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Front-end electronics for future calorimetry
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Need for electronics

2C. de La Taille       Corfu 2024

• Better electronics make better detectors or even new detectors (eg trackers, 5D calos, timing)



Importance of electronics : calorimeters

• Large dynamic range (104-105)

• High Precision ~1%

– Importance of low noise, uniformity, linearity…

– Importance of calibration

• Resolution :  σ(E)/E = a/E (+) b/√E (+) c
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Evolution of calorimetry : « imaging calorimetry » 

• 3D calorimetry : eta, phi, Energy

• 4D calorimetry : x,y,z,E

• 5D calorimetry : x,y,z,E,t

– High granularity=> Millions of channels = > Low power !

• Power pulsing ~1% for ILC

• Low power + C02 cooling for CC

– Energy measurement : Large dynamic range

• MIP sensitivity => low noise (~0.1 fC)

• Up to thousands of MIPs (~10 pC)

– Timing information

• Nice addition for LC for PID : few ns is enough

• Crucial for HL-LHC : pileup mitigation, need few tens of ps

– Embedded electronics vs data out

• Daisy chain and low power busses for e+e-

• High speed e/optical links for HL-LHC

– Radiation levels

• Negligible at an e+e-

• Daunting at HL-LHC : >200 Mrad 1E16N
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Need for timing

• Time resolution <50ps required by many experiments/applications 

keeping low power, large dynamic range ….

• PET/ Time of Flight measurements

– SiPMs, lots of light

– Time resolution <100ps

• « 5D Calorimetry » CMS HGCAL

• Si PIN diodes : no gain.

• . Timing ability  ~50ps  (for > 10 mips desirable)

• Pileup rejuection : MIP timing detectors (ATLAS & CMS)

• LGAD sensors : Time performance ~30 ps : To reject Time Pile up 

events => better particle identification

• TOF detectors/ PID (SiPM)

– MCPs, SiPMs… Few photoelectrons.

– Time performance ~30 ps

• …
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Timing optimization : common view

• Jitter due to electronics noise:

• also presented as  j = tr / (S/N)

• dV/dt prop to BW, N prop to √ BW => jitter prop to 1/√BW

« the faster the amplifier the better the jitter ? »

« High speed preamps need to be low impedance (50 Ω or less) »

NB : tr = t10-90% = 2.2 tau.  

f-3dB = 1/2πtau = 0. 35 / t10-90%

f-3dB = 1 GHz <-> t10-90% = 300 ps

1 ps = 300 µm in vacuum
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Detector impedance and input voltage
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• 1 GHz, Cd=few tens of pF, input signal width <1ns

• Cd>1 pF, Zs@1GHz dominated by Cd 

• Rise time: tr= td when td<< RS Cd and tr= RS Cd

when td>> RS Cd

1pF

10 pF

100pF

50Ω

1 GHz

At HF : difficult to 

beat the capacitance 

=> signal integrated

on Cd



Examples of pulse shapes

• SiPM pulse : Q=160 fC, Cd=100 pF, L=0-10 nH, RPA=5-50 Ω

• Sensitivity to parasitic inductance

• Choice of RPA : decay time, stability

• Small RPA not necessarily the fastest

• Convolve with current shape… (here delta)
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Jitter optimization
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• Jitter is given by  [details in backup] :

• Optimum value: t10-90_PA= td (current duration)

• Gives ps/fC as scales with 1/Qin

• Electronics noise en given by the input transistor 
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Cd: detector capacitance

t 10_10_PA : rise time of the PA

td= drift time of the detector

e n preamp noise density



Examples : expectations and measurements

• NA62 tracker : PIN diode  thickness 300 µm A=0.09 mm²

– Cd = 0.1 pF en = 11 nV/√Hz  td = 3 ns   σ = 60 ps/Q(fC)

– 1 MIP = 3 fC => σ = 20 ps/#MIP (~60-200 ps measured) 

• CMS HGCAL : PIN diode  thickness 300 µm A=25 mm²

– Cd = 8 pF en = 1 nV/√Hz  td = 3 ns   σ = 420 ps/Q(fC)

– 1 MIP = 3.8 fC => σ = 110 ps/#MIP  (~200 ps measured)

• ATLAS HGTD : LGAD diode  thickness 50 µm A= 2 mm² 

G = 10

– Cd = 2 pF en = 2 nV/√Hz  td = 0.5 ns   σ = 50 ps/Q(fC)

– 1 MIP = 5 fC (G=10) => σ = 10 ps/#MIP (~40 ps measured)

• SiPM G = 1E6

– Cd = 300 pF en = 1 nV/√Hz  td = 100 ps σ = 3 ns/Q(fC)

– 1 pe = 160 fC => σ = 20 ps/#pe (~60 ps measured)
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ECFA detector R&D roadmap

• DRD1 : gas detectors

• DRD2 : liquid detectors

• DRD3 : semiconductors

• DRD4 : photon detectors

• DRD5 : quantum

• DRD6 : calorimetry

• DRD7 : electronics
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DRD6 (calorimetry) readout schemes

Name Track Active media readout
LAr 2 LAr cold/warm elx "HGCROC/CALICE like ASICs"

ScintCal 3 several SiPM

Cryogenic DBD 3 several TES/KID/NTL

HGCC 3 Crystal SiPM
MaxInfo 3 Crystals SIPM

Crilin 3 PbF2 UV-SiPM

DSC 3 PBbGlass+PbW04 SiPM
ADRIANO3 3 Heavy Glass, Plastic Scint, RPC SIPM

FiberDR 3 Scint+Cher Fibres PMT/SiPM, timing via CAEN FERS,  AARDVARC-v3, DRS

SpaCal 3 scint fibres PMT/SiPM SPIDER ASIC  for timing

Radical 3 Lyso:CE, WLS SiPM

Grainita 3 BGO, ZnWO4 SiPM
TileHCal 3 organic  scnt. tiles SiPM

GlassScintTile 1 SciGlass SiPM

Scint-Strip 1 Scint. Strips SiPM

T-SDHCAL 1 GRPC pad  boards

MPGD-Calo 1 muRWELL, MMegas pad boards (FATIC ASIC/ MOSAIC)

Si-W ECAL 1 Silicon  sensors direct with dedicated  ASICS  (SKIROCN)

Si/GaAS-W ECAL 1 Silicon/ GaAS direct with dedicated  ASICS  (FLAME, FLAXE)

DECAL 1 CMOS/MAPS Sensor= ASIC

AHCAL 1 Scint. Tiles SiPM
MODE 4 - -

Common RO ASIC 4 - common R/O ASIC  Si/SiPM/Lar
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Trends for calorimeter readout

• On-detector embedded electronics, low-power multi-channel ASICs

– CALICE SKI/SPI/HARDROC, FLAME, CMS HGCROC, FCC LAr, FATIC…

– Challenges : #channels, low power, digital noise, data reduction

• Off-detector electronics : fiber/crystal readout

– Wavefrom samplers : DRS, Nalu AARD, LHCb spider…

– Challenges : low power, data reduction

• Digital calorimetry : MAPs, RPCs…

– DECAL, ALICE FOCAL, CALICE SDHCAL

– MAPS for em CAL : eg ALPIDE ASIC for FOCAL, DECAL…

– Challenges : #channels, low power, data reduction
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Digital calorimetry

• Hadronic : e.g. CALICE RPCs or µmegas

– ~1 cm² pixels, low occupancy, ~1 mW/cm² (unpulsed)

– Performance improvement with semi-digital architecture

– Timing capability can be added

• Electromagnetic : e.g. DECAL, ALICE FOCAL…

– Based on ALPIDE : (30µm)² pixels, high occupancy, ~ 100 

mW/cm², slow 

– To be compared with embedded electronics ~10 mW/cm²

– Most power in digital processing => would benefit a lot from 

28 nm node

– Semi-digital and/or larger pixels couldl be an interesting study

• Upcoming R&D

– Power reduction, dead area minimization

– Coping with high occupancy, managing data bandwidth
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Waveform sampling

• Switched capacitor arrays (DRS4, Nalu, SPIDER…)

– Pulse shape analysis

– High accurcay timing, digital CFD

– Sizeable power to provide GHz BW on large capacitance

– large data volume

• Often used in off-detector electronics

– Space and cooling available

– Small/medium size detector readout and/or characterization

– See LHCb calorimeter upgrade

• Upcoming R&D

– Power reduction, Front-end integration

– Data bandwitdth

– Time walk correction, potentially best for ps accuracy
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Timing resolution
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U Du fs f3db Dt

100 mV 1 mV 2 GSPS 300 MHz ∼10 ps

1 V 1 mV 2 GSPS 300 MHz 1 ps

1V 1 mV 10 GSPS 3 GHz 0.1 ps

today:

optimized SNR:

next generation:

• Depends on sampling frequency fs
– Currently 2-20 Gs/s

• But also on analog bandwidth

– Currently 0.3-3 GHz

– Sensitive to stray inductance

– Needs power to drive capacitive load of SCA



Design Options

• CMOS process (typically 0.35 … 0.13 mm)  sampling speed

• Number of channels, sampling depth, differential input

• PLL for frequency stabilization

• Input buffer or passive input

• Analog output or (Wilkinson) ADC

• Internal trigger

• Exact design of sampling cell
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Waveform digitizers overview

• Different

– Speed (BW)

– Depth

• 4 main groups :

– PSI [S. Ritt et al.] : DRS4

– NALU [G. Varner et al] : 

ASoC, HDSoC…

– IJCLAB [D. Breton et al.] : 

SAMPIC

– Chicago [ ] : PSEC4
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Comments

• Trends for SCAs

– Reduce dead time

– increase analog bandwidth

– Increase depth, give more latency

– Include high speed low noise preamps (NALU…)

• Comments

– Unbeatable for pulse shape analysis or discrimination or if you don’t know what you want

to measure

– Ultra low timing measurements (ps)

– More power hungry than dedicated front-end (many CdV/dt…)

– rarely affodable for large systems (data volume and power), still several kchannels done

(eg MEG2)
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Example : MEG2 LXe calorimeter readout

• 4k channels of SiPM readout with DRS4 waveform sampler  [S. Ritt et al.]
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Embedded ASICs

• Pioneered with CALICE R&D (SKIROC, SPIROC..)

• Multi-channel charge/time readout

– Fast preamp

• Full dynamic range.  Possible extension with ToT

– Fast path for time measurement (ToA)

• High speed discriminator and TDC

• Time walk correction with ADC (or ToT)

– Slow path for charge measurement

• ~10 bit ADC ~40 MHz

– Low power for on-detector implementation (~10 mW/ch)  

e.g. CMS HGCAL

• Upcoming R&D

– Power reduction, 

– Auto-trigger, Data-driven readout
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CALICE technological prototypes

• R&D on imaging calorimetry (2004-2024)

– Particle Flow Algorithms [Brient, Videau et al.]

– Electronics crucial (low noise, low power, fully

integrated)

– Several innovative features (power pulsing, SiPM…)

– Validation of technological prototypes

– Common R/O features

– Applied to CMS HGCAL
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HGCROC (CMS HGCAL)
Overall chip divided in two symmetrical parts
• Each half is made of:

– 39 channels: 36 channels, 2 common-mode, 1 calibration
– Bandgap, voltage reference close to the edge
– Bias, ADC reference, Master TDC in the middle
– Main digital block and 3 differential outputs (2x Trigger, 1x Data)

Measurements
• Charge

– ADC (AGH): peak measurement, 10 bits @ 40 MHz, dynamic range 
defined by preamplifier gain

– TDC (IRFU): TOT (Time over Threshold), 12 bits (LSB = 50ps)
– ADC: 0.16 fC binning. TOT: 2.5 fC binning

• Time
– TDC (IRFU): TOA (Time of Arrival), 10 bits (LSB = 25ps)

Two data flows
• DAQ path

– 512 depth DRAM (CERN), circular buffer
– Store the ADC, TOT and TOA data
– 2 DAQ 1.28 Gbps links (CLPS)

• Trigger path
– Sum of 4 (9) channels, linearization, compression over 7 bits
– 4 Trigger 1.28 Gbps links (CLPS)

Control
• Fast commands

– 320 MHz clock and 320 MHz commands
– A 40 MHz extracted, 5 implemented fast commands 

• I2C protocol for slow control

Ancillary blocks
• Bandgap (CERN)
• 10-bits DAC for reference setting
• 11-bits Calibration DAC for characterization and calibration
• PLL (IRFU)
• Adjustable phase for mixed domain
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QMIP/Cd ~ 3 fC/30 pF = 100 µV



Handling the dynamic range : ADC and TOT
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• ADC range 0 - 200 fC

• TOT range 200 fC - 10 pC

• Non-linear inter-region

• But 200 ns dead time



Performance : charge measurement
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200 fC



HGCROC3: Noise and pedestal measurements
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• Measured noise with 47 pF input cap = 0.3 fC (~ 2000 e-) (0.7 nV / √Hz)

• Very low correlated noise contribution: max 15%
– Comparable with HGCROC2 even if the digital activity was doubled

• ADC pedestal adjustment done manually with local 6b DAC 
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~0.3 fC

Per channel pedestal adjustment

Noise in ADCu

±4 ADCu



Zoom on timing

• ~2.5 ns time walk, 13 ps jitter for Q>100fC at Cd = 47 pF

• Fits also well MCPs for PID @EIC  (HRPPD)
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Use on HRPPD RICH @EIC



HGCAL modules

• Good performance in test beam
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CMS work 

in progress



H2GCROC: SiPM version current conveyor
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Vdac

in

ibo

Vdd = 2.5V

PA SH ADC

dacb
6b

Ibi
6b

i_leak

Rf

Cf

Cd

gain_conv

200mV

CM PA

• Current conveyor (Heidelberg design) to adapt to Si version

• Dynamic range : 50 fC – 300 pC

• 2 typical gains

o Low gain (Physics mode): 44 fC/ADC gain, 50 fC noise (1.25 ADCu)

o High gain (Calibration mode):  10 fC/ADC gain, 20 fC noise (2 ADCu)

o Measurements in backup slides

Qpe/Cd ~ 100 fC/500 pF = 200 µV



Evolution of embedded calorimeter readout chips

• Further reduction in power dissipation 

• Auto-trigger and data-driven readout

• More SiPM readout

• Addressed in DRD6 proposal
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DRD6 Common readout ASICs proposal [AGH, Omega, Saclay]

• Develop readout ASIC family for DRD6 prototype characterization

– Inspired from CALICE SKIROC/SPIROC/HARDROC/MICROROC family

– Targeting future experiments as mentionned in ICFA document (EIC, FCC, ILC, CEPC…)

– Addressing embedded electronics and detector/electronics coexistence + joint optimization

– Detector specific front-end but common backend

 allows common DAQ and facilitates combined testbeam

• Start from HGCROC / HKROC : Si and SiPM

– Reduce power from 15 mW/ch to few mW/ch. Lower occupancy, slower speed

– Allows better granularity or LAr operation

– Remove HL-LHC-specific digital part and provide flexible auto-triggered data payload

– Extend to MCPs (PID) or HRPPD.  First tests with EIC  calo/PID

• Several other ASICs R/Os also developed in DRD6 and it is good !

– FLAME/FLAXE, FATIC…

– Waveform samplers : commercial or specific (e.g. SPIDER)

– DECAL
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HKROC main features
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 HKROC is 36 channels: 12 PMTs with High, Medium and Low gain
 Or 36 PMTs with one gain

 ASIC in TSMC 130 nm node

 Low power: 10 mW per channel 

 Large charge measurement with 3 gains (up to 2500 pC)

 Integrated timing measurements (25 ps binning)

 Readout with high speed links (1,28 Gb/s)

 HKROC is a waveform digitizer with auto-trigger

Readout
manager

fast
controls

Control signals
+

clocks

Slow control path

Clock and control path

Digital processing

clocks

Event
buffer 1

Reference voltages
Tunings

PLL

DAC
Thresholds

Readout
manager

Readout
manager

Readout
manager

PA

ADCSH

TDC(TOA)

9 chn

Latency
handler

PA

ADCSH

TDC(TOA)

9 chn

Latency
handler

PA

ADCSH

TDC(TOA)

9 chn

Latency
handler

PA

ADCSH

TDC(TOA)

9 chn

Latency
handler

1.28Gb/s

Configuration port
I2C

Event
buffer 2

Event
buffer 3

Event
buffer 4



HKROC: (slow) waveform digitizer with TDC and auto-trigger
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Supernovae modeNormal mode High speed mode

~1M /chnRate  400 k /chn 40 M

 HKROC is waveform digitizer working @ 40 MHz
 Number of charge sampling points from 1 to 7

 Fast channel for precise timing (25 ps binning) 

 Charge reconstruction algorithm in FPGA

 5% resources of a modern XILINX FPGA
Trigger 
(Time)

 When using 3 gains / PMT (high, medium, low)
 Hit rate capability up to 400 kHz / PMT

 Increased up to 1 MHz by focusing on high gain

 Dynamic selectable by the user

 Average values only limited by readout speed



HKROC performance
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Threshold (pe)

0.2 p.e.

1 p.e.

150 ps

10 p.e.

25 ps



Further steps : CALOROC

• SiPM readout calorimetry : CMS H2GCROC with EIC 

readout (200 MHz clock and fast commands)

– SiPM from 500 pF to 2.5 nF (or 10 nF)

– ~5-10 mW/channel

• 2 versions : conservative and exploratory

– Conservative : uses H2GCROC (ADC, TOT) as it is and 

replaces the backend

– Exploratory : new analog part (dynamic gain switching).

– Pin to pin compatible

– Backend « à la HKROC » : auto-triggered, zero-suppressed

– 40 MHz internal clocking (ADC, TDCs)

• Could fit FCC SiPM calorimeters

• A Si version would fit FCC Si calorimeter
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II. FastIC architecture

• FASTIC current mode ASIC.

– 8 Inputs: 8 Single Ended (POS/NEG), 4 differential and 

summation (POS/NEG) in 2 clusters of 4 channels.

– 3 Output modes: (1) SLVS; (2) CMOS; and (3) Analog.

– Active analog summation of up to 4 SE channels to improve 

time resolution

– Fast current mode 
input stage

– Current mode 
comparator for 
timing

36

SiPMs

PMTs

MCPs

X ni X nt

- Input voltage control

- Multiple current copies 

for different purposes

- 4 SE channels w input 

positive or negative

- 2 Differential channels

(2 SE POS and 2 SE NEG)

Current mode input 

stage for SiPM 

anode readout

Low level (over Dark Count)

Signal Multiplexor

 (1) Time

 (2) Energy 

 (3) Time + Energy

TIA+Shaping+ 

Peak Detection (or 

Track and Hold)

Energy linear

 ToT response

+

-
    COMP

4

1

1

m

m

m

CLUSTER OF 4 CHANNELS

1

SENSORS

Time non-linear

 Fast ToT response

+

-
    COMP

4

2

Fast analog 

Summation

 

4 SE pos/neg

2 DIFF

Trigger Generation Block

Slow analog 

Summation

 
4 SE pos/neg Linear Ramp 

(or Thld)

Thld

4 SE pos/neg

2 DIFF
2

CMOS Drv

SLVS Drv

Analog Drv

m

m

m
OR

SLVS

Drv

2

DRIVERS

4
Cluster level (Summation)1

Trigger

Energy

Time

1
1

ANALOG TO BINARY CONVERSION

READOUT

2m

m: 1 (SUM) ,2 (DIFF) or 4 (SE)

x 2

4 SE pos/neg

65 nm CMOS 

2x2 mm2

12 mW/ch

Collaboration of the ICCUB (Univ. Barcelona) and CERN-MIC 

Based on HRFlexToT ASIC [1]

Input stage “amplifier” < 3 mW/ch

D. Gascon et al. (ICCUB) https://indico.cern.ch/event/1214183/contributions/5385308/attachments/2655564/4598975/20230530_FastIC_FAST23.pdf
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• Linearity error is below 3%

– Saturation is reached at 25 mA of input current.

– Other operating modes (negative, differential and 

summation) behaves similarly with a low linearity error.

II. FastIC: Linearity of the Energy measurement
37

[1]: Sanchez, D., Gomez, S., et. al. HRFlexToT: A High Dynamic Range ASIC for Time-of-Flight Positron
Emission Tomography, 2021, IEEE TRPMS, https://doi.org/10.1109/TRPMS.2021.3066426
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• FastIC provides a measurement of the time and 

energy per channel in two consecutive pulses

– Based on HRFlexToT ASIC [1]

– Linear energy by pulse width encoding

 “Wilkinson ADC-like” conversion

 Controlled by on-chip state machine

• This makes FastIC suitable to different detectors: 
LYSO/LSO, BGO, Cherenkov, Monolithic, etc

• Different trigger modes, including cluster trigger for 
monolithic
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VI. FastICPix
38

• FastICpix: try to exploit optimal segmentation
– Optimization for a given power budget !

– Investigation of new circuit topologies

– 3D integration

NT SPADs

NT Resistors

1 x FE Amp

Analog SiPM

NT SPADs

NT Q/R

Digital SiPM

Q/R Q/R Q/R Q/R

TDC TDC TDC TDCNT TDCs

Q/R: Quenching and recharge circuit

NT : total number of cells

Pros
- Simplicity

- High Fill Factor (PDE)

Pros
- Individual photon 

timing available

Cons
- Large capacitance 

degrades timing
- Xtalk deagrades timing

Cons
- Complexity (cost and power)

- Fill factor degradation
- Xtalk degrades timing

NT SPADs

NT Resistors

1 x FE Amp

Analog SiPM

NT SPADs

NT Q/R

Digital SiPM

Q/R Q/R Q/R Q/R

TDC TDC TDC TDCNT TDCs

Q/R: Quenching and recharge circuit

NT : total number of cells

Pros
- Simplicity

- High Fill Factor (PDE)

Pros
- Individual photon 

timing available

Cons
- Large capacitance 

degrades timing
- Xtalk deagrades timing

Cons
- Complexity (cost and power)

- Fill factor degradation
- Xtalk degrades timing

No segmentation
Maximum

segmentation

Optimal solution between these

2 extreme configurations? 

Optimal and adaptable 
segmentation:

with hybrid detector

Electronic noise jitter < 1 ps for next generation of 

detectors based on prompt light

Time tagging of first(s) photons
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Technology choice for mixed signal ASICs
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• TSMC 130nm : mixed signal, cheap

– Very mature technology with good analog performance

– 2.5 k€/mm² MPW, 300-350 k€/engineering run (20 wafers C4)

– Perenity ?

• TSMC 65 nm : mixed signal, main stream

– ~2-3 times lower power in digital, similar in the analog

(compared to 130n)

– 5 k€/mm², 700-800 k€/ engineering run

• TSMC 28 nm : digital oriented

– High density integration (pixels)

– High performance, lower power digital, similar in the analog

– 10 k€/mm², 1-1.5 M€/ eng run

2022



conclusion

• Importance of joint optimization detector/readout electronics

• Trend to reduce power and data volume

– Pileup will be less of an issue, better granularity will be appreciated !

– Low occupancy, auto-trigger, data-driven readout

– Low power ADCs and TDCs (DRD7 with AGH&CEA)

• Picosecond Timing important R&D area

– PID and/or calorimetry, several new detectors appearing : need R/O

• Next chips at OMEGA will target EIC, DRD1-4-6-7

– Calorimetry and timing : CALOROC1 and 1A

– Further R&D needed to bring power down to ~1 mW/ch (Lar)

• Technology choice to be addressed in coordination with other design groups

– Cost sharing for engineering runs
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backup

C. de La Taille       Corfu 2024 41



Chips for EIC : electron-ion collider at BNL

• PID and calorimeters

– EICROC for AC-LGAD roman pots

– H(2)GCROC for calorimeters

– « Event driven » DAQ
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SiPM : ADC and TOT readout

• 16bit dynamic range split in 10 bit ADC and 12 bit ToT

• Tests with 2 sizes of SiPM : 2mm² (120 pF) and 9 mm² (560 pF)
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