦ If new physics is heavy: EFT!  

One dim. 6 operator contributes at tree-level:

Δaμ =
4mμv
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(
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Nhγ = σ ⋅ ℒ ≈ ( s
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4

(
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2

need E > 10 TeV

Dipole operator generates both ∆aµ and µµ → h𝛾 B, Paradisi 2012.02769

ℒg−2 =
Ceγ

Λ2
H (ℓ̄LσμνeR) eFμν + h.c.
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Muon g-2 @ muon collider

✦ Other operators enter g-2 at 1 loop:


✦ Full set of operators with Λ ≳ 100 TeV 
can be probed at a high-energy 
muon collider
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Exp. value of ∆aµ can 
be tested at 95% CL 
at a 30 TeV collider!
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This result is completely 
model-independent!
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Collider

Δaμ ≈ ( 250 TeV
Λ2 )

2
(Ceγ−0.2CTt−0.001CTc−0.05CeZ)

B, Paradisi 2012.02769

Δaμ ≈ ( 250 TeV
Λ2 )

2

(Ceγ −
CTt

5
−

CTc

1000
−

CeZ

20 )

(with reasonable assumptions 
on detector performance)



Muon g-2 @ muon collider
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Exp. value of ∆aµ can 
be tested at 95% CL 
at a 30 TeV collider!
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μ+μ- → ��

μ+μ- → �γ
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μ+μ- → ��
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This result is completely 
model-independent!

ℒ =
CeB

Λ2
(ℓ̄LσμνeR) H Bμν +

CeW

Λ2
(ℓ̄LσμνeR)τI H WI

μν +
CqT

Λ2
(ℓ̄LσμνeR) ϵ (q̄LσμνuR)

Δaμ ≈ ( 250 TeV
Λ2 )

2
(Ceγ−0.2CTt−0.001CTc−0.05CeZ)

B, Paradisi 2012.02769

Collider constrains  |Ceγ |2

3 o.o.m. stronger than present bound!

Muon EDM for free!

dμ =
2v Im(Ceγ)

Λ2
=

Δaμ

2mμ
tan ϕμ e

Δaμ =
4vmμRe(Ceγ)

Λ2

⇒ dμ ≲ 10−22 e ⋅ cm



Summary
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Summary

Two colliders at once 
in a high-energy muon collider

Energy AND Precision

Energy Intensity
High-energy probes High-rate measurementsDirect searches

Can probe 10 TeV EW particles directly and 
100 TeV scales indirectly

➡ the machine to discover physics of EWSB & Dark Matter



Summary
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Summary

Two colliders at once 
in a high-energy muon collider

Energy AND Precision

Energy Intensity
High-energy probes High-rate measurementsDirect searches

… could become reality

if we manage to overcome

the technological challenges!

E. Fermi, 1954
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HL-LHC HL-LHC HL-LHC
+10TeV +10TeV

+ ee

W 1.7 0.1 0.1
Z 1.5 0.4 0.1
g 2.3 0.7 0.6
� 1.9 0.8 0.8

Z� 10 7.2 7.1
c - 2.3 1.1
b 3.6 0.4 0.4
µ 4.6 3.4 3.2
⌧ 1.9 0.6 0.4


⇤
t

3.3 3.1 3.1
⇤

No input used for the MuC
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FCC-hh

Fig. 6 Left panel: 1� sensitivities (in %) from a 10-parameter fit in the -framework at a 10 TeV MuC with 10 ab�1, compared
with HL-LHC. The effect of measurements from a 250 GeV e

+
e
� Higgs factory is also reported. Right panel: sensitivity to

�� for different Ecm. The luminosity is as in eq. (1) for all energies, apart from Ecm=3 TeV, where doubled luminosity (of
2 ab�1) is assumed. More details in Section 5.1.1.

pair with more than 9 TeV invariant mass at the FCC-
hh is only 40 ab, while it is 900 ab at a 10 TeV muon
collider. Even with a somewhat higher integrated lumi-
nosity, the FCC-hh just does not have enough statistics
to compete with a 10 TeV MuC.

The right panel of Figure 7 considers a simpler new
physics scenario, where the only BSM state is a heavy
Z 0 spin-one particle. The “Others” line also includes
the sensitivity of the FCC-hh from direct Z 0 produc-
tion. The line exceeds the 10 TeV MuC sensitivity con-
tour (in green) only in a tiny region with MZ0 around
20 TeV and small Z 0 coupling. This result substantiates
our claim in Section 2.2 that a reach comparison based
on the 2 ! 1 single production of the new states is
simplistic. Single 2 ! 1 production couplings can pro-
duce indirect effect in 2 ! 2 scattering by the virtual
exchange of the new particle, and the muon collider is
extraordinarily sensitive to these effects. Which collider
wins is model-dependent. In the simple benchmark Z 0

scenario, and in the motivated framework of Higgs com-
positeness that future colliders are urged to explore, the
muon collider is just a superior device.

We have seen that high energy measurements at
a muon collider enable the indirect discovery of new
physics at a scale in the ballpark of 100 TeV. However
the muon collider also offers amazing opportunities for
direct discoveries at a mass of several TeV, and unique
opportunities to characterise the properties of the dis-
covered particles, as emphasised in Section 2.2. High en-
ergy measurements will enable us take one step further
in the discovery characterisation, by probing the inter-
actions of the new particles well above their mass. For
instance in the Composite Higgs scenario one could first

discover Top Partner particles of few TeV mass, and
next study their dynamics and their indirect effects on
SM processes. This might be sufficient to pin down the
detailed theoretical description of the newly discovered
sector, which would thus be both discovered and theo-
retically characterised at the same collider. Higgs cou-
pling determinations and other precise measurements
that exploit the enormous luminosity for vector boson
collisions, described in Section 2.3, will also play a ma-
jor role in this endeavour.

We can dream of such glorious outcome of the project,
where an entire new sector is discovered and charac-
terised in details at the same machine, only because
energy and precision are simultaneously available at a
muon collider.

2.5 Electroweak radiation

The novel experimental setup offered by lepton colli-
sions at 10 TeV energy or more outlines possibilities
for theoretical exploration that are at once novel and
speculative, yet robustly anchored to reality and to phe-
nomenological applications.

The muon collider will probe for the first time a
new regime of EW interactions, where the scale mw ⇠

100 GeV of EW symmetry breaking plays the role of
a small IR scale, relative to the much larger collision
energy. This large scale separation triggers a number of
novel phenomena that we collectively denote as “EW
radiation” effects. Since they are prominent at muon
collider energies, the comprehension of these phenom-
ena is of utmost importance not only for developing a

✦ Reach on Higgs trilinear coupling: hh → 4b

Double Higgs production

�45

E [TeV] ℒ [ab-1] Nrec

3 5 170
10 10 620
14 20 1340
30 90 6'300

𝛿𝜅3

~ 10%
~ 4%

~ 2.5%
~ 1.2%

B, Franceschini, Wulzer 2012.11555, 
Han et al. 2008.12204, Costantini et al. 2005.10289

‣ Weak dependence on angular acceptance 
(signal is in the central region)


‣ Some dependence on detector resolution 
(to remove backgrounds)

see also CLIC study 1901.05897
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FCC-hh

Fig. 6 Left panel: 1� sensitivities (in %) from a 10-parameter fit in the -framework at a 10 TeV MuC with 10 ab�1, compared
with HL-LHC. The effect of measurements from a 250 GeV e

+
e
� Higgs factory is also reported. Right panel: sensitivity to

�� for different Ecm. The luminosity is as in eq. (1) for all energies, apart from Ecm=3 TeV, where doubled luminosity (of
2 ab�1) is assumed. More details in Section 5.1.1.

pair with more than 9 TeV invariant mass at the FCC-
hh is only 40 ab, while it is 900 ab at a 10 TeV muon
collider. Even with a somewhat higher integrated lumi-
nosity, the FCC-hh just does not have enough statistics
to compete with a 10 TeV MuC.

The right panel of Figure 7 considers a simpler new
physics scenario, where the only BSM state is a heavy
Z 0 spin-one particle. The “Others” line also includes
the sensitivity of the FCC-hh from direct Z 0 produc-
tion. The line exceeds the 10 TeV MuC sensitivity con-
tour (in green) only in a tiny region with MZ0 around
20 TeV and small Z 0 coupling. This result substantiates
our claim in Section 2.2 that a reach comparison based
on the 2 ! 1 single production of the new states is
simplistic. Single 2 ! 1 production couplings can pro-
duce indirect effect in 2 ! 2 scattering by the virtual
exchange of the new particle, and the muon collider is
extraordinarily sensitive to these effects. Which collider
wins is model-dependent. In the simple benchmark Z 0

scenario, and in the motivated framework of Higgs com-
positeness that future colliders are urged to explore, the
muon collider is just a superior device.

We have seen that high energy measurements at
a muon collider enable the indirect discovery of new
physics at a scale in the ballpark of 100 TeV. However
the muon collider also offers amazing opportunities for
direct discoveries at a mass of several TeV, and unique
opportunities to characterise the properties of the dis-
covered particles, as emphasised in Section 2.2. High en-
ergy measurements will enable us take one step further
in the discovery characterisation, by probing the inter-
actions of the new particles well above their mass. For
instance in the Composite Higgs scenario one could first

discover Top Partner particles of few TeV mass, and
next study their dynamics and their indirect effects on
SM processes. This might be sufficient to pin down the
detailed theoretical description of the newly discovered
sector, which would thus be both discovered and theo-
retically characterised at the same collider. Higgs cou-
pling determinations and other precise measurements
that exploit the enormous luminosity for vector boson
collisions, described in Section 2.3, will also play a ma-
jor role in this endeavour.

We can dream of such glorious outcome of the project,
where an entire new sector is discovered and charac-
terised in details at the same machine, only because
energy and precision are simultaneously available at a
muon collider.

2.5 Electroweak radiation

The novel experimental setup offered by lepton colli-
sions at 10 TeV energy or more outlines possibilities
for theoretical exploration that are at once novel and
speculative, yet robustly anchored to reality and to phe-
nomenological applications.

The muon collider will probe for the first time a
new regime of EW interactions, where the scale mw ⇠

100 GeV of EW symmetry breaking plays the role of
a small IR scale, relative to the much larger collision
energy. This large scale separation triggers a number of
novel phenomena that we collectively denote as “EW
radiation” effects. Since they are prominent at muon
collider energies, the comprehension of these phenom-
ena is of utmost importance not only for developing a

✦ Reach on Higgs trilinear coupling: hh → 4b

Double Higgs production

�45

E [TeV] ℒ [ab-1] Nrec

3 5 170
10 10 620
14 20 1340
30 90 6'300

𝛿𝜅3

~ 10%
~ 4%

~ 2.5%
~ 1.2%

B, Franceschini, Wulzer 2012.11555, 
Han et al. 2008.12204, Costantini et al. 2005.10289
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‣ Weak dependence on angular acceptance 
(signal is in the central region)


‣ Some dependence on detector resolution 
(to remove backgrounds)

see also CLIC study 1901.05897
B, Franceschini, Wulzer 2012.11555
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HL-LHC HL-LHC HL-LHC
+10TeV +10TeV

+ ee

W 1.7 0.1 0.1
Z 1.5 0.4 0.1
g 2.3 0.7 0.6
� 1.9 0.8 0.8
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Fig. 6 Left panel: 1� sensitivities (in %) from a 10-parameter fit in the -framework at a 10 TeV MuC with 10 ab�1, compared
with HL-LHC. The effect of measurements from a 250 GeV e

+
e
� Higgs factory is also reported. Right panel: sensitivity to

�� for different Ecm. The luminosity is as in eq. (1) for all energies, apart from Ecm=3 TeV, where doubled luminosity (of
2 ab�1) is assumed. More details in Section 5.1.1.

pair with more than 9 TeV invariant mass at the FCC-
hh is only 40 ab, while it is 900 ab at a 10 TeV muon
collider. Even with a somewhat higher integrated lumi-
nosity, the FCC-hh just does not have enough statistics
to compete with a 10 TeV MuC.

The right panel of Figure 7 considers a simpler new
physics scenario, where the only BSM state is a heavy
Z 0 spin-one particle. The “Others” line also includes
the sensitivity of the FCC-hh from direct Z 0 produc-
tion. The line exceeds the 10 TeV MuC sensitivity con-
tour (in green) only in a tiny region with MZ0 around
20 TeV and small Z 0 coupling. This result substantiates
our claim in Section 2.2 that a reach comparison based
on the 2 ! 1 single production of the new states is
simplistic. Single 2 ! 1 production couplings can pro-
duce indirect effect in 2 ! 2 scattering by the virtual
exchange of the new particle, and the muon collider is
extraordinarily sensitive to these effects. Which collider
wins is model-dependent. In the simple benchmark Z 0

scenario, and in the motivated framework of Higgs com-
positeness that future colliders are urged to explore, the
muon collider is just a superior device.

We have seen that high energy measurements at
a muon collider enable the indirect discovery of new
physics at a scale in the ballpark of 100 TeV. However
the muon collider also offers amazing opportunities for
direct discoveries at a mass of several TeV, and unique
opportunities to characterise the properties of the dis-
covered particles, as emphasised in Section 2.2. High en-
ergy measurements will enable us take one step further
in the discovery characterisation, by probing the inter-
actions of the new particles well above their mass. For
instance in the Composite Higgs scenario one could first

discover Top Partner particles of few TeV mass, and
next study their dynamics and their indirect effects on
SM processes. This might be sufficient to pin down the
detailed theoretical description of the newly discovered
sector, which would thus be both discovered and theo-
retically characterised at the same collider. Higgs cou-
pling determinations and other precise measurements
that exploit the enormous luminosity for vector boson
collisions, described in Section 2.3, will also play a ma-
jor role in this endeavour.

We can dream of such glorious outcome of the project,
where an entire new sector is discovered and charac-
terised in details at the same machine, only because
energy and precision are simultaneously available at a
muon collider.

2.5 Electroweak radiation

The novel experimental setup offered by lepton colli-
sions at 10 TeV energy or more outlines possibilities
for theoretical exploration that are at once novel and
speculative, yet robustly anchored to reality and to phe-
nomenological applications.

The muon collider will probe for the first time a
new regime of EW interactions, where the scale mw ⇠

100 GeV of EW symmetry breaking plays the role of
a small IR scale, relative to the much larger collision
energy. This large scale separation triggers a number of
novel phenomena that we collectively denote as “EW
radiation” effects. Since they are prominent at muon
collider energies, the comprehension of these phenom-
ena is of utmost importance not only for developing a

✦ Reach on Higgs trilinear coupling: hh → 4b

Double Higgs production
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B, Franceschini, Wulzer 2012.11555, 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‣ Weak dependence on angular acceptance 
(signal is in the central region)


‣ Some dependence on detector resolution 
(to remove backgrounds)

see also CLIC study 1901.05897
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High-energy di-bosons
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✦ CW and CB determined from high-energy µ+µ- → ZH, W+W- cross-sections

σμμ→ZH ≈ 122 ab ( 10 TeV
Ecm

)
2

[1 + # E2
cmCW + # E4

cmC2
W]

10 TeVdifferential WW

total ZH

B, Franceschini, Wulzer 2012.11555

σμμ→ZH ≈ 122 ab ( 10 TeV
Ecm

)
2

[1 + # E2
cmCW + # E2

cmCB + # E4
cmC2

W + # E4
cmC2

B + + # E2
cmCW CB]

☛ Limits on CW,B scale as E2σμμ→ZH ≈ 122 ab ( 10 TeV
Ecm

)
2

[1 + # E2
cmCW + # E4

cmC2
W]

✦ Fully differential WW cross-section 
in scattering and decay angles: 
can exploit the interference with 
transverse polarization amplitude



High-energy di-bosons
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✦ CW and CB determined from high-energy µ+µ- → ZH, W+W- cross-sections

σμμ→ZH ≈ 122 ab ( 10 TeV
Ecm

)
2

[1 + # E2
cmCW + # E4

cmC2
W]

10 TeVdifferential WW

total ZH

WWh
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σμμ→ZH ≈ 122 ab ( 10 TeV
Ecm

)
2

[1 + # E2
cmCW + # E2

cmCB + # E4
cmC2

W + # E4
cmC2

B + + # E2
cmCW CB]

☛ Limits on CW,B scale as E2

independent 
measurement of G3L

𝜇

𝜇

𝜈

W

ℓ±ν → W±Z, W±H

✦ Gauge boson radiation important 
at high energies: soft W emission 
allows to access the charged 
processes

“effective neutrino approximation”need to properly include higher-order effects

inclusive observables, resummation, …

σμμ→ZH ≈ 122 ab ( 10 TeV
Ecm

)
2

[1 + # E2
cmCW + # E4

cmC2
W]



Double Higgs production
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Number of events ∼ s log(s/m2
h) ≈ 105 at 14 TeV

Naïve estimate of the reach: δσ ∼ (N × ϵ)−1/2 ≈ 1 % ⇒ δκ3 ≈ 3 %

✦ Acceptance cuts in polar angle θ and pT of jets:


‣ hh signal is strongly peaked in forward region

0 30 ° 60 ° 90 ° 120 ° 150 ° 180 °
Polar angle of jets

δλ3 = 10%

SM

s = 10 TeV

‣ Contribution from trilinear coupling 
is more central: loss due to 
angular cut is less important

reconstruction eff. ∼ 30 %
BR(hh → 4b) = 34 % } ϵ ∼ 10 %

B, Franceschini, Wulzer 2012.11555
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Double Higgs production

✦ Backgrounds are important and cannot be neglected 
(see also CLIC study 1901.05897)


‣ Mainly VBF di-boson production: 
Zh & ZZ, but also WW, Wh, WZ…


‣ Precise invariant mass reconstruction 
is crucial to isolate signal 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NB: (Very!) simplified background 
analysis (at parton level!) 

All this should be done properly with 
a detector simulation


However, perfect agreement with 
1901.05897! (3 TeV CLIC)

B, Franceschini, Wulzer 2012.11555

10 TeV



✦ Fully differential analysis in pT and Mhh to 
optimize combined sensitivity to CH and C6


✦ Very boosted Higgs bosons: treat them as a 
single h-jet, without reconstructing the 4 b’s. 
We assumed a boosted-H tagging efficiency ~ 50%

1911.02523

Double Higgs at high mass
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✦ Physics backgrounds 
(including the Higgs itself!)


✦ Beam-induced background


✦ Detector performance


✦ “soft” and forward particles

Single Higgs: backgrounds

�50

L. Sestini et al.

Forslund, Meade

2203.09425



✦ Off-shell single Higgs production: independent of width

Single Higgs at high mass (off-shell)

≈ ∼
E2

Λ4

Forslund, Meade 2308.02633

�51

precision limited (~ 3%) due to 
backgrounds: not possible to 
determine �  precisely 
through WW scattering 
➔ correlation width vs. coupling

κW



✦ Off-shell single Higgs production: independent of width

Single Higgs at high mass (off-shell)

≈ ∼
E2

Λ4

Forslund, Meade 2308.02633

�51

precision limited (~ 3%) due to 
backgrounds: not possible to 
determine �  precisely 
through WW scattering 
➔ correlation width vs. coupling

κW
allowed by 
high-mass 

di-higgs



Top quark Yukawa
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tth @ muon collider

threshold scan @ FCC

2212.11067



Quark flavor violation
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✦ Contributes to (semi-)leptonic rare B decays b → s𝜇𝜇: branching ratios 

& angular observables of various hadronic processes


✦ Theory uncertainties: cannot improve 
indefinitely with rare decays

σ(μμ̄ → jj) ∼
E2

Λ4BR(B → Kμμ) ∼
m4

W

Λ4
,
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?

μ

μ

b

s
cbs

Λ2
(b̄L,RγρsL,R)(μ̄L,RγρμL,R)

Four-fermion interactions: muon current 
coupled to flavor-violating bilinear

Bs → μμ, B → K(*)μμ, Bs → ϕμμ, Λb → Λμμ

Azatov, Garosi, Greljo, Marzocca, 
Salko, Trifinopoulos 2205.13552

 300 fb-1Bs → μμ

 300 fb-1Bs → μμ



Lepton g-2 from rare Higgs decays
✦ Tau magnetic dipole moment: enhanced due to the larger mass


✦ Contribution to h → 𝜏𝜏𝛾 decays:

�54

Cℓ
eγ

ℓL

ℓ̄R

γ

v

ℓL

ℓ̄R

γZ

Cℓ
eZ

v ℓL

ℓ̄R

γCℓq
T

q = t, c

v

ℓL

ℓ̄R

γ

h

Cℓ
eγ

ℓL

ℓ̄R

Z

h

Cℓ
eZ

ℓL

ℓ̄R

q

q̄

Cℓq
T Γ(SM)

h→ℓ+ℓ−γ = Γ(SM)
tree + Γ(SM)

loop

BR(SM)
h→τ+τ−γ ≈ 5 × 10−4

BR(NP)
h→τ+τ−γ ≈ 0.2 × Δaτ

Δaτ =
4v mτ

Λ2
Cτ

eγ ≈ Δaμ
m2

τ

m2
μ

≈ 10−6

if Cℓ
eγ  scales as  yℓ

(with cut on soft collinear photon)

could be measured at few % level by Higgs factory
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Tau g-2 from high-energy probes
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Further possibilities to measure ∆a𝜏 precisely from high-energy probes


✦ �  associated production
Hττ
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Could probe ∆a𝜏 ~ 10-5 @ 10 TeV

‣ Main background from µµ → Z𝛾 

(where Z is mistaken for H)

work in progress with Levati, 
Paradisi, Maltoni, Wang
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Tau g-2 from high-energy probes
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Further possibilities to measure ∆a𝜏 precisely from high-energy probes


✦ �  associated production
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Could probe ∆a𝜏 ~ 10-5 @ 10 TeV

‣ Main background from µµ → Z𝛾 

(where Z is mistaken for H)

work in progress with Levati, 
Paradisi, Maltoni, Wang
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also a bound on tau EDM!



Muon g-2 @ muon collider

✦ SM irreducible bakground is small:


tree-level is suppressed by muon mass; loop contribution dominant


✦ Main background from µµ → Z𝛾 (where Z is mistaken for H) 
(large due to transverse Z polarizations) 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σ(SM)
μ+μ−→hγ ≈ 10−2 ab ( 30 TeV

s )
2
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FIG. 2. 95% C.L. reach on the muon anomalous magnetic
moment �aµ, as well as on the muon EDM dµ, as a function
of the collider center-of-mass energy

p
s, from the processes

µ+µ� ! h� (black), µ+µ� ! hZ (blue), µ+µ� ! tt̄ (red),
and µ+µ� ! cc̄ (orange).

III. High-energy probes of the muon g-2. The main
contribution to �aµ comes from the dipole operator
Oe� =

�
¯̀
L�µ⌫eR

�
HFµ⌫ when after electroweak symme-

try breaking H ! v. The same operator also induces
a contribution to the process µ+µ�

! h� that grows
with energy (see figure 1), and thus can become dom-
inant over the SM cross-section at a very high-energy
collider. Assuming that mh ⌧

p
s, which is an excellent

approximation at a MC, we find the following di↵erential
cross-section

d�µµ!h�

d cos ✓
=

|Cµ
e�(⇤)|

2

⇤4

s

64⇡
(1� cos2 ✓) (5)

where cos ✓ is the photon scattering angle. Notice that
there is an identical contribution also to the process
µ+µ�

!Z� since H contains the longitudinal polariza-
tions of the Z. The total µ+µ�

! h� cross-section is

�µµ!h� =
s

48⇡

|Cµ
e�(⇤)|

2

⇤4

⇡ 0.7 ab

✓ p
s
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◆2

, (6)

where in the last equation we assumed no contribution to
�aµ other than the one from Cµ

e� . Moreover, we included
running e↵ects for Cµ

e� , see eq. (4), from a scale ⇤ ⇡

100 TeV. Given the scaling with energy of the reference
integrated luminosity [7]

L =

✓ p
s

10TeV

◆2

⇥ 10 ab�1 (7)

one gets about 60 total h� events at
p
s = 30 TeV.

The SM irreducible µ+µ�
! h� background is small,

due to the muon Yukawa coupling suppression,

�SM
µµ!h� ⇡ 3.7⇥10�3 ab

✓
30TeV
p
s

◆2

, (8)

and can be neglected for
p
s � TeV. The main source of

background comes from Z� events, where the Z boson is
incorrectly reconstructed as a Higgs. This cross-section
is large, due to the contribution from transverse polar-
izations,

d�µµ!Z�

d cos ✓
=

⇡↵2

4s

1 + cos2 ✓

sin2 ✓

1� 4s2W + 8s4W
s2W c2W

. (9)

There are two ways to isolate the h� signal from the back-
ground: by means of the di↵erent angular distributions
of the two processes – the SM Z� peaks in the forward
region, while the signal is central – and by accurately dis-
tinguishing h and Z bosons from their decay products,
e.g. by precisely reconstructing their invariant mass.

To estimate the reach on �aµ we consider a cut-and-
count experiment in the bb̄ final state, which has the high-
est signal yield (with branching ratios B(h ! bb̄) = 0.58,
B(Z ! bb̄) = 0.15). The significance of the signal – de-
fined as NS/

p
NB +NS , with NS,B the number of signal

and background events – is maximized in the central re-
gion |cos ✓| . 0.6. At 30 TeV one gets

�cut
µµ!h� ⇡ 0.53 ab

✓
�aµ

3⇥10�9

◆2

, �cut
µµ!Z� ⇡ 82 ab. (10)

Requiring at least one jet to be tagged as a b, and as-
suming a b-tagging e�ciency ✏b = 80%, we find that a
value �aµ = 3⇥10�9 can be tested at 95% C.L. at a
30 TeV collider if the probability of reconstructing a Z
boson as a Higgs is less than 10%. The resulting num-
ber of signal events is NS = 22, and NS/NB = 0.25.
In figure 2 we show as a black line the 95% C.L. reach
from µ+µ�

! h� on the anomalous magnetic moment
as a function of the collider energy. Note that since the
number of signal events scales as the fourth power of the
center-of-mass energy, only a collider with

p
s & 30 TeV

will have the sensitivity to test the g-2 anomaly.
The analysis above assumed a tree-level contribution

from the operator Oe� alone. We will now show that the
other relevant contributions can be constrained indepen-
dently at a MC already at lower center-of-mass energies.

The Z-dipole operator OeZ =
�
¯̀
L�µ⌫eR

�
HZµ⌫ con-

tributes to �aµ at one loop, and generates also the pro-
cess µ+µ�

! Zh (see figure 1) with the same cross-
section of eq. (5) with � $ Z, so that

�µµ!Zh ⇡ 38 ab

✓ p
s

10TeV

◆2✓
�aµ

3⇥ 10�9

◆2

. (11)

As before, we assume that only OeZ contributes to the
�aµ anomaly: it should be stressed that here this cor-
responds to a very unnatural scenario, where the coe�-
cients CeB and CeW conspire to cancel out the tree-level
contribution from Oe� . It is nevertheless meaningful to
derive the constraint from high-energy scattering on the
Z-dipole contribution to the g-2. The cross-section in
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At 30 TeV, 90 ab−1,  for Δaμ = 3 × 10−9 :

NS = 22, NB = 886 × pZ→h

∆aµ can be tested at 95% CL at a 30 TeV 
collider if Z￫h mistag probability < 10-15%

ϵb ≈ 80 % |cos θcut | < 0.6 BRh→bb̄ = 58 %
Search in h → bb channel:



Muon g-2 @ muon collider

✦ Full set of operators with Λ ≳ 100 TeV can 
be probed at a high energy muon collider
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Collider constrains  |Ceγ |2 ⇒ dμ ≲ 10−22 e ⋅ cm
3 o.o.m. stronger than present bound!

Muon EDM for free!

B, Paradisi 2012.02769



High-energy di-bosons

�58

✦ CW and CB determined from high-energy 
µ+µ- → ZH, W+W- total cross-sections


✦ In universal theories, CW,B related with 
Z-pole and other EW observables

10 TeVWW

ZH

σμμ→ZH = 122 ab × (10 TeV
Ecm

)
2

[1 + ( Ecm

0.78 )
2
CW + ( Ecm

1.64 )
2
CB

+( Ecm

0.96 )
4
C2

W + ( Ecm

1.17 )
4
C2

B − ( Ecm

1.09 )
4
CW CB]

̂S = m2
W(CW + CB)

Limits on CW,B scale as E2

LEP : ̂S ≲ 10−3

FCC : ̂S ≲ 10−5
ultimate precision 
at Z pole

10 TeV : CW ≲ (40 TeV)−2, ̂S ≲ 10−6

30 TeV : CW ≲ (120 TeV)−2, ̂S ≲ 10−7

Muon collider:

S/B

µ collider

FCC-ee

FCC-ee+hh

B, Franceschini, Wulzer 2012.11555

σμμ→ZH ≈ 122 ab ( 10 TeV
Ecm

)
2

[1 + # E2
cmCW + # E4

cmC2
W]



High-energy WW: angular analysis
✦ OW,B contribute to longitudinal scattering amplitudes:


✦ In the SM, large contribution to µ+µ- → W+W- 
from transverse polarizations.


Interference between ±∓ and 00 helicity amplitudes cancels in the total 
cross-section ⇒ signal suppressed!


✦ Can exploit the SM/BSM interference by 
looking at fully differential WW cross- 
section in scattering and decay angles!
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𝒜(NP)
00 = s (G1L − G3L) sin θ⋆

𝒜−+ = −
g2

2
sin θ⋆

𝒜+− = g2 cos2 θ⋆

2
cot2

θ⋆

2

𝒜(NP)
00 = − 2𝒜(SM)

00

where the sum runs over two pairs of helicity indices h± and h0± associated with the intermediate
W± vector bosons helicities.

The hard density matrix d⇢hard contains the helicity amplitude of the `+`� ! W+W�

process with on-shell W bosons. Up to an irrelevant flux factor, it reads

d⇢hard
h+h�h

0
+h

0
�
/ Mh+h�

(Mh
0
+h

0
�
)⇤ d�WW , (10)

where d�WW is the phase space for the on-shell diboson production. The helicity amplitudes
M contain both SM and EFT contributions, and they take a very simple form in the high-
energy limit. The only relevant (quadratically enhanced with energy) EFT contribution is in
the longitudinal amplitude M00, as in Table 1, both for Right-handed and for Left-handed
initial-state leptons. If the initial leptons are Right-handed, all the helicity amplitudes vanish
in the SM apart from the longitudinal one. Consequently, there is no interference contribution.

If instead the initial leptons are Left-handed, also the SM transverse amplitudes are non-
vanishing in the (±,⌥) helicity channels. Explicitly

M�+ = �
g2

2
sin ✓? , M+� = g2 cos2

✓?
2
cot2

✓?
2
, (11)

where g is the SU(2)L coupling. The longitudinal amplitudes, both in the SM and in the EFT,
are proportional to sin ✓?. The only relevant interference term in the whole process thus emerges
(with Left-handed initial leptons) from the ±⌥ 00 and 00±⌥ terms in the sum of eq. (9).

The density matrices d⇢W
±
are instead EFT-independent factors that account for the decay

of the W bosons. As in [29,34], we parametrize them in terms of the polar and azimuthal angles
(✓± and '±) of the helicity-plus fermion or anti-fermion, in the rest frame of the decaying boson.
The decay density matrices are readily computed, and the interference due to the ± ⌥ 00 and
00±⌥ terms in eq. (9) is found to be

d�int / M00M+� cos('+ � '�) sin ✓+(1 + cos ✓+) sin ✓�(1� cos ✓�)

+M00M�+ cos('+ � '�) sin ✓+(1� cos ✓+) sin ✓�(1 + cos ✓�) , (12)

having exploited the fact that all the hard amplitudes are real.
We can now turn to the definition of the relevant observables. The ✓± and '± angles are

not directly observable, for the following reasons. Consider for definiteness the case in which
the W+ decays hadronically, to ud̄, and W�

! `�⌫̄. The fermion with helicity +1/2 in the W+

decay is the d̄ quark, so that ✓+ and '+ are defined as the angles of the d̄. However it is very
di�cult or impossible to tell the d̄ from the u quark, therefore the best we can do is to choose
at random one of the two jets from the decay, interpret it as the d̄ and measure its angles ✓

d̄

and '
d̄
.4 These angles are either equal to ✓+ and '+, or to ⇡ � ✓+ and '+ + ⇡ with the same

probability. The di↵erential cross-section for the ✓
d̄
and '

d̄
variables defined in this way is thus

the average of eq. (12) evaluated at (✓+,'+) = (✓
d̄
,'

d̄
) and at (✓+,'+) = (⇡� ✓

d̄
,'

d̄
+ ⇡). The

W� decay angles should instead be defined as those of the ⌫̄. However the neutrino momentum
is reconstructed imposing the on-shell condition of the W boson, which produces two distinct
solutions. The 4-momenta obtained on two solutions approach each other when theW is boosted
in the transverse plane, so that the reconstructed W boson momentum is nearly the same on
the two solutions as previously mentioned. The polar angle of the neutrino in the W rest frame
also coincides on the two solutions, while the two determinations of the azimuthal angle instead
do not coincide, but are related to each other by '1 = ⇡ � '2 [29]. If we pick one of the two
solutions at random and interpret its angles as ✓⌫̄ and '⌫̄ , the distribution for these variables is
obtained by further averaging eq. (12) over (✓�,'�) = (✓⌫̄ ,'⌫̄) and at (✓�,'�) = (✓⌫̄ ,⇡ � '⌫̄).

4
Equivalently, we might also retain both jets and have two measurements of the angles for each event.

13

(θ±, φ± polar and azimuthal angle of W± decay products)

10 TeVWW

ZH

see also Panico et al. 1708.07823, 2007.10356

B, Franceschini, Wulzer 2012.11555



High-energy WW: angular analysis
✦ OW,B contribute to longitudinal scattering amplitudes:


✦ In the SM, large contribution to µ+µ- → W+W- 
from transverse polarizations.


Interference between ±∓ and 00 helicity amplitudes cancels in the total 
cross-section ⇒ signal suppressed!


✦ Can exploit the SM/BSM interference by 
looking at fully differential WW cross- 
section in scattering and decay angles!
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at random one of the two jets from the decay, interpret it as the d̄ and measure its angles ✓

d̄

and '
d̄
.4 These angles are either equal to ✓+ and '+, or to ⇡ � ✓+ and '+ + ⇡ with the same

probability. The di↵erential cross-section for the ✓
d̄
and '

d̄
variables defined in this way is thus

the average of eq. (12) evaluated at (✓+,'+) = (✓
d̄
,'

d̄
) and at (✓+,'+) = (⇡� ✓

d̄
,'

d̄
+ ⇡). The

W� decay angles should instead be defined as those of the ⌫̄. However the neutrino momentum
is reconstructed imposing the on-shell condition of the W boson, which produces two distinct
solutions. The 4-momenta obtained on two solutions approach each other when theW is boosted
in the transverse plane, so that the reconstructed W boson momentum is nearly the same on
the two solutions as previously mentioned. The polar angle of the neutrino in the W rest frame
also coincides on the two solutions, while the two determinations of the azimuthal angle instead
do not coincide, but are related to each other by '1 = ⇡ � '2 [29]. If we pick one of the two
solutions at random and interpret its angles as ✓⌫̄ and '⌫̄ , the distribution for these variables is
obtained by further averaging eq. (12) over (✓�,'�) = (✓⌫̄ ,'⌫̄) and at (✓�,'�) = (✓⌫̄ ,⇡ � '⌫̄).

4
Equivalently, we might also retain both jets and have two measurements of the angles for each event.
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(θ±, φ± polar and azimuthal angle of W± decay products)
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see also Panico et al. 1708.07823, 2007.10356
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