

Front-end electronics for future calorimetry

Ch. de LA TAILLE Corfu meeting 2024

Need for electronics

• Better electronics make better detectors or even new detectors (eg trackers, 5D calos, timing)

A				
111				. A4
14 2				
	i I			
		The second		

Importance of electronics : calorimeters

- Large dynamic range (10⁴-10⁵)
- High Precision ~1%
 - Importance of low noise, uniformity, linearity...
 - Importance of calibration
- Resolution : $\sigma(E)/E = a/E(+) b/\sqrt{E(+)} c$

Evolution of calorimetry : « imaging calorimetry »

Omega

- 3D calorimetry : eta, phi, Energy
- 4D calorimetry : x,y,z,E
- 5D calorimetry : x,y,z,E,t
 - High granularity=> Millions of channels = > Low power !
 - Power pulsing ~1% for ILC
 - Low power + C02 cooling for CC
 - Energy measurement : Large dynamic range
 - MIP sensitivity => low noise (~0.1 fC)
 - Up to thousands of MIPs (~10 pC)
 - Timing information
 - Nice addition for LC for PID : few ns is enough
 - Crucial for HL-LHC : pileup mitigation, need few tens of ps
 - Embedded electronics vs data out
 - Daisy chain and low power busses for e+e-
 - High speed e/optical links for HL-LHC
 - Radiation levels
 - Negligible at an e+e-
 - Daunting at HL-LHC : >200 Mrad 1^E16N

Need for timing

- Time resolution <50ps required by many experiments/applications keeping low power, large dynamic range
- PET/ Time of Flight measurements
 - SiPMs, lots of light
 - Time resolution <100ps
- « 5D Calorimetry » CMS HGCAL
 - Si PIN diodes : no gain.
 - . Timing ability ~50ps (for > 10 mips desirable)
- Pileup rejuection : MIP timing detectors (ATLAS & CMS)
 - LGAD sensors : Time performance ~30 ps : To reject Time Pile up events => better particle identification
- TOF detectors/ PID (SiPM)
 - MCPs, SiPMs... Few photoelectrons.
 - Time performance ~30 ps

lega

• Jitter due to electronics noise:

 $\sigma_t^{J} = \frac{N}{\frac{dV}{dt}}$

- also presented as j = tr / (S/N)
- dV/dt prop to BW, N prop to $\sqrt{BW} =>$ jitter prop to $1/\sqrt{BW}$
- \Rightarrow « the faster the amplifier the better the jitter ? »
- \Rightarrow « High speed preamps need to be low impedance (50 Ω or less) »

NB : $tr = t_{10-90\%} = 2.2 \text{ tau.}$ $f_{-3dB} = 1/2\pi tau = 0.35 / t_{10-90\%}$ $f_{-3dB} = 1 \text{ GHz } <-> t_{10-90\%} = 300 \text{ ps}$ 1 ps = 300 µm in vacuum

Detector impedance and input voltage

- 1 GHz, Cd=few tens of pF, input signal width <1ns
- Cd>1 pF, Zs@1GHz dominated by Cd
- Rise time: tr= td when td<< $R_S C_d$ and tr= $R_S C_d$ when td>> $R_S C_d$

Vin(t) if td >> CdRs

Cd.Rs

max= Rs.I Current sensitive

Examples of pulse shapes

- SiPM pulse : Q=160 fC, Cd=100 pF, L=0-10 nH, R_{PA}=5-50 Ω
- Sensitivity to parasitic inductance
- Choice of R_{PA} : decay time, stability
- Small R_{PA} not necessarily the fastest
- Convolve with current shape... (here delta)

mega

Jitter optimization

• Jitter is given by [details in backup]:

$$\sigma_t^{J} = \frac{N}{dV/dt} = \frac{e_n}{\sqrt{2t_{10-90_PA}}} \frac{C_d \sqrt{t_{10-90_PA}^2 + t_d^2}}{Q_{in}} = \frac{e_n C_d}{Q_{in}} \sqrt{\frac{t_{10-90_PA}^2 + t_d^2}{2t_{10-90_PA}}}$$

• Optimum value: t_{10-90_PA}= t_d (current duration)

 $\sigma_t^{J} = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$

Cd: detector capacitance t $_{10_{-10_{-}PA}}$: rise time of the PA t_d= drift time of the detector e __n preamp noise density

- Gives ps/fC as scales with 1/Qin
- Electronics noise e_n given by the input transistor transconductance g_m:

$$e_n = \sqrt{\frac{2kT}{g_m}} \approx \frac{2kT}{\sqrt{qI_D}}$$

Examples : expectations and measurements

- NA62 tracker : PIN diode thickness 300 µm A=0.09 mm²
 - $C_d = 0.1 \text{ pF } e_n = 11 \text{ nV}/\sqrt{\text{Hz}} t_d = 3 \text{ ns} \sigma = 60 \text{ ps/Q(fC)}$
 - $1 \text{ MIP} = 3 \text{ fC} => \sigma = 20 \text{ ps/#MIP}$ (~60-200 ps measured)
- CMS HGCAL : PIN diode thickness 300 µm A=25 mm²
 - $C_d = 8 \text{ pF } e_n = 1 \text{ nV}/\sqrt{\text{Hz}} t_d = 3 \text{ ns} \sigma = 420 \text{ ps/Q(fC)}$
 - 1 MIP = 3.8 fC => σ = 110 ps/#MIP
- (~200 ps measured)
- ATLAS HGTD : LGAD diode thickness 50 μ m A= 2 mm² G = 10
 - $C_d = 2 \text{ pF } e_n = 2 \text{ nV}/\sqrt{\text{Hz}} t_d = 0.5 \text{ ns} \sigma = 50 \text{ ps/Q(fC)}$
 - 1 MIP = 5 fC (G=10) => σ = 10 ps/#MIP (~40 ps measured)
- SiPM G = $1^{E}6$
 - $C_d = 300 \text{ pF } e_n = 1 \text{ nV}/\sqrt{\text{Hz}} t_d = 100 \text{ ps} \sigma = 3 \text{ ns/Q(fC)}$
 - 1 pe = 160 fC => σ = 20 ps/#pe

(~60 ps measured)

eqa

- DRD1 : gas detectors
- DRD2 : liquid detectors
- DRD3 : semiconductors
- DRD4 : photon detectors
- DRD5 : quantum
- DRD6 : calorimetry
- DRD7 : electronics

DRD6 (calorimetry) readout schemes

Name	Track	Active media	readout
LAr	2	LAr	cold/warm elx"HGCROC/CALICElike ASICs"
ScintCal	3	several	SiPM
Cryogenic DBD	3	several	TES/KID/NTL
HGCC	3	Crystal	SiPM
MaxInfo	3	Crystals	SIPM
Crilin	3	PbF2	UV-SiPM
DSC	3	PBbGlass+PbW04	SiPM
ADRIANO3	3	Heavy Glass, Plastic Scint, RPC	SIPM
FiberDR	3	Scint+Cher Fibres	PMT/SiPM, timing via CAENFERS, AARDVARC-v3, DRS
SpaCal	3	scint fibres	PMT/SiPMSPIDER ASIC for timing
Radical	3	Lyso:CE, WLS	SiPM
Grainita	3	BGO, ZnWO4	SiPM
TileHCal	3	organic scnt. tiles	SiPM
GlassScintTile	1	SciGlass	SiPM
Scint-Strip	1	Scint.Strips	SiPM
T-SDHCAL	1	GRPC	pad boards
MPGD-Calo	1	muRWELL,MMegas	pad boards(FATIC ASIC/MOSAIC)
Si-W ECAL	1	Silicon sensors	direct withdedicated ASICS (SKIROCN)
Si/GaAS-W ECAL	1	Silicon/GaAS	direct withdedicated ASICS (FLAME, FLAXE)
DECAL	1	CMOS/MAPS	Sensor=ASIC
AHCAL	1	Scint. Tiles	SiPM
MODE	4	-	-
Common RO ASIC	4	-	common R/O ASIC Si/SiPM/Lar

- On-detector embedded electronics, low-power multi-channel ASICs
 - CALICE SKI/SPI/HARDROC, FLAME, CMS HGCROC, FCC LAr, FATIC...
 - Challenges : #channels, low power, digital noise, data reduction
- Off-detector electronics : fiber/crystal readout
 - Wavefrom samplers : DRS, Nalu AARD, LHCb spider...
 - Challenges : low power, data reduction
- Digital calorimetry : MAPs, RPCs...
 - DECAL, ALICE FOCAL, CALICE SDHCAL
 - MAPS for em CAL : eg ALPIDE ASIC for FOCAL, DECAL...
 - Challenges : #channels, low power, data reduction

Digital calorimetry

- Hadronic : e.g. CALICE RPCs or µmegas
 - ~1 cm² pixels, low occupancy, ~1 mW/cm² (unpulsed)
 - Performance improvement with semi-digital architecture
 - Timing capability can be added
- Electromagnetic : e.g. DECAL, ALICE FOCAL...
 - Based on ALPIDE : (30µm)² pixels, high occupancy, ~ 100 mW/cm², slow
 - To be compared with embedded electronics ~10 mW/cm²
 - Most power in digital processing => would benefit a lot from ≤ 28 nm node
 - Semi-digital and/or larger pixels could be an interesting study
- Upcoming R&D
 - Power reduction, dead area minimization
 - Coping with high occupancy, managing data bandwidth

Waveform sampling

- Switched capacitor arrays (DRS4, Nalu, SPIDER...)
 - Pulse shape analysis
 - High accurcay timing, digital CFD
 - Sizeable power to provide GHz BW on large capacitance
 - large data volume
- Often used in off-detector electronics
 - Space and cooling available
 - Small/medium size detector readout and/or characterization
 - See LHCb calorimeter upgrade
- Upcoming R&D
 - Power reduction, Front-end integration
 - Data bandwitdth
 - Time walk correction, potentially best for ps accuracy

nega

Timing resolution

How is timing resolution affected?

- Depends on sampling frequency f_s
 - Currently 2-20 Gs/s
- But also on analog bandwidth
 - Currently 0.3-3 GHz
 - Sensitive to stray inductance
 - Needs power to drive capacitive load of SCA

	U	ΔU	f_{s}	f _{3db}	Δt
iy:	100 mV	1 mV	2 GSPS	300 MHz	~10 ps
R:	1 V	1 mV	2 GSPS	300 MHz	1 ps
on:	1V	1 mV	10 GSPS	3 GHz	0.1 ps

today:

optimized SNR:

next generation:

Design Options

- CMOS process (typically 0.35 ... 0.13 $\mu m) \rightarrow$ sampling speed
- Number of channels, sampling depth, differential input
- PLL for frequency stabilization
- Input buffer or passive input
- Analog output or (Wilkinson) ADC
- Internal trigger
- Exact design of sampling cell

ega

- Different
 - Speed (BW)
 - Depth
- 4 main groups :
 - PSI [S. Ritt et al.] : DRS4
 - NALU [G. Varner et al] : ASoC, HDSoC…
 - IJCLAB [D. Breton et al.] : SAMPIC
 - Chicago []: PSEC4

Project	Sampling	Input	Buffer	Number of	Timing
	Frequency	Bandwidth	Length	Channels	Resolution
	(GHz)	(GHz)	(Samples)		(psec)
ASoC	3-5	0.8	16,000	4	35
SAMPIC	3-10	2.5	64	16	10
HDSoC	1-3	0.6	2000	64	80
AARDVARC	8-14	2.5	32,000	4	10
AODS	1-2	1.0	8000	4	100
UDC	8-10	1.5-2	4000	16/32	10
PSEC4	5-17	1.6	256	6	5
PSEC5	5-40	3.0	4096/64	9	1

Comments

- Trends for SCAs
 - Reduce dead time
 - increase analog bandwidth
 - Increase depth, give more latency
 - Include high speed low noise preamps (NALU...)
- Comments
 - Unbeatable for pulse shape analysis or discrimination or if you don't know what you want to measure
 - Ultra low timing measurements (ps)
 - More power hungry than dedicated front-end (many CdV/dt...)
 - rarely affodable for large systems (data volume and power), still several kchannels done (eg MEG2)

4k channels of SiPM readout with DRS4 waveform sampler [S. Ritt et al.] •

[nsec]

Embedded ASICs

- Pioneered with CALICE R&D (SKIROC, SPIROC..)
- Multi-channel charge/time readout
 - Fast preamp
 - Full dynamic range. Possible extension with ToT
 - Fast path for time measurement (ToA)
 - High speed discriminator and TDC
 - Time walk correction with ADC (or ToT)
 - Slow path for charge measurement
 - ~10 bit ADC ~40 MHz
 - Low power for on-detector implementation (~10 mW/ch) e.g. CMS HGCAL
- Upcoming R&D
 - Power reduction,
 - Auto-trigger, Data-driven readout

CALICE technological prototypes

- R&D on imaging calorimetry (2004-2024)
 - Particle Flow Algorithms [Brient, Videau et al.]
 - Electronics crucial (low noise, low power, fully integrated)
 - Several innovative features (power pulsing, SiPM...)
 - Validation of technological prototypes
 - Common R/O features
 - Applied to CMS HGCAL

Indalalalalassis
a a a a a a a a a a a
the second se

HGCROC (CMS HGCAL)

Overall chip divided in two symmetrical parts

- Each half is made of:
 - 39 channels: 36 channels, 2 common-mode, 1 calibration
 - Bandgap, voltage reference close to the edge
 - Bias, ADC reference, Master TDC in the middle
 - Main digital block and 3 differential outputs (2x Trigger, 1x Data)

Measurements

- Charge
 - ADC (AGH): peak measurement, 10 bits @ 40 MHz, dynamic range defined by preamplifier gain
 - TDC (IRFU): TOT (Time over Threshold), 12 bits (LSB = 50ps)
 - ADC: 0.16 fC binning. TOT: 2.5 fC binning
- Time
 - TDC (IRFU): TOA (Time of Arrival), 10 bits (LSB = 25ps)

Two data flows

- DAQ path
 - 512 depth DRAM (CERN), circular buffer
 - Store the ADC, TOT and TOA data
 - 2 DAQ 1.28 Gbps links (CLPS)
- Trigger path
 - Sum of 4 (9) channels, linearization, compression over 7 bits
 - 4 Trigger 1.28 Gbps links (CLPS)

Control

- Fast commands
 - 320 MHz clock and 320 MHz commands
 - A 40 MHz extracted, 5 implemented fast commands
- I2C protocol for slow control

Ancillary blocks

- Bandgap (CERN)
- 10-bits DAC for reference setting
- 11-bits Calibration DAC for characterization and calibration
- PLL (IRFU)
- Adjustable phase for mixed domain

C. de La Taille Corfu 2024

Omega

- ADC range 0 200 fC
- TOT range 200 fC 10 pC
- Non-linear inter-region
- But 200 ns dead time

Performance : charge measurement

HGCROC3: Noise and pedestal measurements

Omega

- Measured noise with 47 pF input cap = 0.3 fC (~ 2000 e-) (0.7 nV / VHz)
- Very low correlated noise contribution: max 15%
 - Comparable with HGCROC2 even if the digital activity was doubled
- ADC pedestal adjustment done manually with local 6b DAC

Zoom on timing

- ~2.5 ns time walk, 13 ps jitter for Q>100fC at Cd = 47 pF
- Fits also well MCPs for PID @EIC (HRPPD)

C. de La Taille Corfu 2024

• Good performance in test beam

H2GCROC: SiPM version current conveyor

nega

- Current conveyor (Heidelberg design) to adapt to Si version
- Dynamic range : 50 fC 300 pC •
- 2 typical gains •
 - Low gain (Physics mode): 44 fC/ADC gain, 50 fC noise (1.25 ADCu)
 - High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
 High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
- Measurements in backup slides Ο

- Further reduction in power dissipation
- Auto-trigger and data-driven readout
- More SiPM readout
- Addressed in DRD6 proposal

ega

DRD6 Common readout ASICs proposal [AGH, Omega, Saclay]

- Develop readout ASIC family for DRD6 prototype characterization
 - Inspired from CALICE SKIROC/SPIROC/HARDROC/MICROROC family
 - Targeting future experiments as mentionned in ICFA document (EIC, FCC, ILC, CEPC...)
 - Addressing embedded electronics and detector/electronics coexistence + joint optimization
 - Detector specific front-end but common backend
 - \Rightarrow allows common DAQ and facilitates combined testbeam
- Start from HGCROC / HKROC : Si and SiPM
 - Reduce power from 15 mW/ch to few mW/ch. Lower occupancy, slower speed
 - Allows better granularity or LAr operation
 - Remove HL-LHC-specific digital part and provide flexible auto-triggered data payload
 - Extend to MCPs (PID) or HRPPD. First tests with EIC calo/PID
- Several other ASICs R/Os also developed in DRD6 and it is good !
 FLAME/FLAXE, FATIC...
 - Waveform samplers : commercial or specific (e.g. SPIDER)
 - DECAL

nega

HKROC main features

HKROC is 36 channels: 12 PMTs with High, Medium and Low gain

- □ Large charge measurement with 3 gains (up to 2500 pC)
- □ Integrated timing measurements (25 ps binning)
- □ Readout with high speed links (1,28 Gb/s)
- □ HKROC is a waveform digitizer with auto-trigger

HKROC: (slow) waveform digitizer with TDC and auto-trigger

- □ HKROC is waveform digitizer working @ 40 MHz
 - □ Number of charge sampling points from 1 to 7
 - □ Fast channel for precise timing (25 ps binning)
 - □ Charge reconstruction algorithm in FPGA
 - 5% resources of a modern XILINX FPGA

When using 3 gains / PMT (high, medium, low)

- □ Hit rate capability up to 400 kHz / PMT
- □ Increased up to 1 MHz by focusing on high gain
 - Dynamic selectable by the user
- Average values only limited by readout speed

Normal mode	Supernovae mode	High speed mode
Rate 400 k /chn	~1M /chn	40 M

HKROC performance

Further steps : CALOROC

- SiPM readout calorimetry : CMS H2GCROC with EIC readout (200 MHz clock and fast commands)
 - SiPM from 500 pF to 2.5 nF (or 10 nF)
 - ~5-10 mW/channel
- 2 versions : conservative and exploratory
 - Conservative : uses H2GCROC (ADC, TOT) as it is and replaces the backend
 - Exploratory : new analog part (dynamic gain switching).
 - Pin to pin compatible
 - Backend « à la HKROC » : auto-triggered, zero-suppressed
 - 40 MHz internal clocking (ADC, TDCs)
- Could fit FCC SiPM calorimeters
- A Si version would fit FCC Si calorimeter

II. FastIC architecture

D. Gascon et al. (ICCUB) https://indico.cern.ch/event/1214183/contributions/5385308/attachments/2655564/4598975/20230530_FastIC_FAST23.pdf

- 8 Inputs: 8 Single Ended (POS/NEG), 4 differential and summation (POS/NEG) in 2 clusters of 4 channels.
- 3 Output modes: (1) SLVS; (2) CMOS; and (3) Analog.
- Active analog summation of up to 4 SE channels to improve time resolution

Collaboration of the ICCUB (Univ. Barcelona) and C Corfu 2024

Input stage "amplifier" < 3 mW/ch

Based on HRFlexToT ASIC [1]

II. FastIC: Linearity of the Energy measurement

- FastIC provides a measurement of the time and energy per channel in two consecutive pulses
 - Based on HRFlexToT ASIC [1]
 - Linear energy by pulse width encoding
 - "Wilkinson ADC-like" conversion
 - Controlled by on-chip state machine

- Linearity error is **below 3%**
 - Saturation is reached at 25 mA of input current.
 - Other operating modes (negative, differential and summation) behaves similarly with a low linearity error.

- This makes FastIC suitable to different detectors: LYSO/LSO, BGO, Cherenkov, Monolithic, etc
- Different trigger modes, including cluster trigger for monolithic

VI. FastICPix

Technology choice for mixed signal ASICs

- TSMC 130nm : mixed signal, cheap
 - Very mature technology with good analog performance
 - 2.5 k€/mm² MPW, 300-350 k€/engineering run (20 wafers C4)
 - Perenity ?
- TSMC 65 nm : mixed signal, main stream
 - ~2-3 times lower power in digital, similar in the analog (compared to 130n)
 - 5 k€/mm², 700-800 k€/ engineering run
- TSMC 28 nm : digital oriented
 - High density integration (pixels)
 - High performance, lower power digital, similar in the analog
 - 10 k€/mm², 1-1.5 M€/ eng run

conclusion

- Importance of joint optimization detector/readout electronics
- Trend to reduce power and data volume
 - Pileup will be less of an issue, better granularity will be appreciated !
 - Low occupancy, auto-trigger, data-driven readout
 - Low power ADCs and TDCs (DRD7 with AGH&CEA)
- Picosecond Timing important R&D area
 - PID and/or calorimetry, several new detectors appearing : need R/O
- Next chips at OMEGA will target EIC, DRD1-4-6-7
 - Calorimetry and timing : CALOROC1 and 1A
 - Further R&D needed to bring power down to ~1 mW/ch (Lar)
- Technology choice to be addressed in coordination with other design groups
 - Cost sharing for engineering runs

Chips for EIC : electron-ion collider at BNL

- PID and calorimeters
 - EICROC for AC-LGAD roman pots
 - H(2)GCROC for calorimeters

mRICH

TOF

« Event driven » DAQ

hpDIRC

dRICH

m

Detector	Channels					
Group	MAPS	AC/DC-LGAD	SiPM/PMT	MPGD		
Tracking	32 B			100k		
Calorimeters	50M		67k			
Far Forward	300M	2.3M	500			
Far Backward		1.8M	700			
PID		3M-50M	600k			
TOTAL	32 B	7.1M-54M	670k	100k		
ASIC	ITS-3	EICROC FCFD HPsOC ASROC FAST	Discrete/COTS HGCROC3 AL COR-E IC	SALSA		

TOF

mega

SiPM : ADC and TOT readout

- 16bit dynamic range split in 10 bit ADC and 12 bit ToT
- Tests with 2 sizes of SiPM : 2mm² (120 pF) and 9 mm² (560 pF)

