Beyond standard model searches: current status and prospects from the experiment side

Matteo Franchini on behalf of the ATLAS and CMS collaborations

Istituto Nazionale di Fisica Nucleare

Introduction

- * The standard model (SM) is a highly predictive and well-tested theoretical framework that describes the electroweak and strong interactions
- * However, fundamental questions are left unanswered in the SM

- * Extensions of the SM are commonly referred to as new physics
- * As new physics has not been discovered (yet), searching for it becomes more and more challenging...
- * ... which boosts the creation of innovating ideas!

LHC experiments has established a rich program for searches for new physics

(not exhaustive) Overview of latest results!

- ***** BSM H/A -> tt [<u>ATLAS-CONF-2024-001</u>]
- * A-> ZH-> lltt [<u>CMS-PAS-B2G-23-006</u>]
- * A-> ZH-> 4l+jj/MET [<u>https://arxiv.org/abs/2401.04742</u>]
- ***** H/A -> 4top [<u>ATLAS-CONF-2024-002</u>]
- * HNL via WW scattering in ee, eµ final states [EXOT-22-019]
- * HNL in final states with e, μ , hadronic τ [EXOT-22-011]
- * Search for heavy long-lived charged particles [CMS-PAS-EXO-18-002]
- * light LLP with displaced vertices [2403.15332 [hep-ex]]

- ***** LQ pair —> b mu b mu [<u>CERN-EP-2023-301</u>]
- * 3rd gen. LQ pair production [CERN-EP-2023-288]
- * Combination of heavy spin-1 resonances [EXOT-2022-38]
- * High-mass reso $\rightarrow \tau + MET [EXOT-2018-37]$
- * Search for a resonance decaying to W_{γ} [PAS-EXO-21-017]
- * Search for resonances decaying to HH [<u>CERN-</u> EP-2024-062]
- * Mono-top [EXOT-2022-40]
- * Search for mass-degenerate Higgsinos [2401.14046 [hepex
- * Model-agnostic search with dijet resonances [CMS-PAS-EXO-22-026]

BSM H/A -> EE

- * Extensions to the SM Higgs sector can introduce additional fields that produce additional Higgs bosons.
 - Ivo Higgs Doublet Model (2HDM, e.g. MSSM)
- * Large interference effects with SM background.

- * Use resolved and merged b-jet categories as well as 1 and 2 lepton final states.
- * The resolved events with 1-lepton are categorised in $cos(\theta^*)$ and # b-jet bins.
- * The 2-lepton events are categorised in $\Delta \phi_{ll}$ bins.
- * Reconstructed H/A mass is used as the final discriminator.

EXOT-2020-25

BSM H/A -> EE

- expectation.
- between 400 GeV and 1.1 TeV.

EXOT-2020-25

Any ZHANY LLL

- * No statistically significant deviation from the SM expectation was observed.

ATLAS - A-> ZH-> 4L+ii/MET

- * Motivated by the 2HDM and 2HDM+S.
- * Targets final states with 4 leptons (either from the Z or H) and one of two jets or some missing energy.
- * Search fits the 4-lepton mass spectrum with various categories to target the other final state object/MET.
- * No significant deviation is observed.

https://arxiv.org/abs/2401.04742

LEHIA -> 460p

- * Data-driven corrections applied to improve tt+jets modelling in high jet and b-jet multiplicities regime
- * Parametrised Graph Neural Network is trained to optimise the signal-to-background discrimination

INFN Matteo Franchini

- * Limits evaluated with respect to $\tan\beta$ VS m(A/H)
- * Results also used to constrain a model predicting pair production of a colour-octet scalar excluding m(T) < 1.5 TeV
- EXOT-2019-26

ATLAS-CONF-2024-002

* combination with a SSML search published before has been performed : <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/</u>

- * Neutrino oscillations implies non-zero ν masses
- * Neutrinoless double β decay: probe Majorana mass terms
- * BSM theories: Type-I Seesaw, LRSM, GUT, dim-5 Weinberg operator

- * FIRST Search for Majorana Ns in $0\nu\beta\beta$ -like W scattering process: $l \pm l$ $\pm jj$ in ee and (LFV!) **e** μ channels, complement existing & similar $\mu\mu$ channel [arXiv:2305.14931].
- Cut-based event selection, binned fit in 2nd highest lepton pT. *
- * Dominant VBF $W \pm W \pm / WZ$ bkgs Control Regions.

• $p_{T}^{\ell_2}$ discriminating variable

* Data-driven fake lepton and electron charge mis-ID (Charge Flip) bkgs.

- the $e\mu$ channel.
- couplings simultaneously!

- * Region defined on lepton p_T , 0-b-tag jets and using BDT discriminant
- * Limits on mixing matrix elements $|V_{eN}|^2$, $|V_{\mu N}|^2$ and $|V_{\tau N}|^2$ (first time) for $m_N > m_W$
- * Complementary to other searches, improved range of $(m_N, |V_{eN}|^2)$ exclusion limits

HNL in final states with e, m, hadronic t EXOT-22-011

- * Heavy N: Majorana (LNV, LNC) or Dirac (LNC) type
- * Mixing matrix: exclusively to a single generation SM ν
- * Channels considering all combination of e, μ and τ_h

CMS summary of neutrino exclusion limits

2017-2018 data (101 fb⁻¹) with muon trigger.

***** Two approaches:

- \subseteq using independence of dE/dx in Pixel and Strip tracker for background recognition,
- using the mass spectrum.
- * Data-driven estimate in both cases

Search for heavy long-lived charged particles

* Signature: An isolated track of high- p_T (p_T >55 GeV, $|\eta| < 1$) with large dE/dx deposits in the tracker, selected in

CMS-PAS-EXO-18-002

* No excess —> Interpretation of many stable signals, considering |Q|=1e

* The ionization method provides better limits at low signal masses while the mass method is more efficient at large masses

Search for heavy long-lived charged particles **CMS-PAS-EXO-18-002**

* No excess —> interpretation of many stable signals, considering |Q| = 1e or 2e

* Limits on the Z' model [Giudice, McCullough and Teresi, <u>JHEP 08 (2022) 012</u>] with $Z' \rightarrow \tau'^{(2e)} \tau'^{(2e)}$: CMS data do not confirm any claim of signal excess

Search for heavy long-lived charged particles **CMS-PAS-EXO-18-002**

light LLP with displaced vertices

(INFN Matteo Franchini

<u>2403.15332</u> [hep-ex]

Corfu2024 - Future Accelerators

light LLP with displaced vertices

<u>2403.15332</u> [hep-ex]

LQ pair -> bµbµ

- * Full Run -2 search for Scalar/Vector LQ pair
- * Main bkgs: drell-yan and tt estimated from MC normalised in dedicated regions "Control Region".
- * SRs defined for each m(LQ) hypothesis via cut on a dedicated BDT score.
- * No significant excess seen, most stringent limits to date!

m(LQ) upper	Scalar LQ	Vector LQ		
bounds [TeV] @95%CL	$\beta = 1$	$\beta = 0.5$	Minimal Coupling	
ATLAS [arXiv.org:2210.04517]	1.5	1.3	1.5	
CMS (this)	1.81	1.54	2.12	

ard gen. L& pair production

- Statistical combination of 9 ATLAS searches (6 LQ searches and 3 SUSY searches)
- Interpretations;
 - Scalar/Vector LQs decaying to 3rd gen LQ or 1st/2nd gen mix LQ
 - Limits on m(LQ) and (B) branching fraction to $l \pm .$
- Most stringent results to date for majority of the
 models

				In	terpretati	on				
Searc	ch		S	calar		Veo	ctor	Si	gnal Regi	on
Final State	Citation	LQ_3^u	LQ_3^d	LQ ^u _{mix}	LQ ^d _{mix}	$U_1^{ m YM/MC}$	$ ilde{U}_1^{ m YM/MC}$	N_ℓ	$N_{ au_{ ext{had}}}$	N_l
tvbτ		\checkmark	\checkmark	_	_	\checkmark	_	0	1	≥
b au b au		\checkmark	_	_	_	\checkmark	_	$\{0, 1\}$	$\{1, 2\}$	{1
$t \tau t \tau$		_	\checkmark	_	_	_	\checkmark	$\{1, 2, 3\}$	≥ 1	2
tvbl		_	_	\checkmark	\checkmark	_	_	1	_	2
$b\ell b\ell$		_	_	\checkmark	_	_	_	2	_	{0,
tℓtℓ (2ℓ))		_	_	_	\checkmark	_	_	2	_	
$t\ell t\ell \ (\geq 3\ell)$		_	_	_	\checkmark	_	_	$\{3, 4\}$	_	≥
tvtv		\checkmark	_	\checkmark	_	\checkmark	_	0	0	2
bvbv		_	\checkmark	_	\checkmark	_	-	0	_	≥

Combination of heavy spin-1 resonances

- * Combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons selecting quark pairs $(qq, bb, tt^{-}, and tb)$ or third-generation leptons ($\tau\nu$ and $\tau\tau$)
- * Analyses complementarity increases sensitivity to new physics and makes resulting constraints stronger
- ***** Data exclude:
 - ☆ a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario,
 - ☆ below 4.4 TeV in a strongly coupled scenario,
 - \approx up to 1.5 TeV in the case of production via vector-boson fusion.

INFN Matteo Franchini

EXOT-2022-38

High-mass reso -> T-MET

* τ_h reconstructed in hadronic decay modes, the total $p_T(\nu)$ inferred from reconstructed missing transverse momentum

*** No excess of events** above the Standard Model

- \Rightarrow Heavy W' vector bosons with masses up to 5.0 TeV are excluded
- ☆ Considering non-universal couplings, W' bosons are excluded for masses less than 3.5 -5.0 TeV

EXOT-2018-37

Corfu2024 - Future Accelerators

Search for a resonance decaying to Wy

- * W boson decays leptonically (e or μ)
- * Bump hunt in the transverse mass mT spectrum

 $(m_{\rm T})^2 = (E_{\rm T}(\gamma) + E_{\rm T}(\ell) + p_{\rm T}^{\rm miss})^2 - |\vec{p}_{\rm T}(\gamma) + \vec{p}_{\rm T}(\ell) + \vec{p}_{\rm T}^{\rm miss}|^2$

* Parametric fit to the data using signal shape templates

- observed
- j.physletb.2022.136888

Search for resonances decaying to HH

- * Resonances decaying to 2-Higgs bosons predicted in many new physics models (extended Higgs) sector, extra dimensions, etc)
- * Several searches have been performed with different final states (all summarised in the review paper!)

- * $X \rightarrow HH$ searches are statistically combined
 - \approx I For both cases where X is a spin 0 or spin 2 particle
 - ☆ I Best limits for masses below 320 GeV and above 800 GeV

CERN-EP-2024-062

INFN Matteo Franchini

Mono-Lop

- * New particles in final states with a boosted top+MET
- * Results are interpreted in the context of simplified models for **Dark Matter particle** production and the single production of a vector-like T quark

Mono-Lop

- * Production of **single vector-like T quark** excluded for masses below 1.8 TeV
- * Exclusion limits on the T quark mass in the singlet SU(2) scenario

* Dark Matter particles + single top quark excluded for masses of a scalar (vector) mediator up to 4.3 (2.3) TeV

Search for mass-degenerate Higgsinos

- * For Δm of few GeV \rightarrow prompt soft lepton searches via $m_{\tilde{\chi}^{\pm}} \rightarrow Z^*(\ell \ell) m_{\tilde{\chi}^0}$ are sensitive
- or Λ decay)
- * No excess over bkg prediction \rightarrow limits exceeding LEP results for first time

* RPC SUSY: higgsino-like DM can be almost mass degenerate with charged NLSP ($\Delta(m_{\tilde{\chi}^{\pm}_{1}}, m_{\tilde{\chi}^{0}_{1}}) \sim 250-400 \text{ MeV}$) \rightarrow disappearing track signature

* "Mildly" displaced soft track (hit in first layer, 2 GeV < p_T < 5 GeV) targets mass gap from 0.3 to 1 GeV (veto if track compatible with K_s)

Model-agnostic search with dijet resonances

- * Search for new physics in di-jet final states in a model-agnostic manner
- ***** Based on anomaly detection
 - ☆ Identify jets with non-QCD-like substructure
 - ☆ Maximisation of the sensitivity to unknown new physics signatures
- * First results derived with anomaly detection at CMS!

- * Five machine learning methods designed to identify anomalous jets
 - ☆ Unsupervised algorithm
 - ☆ Weakly-supervised algorithms
 - ☆ Semi-supervised algorithm
- * Signal injection studies show the promising discovery power of the methods

Model-agnostic search with dijet resonances

- * Events selected based on the anomaly score
- * Bump hunt in the di-jet mass spectrum

- * Sensitivity evaluated on benchmark models \Rightarrow For most of the models, these are the first limits
 - ever presented
- * Sensitivity improved up to a factor 4 compared to "inclusive" case (no cut on anomaly score)
- * Sensitivity not as good as a dedicated search, but the range of models constrained is broader

INFN Matteo Franchini

CMS-PAS-EXO-22-026 138 fb⁻¹ (13 TeV) **CMS** *Preliminary* (qj) 10⁶ Limits on A \rightarrow BC, m(A) = 3 TeV Upper Limit on σ VAE-QR Expected ±1σ Observed CWoLa Hunting 10⁵ Inclusive TNT CATHODE 2-prong (τ_2, m_{SD}) CATHODE-b 3-prong (τ_{32}, η_{SD}) 10⁴ sensitivit **QUAK** - General Dedicated W_{KK} earch, PRD 106 (2022) 10³ 2₄ prong model С 95% 10² mproved 10¹ ent wrt Inclusive Improver T T T **2** 📩 Ẃ→B't→bZt $W_{kk} \rightarrow WR \rightarrow 3W$ $Y \rightarrow HH \rightarrow 4t$ X→YY →4q (3+3) (6+6)(2+4)(2+2)

Summary

- * Extensive and diverse research program from both ATLAS and CMS
- * New taggers, triggers and techniques to improve sensitivity and constrain previously non-accessible parameter space
- * So far, no conclusive hints for physics Beyond the SM at the current energy

Much more results still to come from Run2 and Run3 and waiting for High-Luminosity LHC

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-008/

Overview of CMS HNL results

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

N.

https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/

March 2024	
	36 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 138 fb ⁻¹
	137 fb ⁻¹ 137 fb ⁻¹
	36 fb ⁻¹ 36 fb ⁻¹
	$\begin{array}{c} 137 \ \mathrm{fb}^{-1} \\ 138 \ \mathrm{fb}^{-1} \end{array}$
2206.08956 (2µ + 2 j)	137 fb ⁻¹

A Sta	FLAS Heavy P atus: March 2023	article	Searc	ches	s* - 9	5% CL Upper Ex	clusion Limits	$\int f dt = 0$	ATL	AS Preliminary
	Model	<i>ℓ</i> ,γ	Jets†	E_{T}^{miss}	∫£ dt[ft	b ⁻¹] Li	mit	$\int \mathcal{L} dt = (c$.0 – 139) 10	Reference
Extra dimen.	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD OBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ \end{array}$ multi-chann 1 e, μ 1 e, μ	1 – 4 j – 2 j ≥3 j – el ≥1 b, ≥1J/2 ≥2 b, ≥3 j	Yes - - - 2j Yes Yes	139 36.7 139 3.6 139 36.1 36.1 36.1	М _D Ms Mth Mth Gкк mass Gкк mass gкк mass KK mass	2.3 TeV 1.8 TeV	11.2 Te 8.6 TeV 9.4 TeV 9.55 TeV 4.5 TeV 3.8 TeV	$ \begin{array}{l} n = 2 \\ n = 3 \ \text{HLZ NLO} \\ n = 6 \\ n = 6, M_D = 3 \ \text{TeV, rot BH} \\ k/\overline{M}_{Pl} = 0.1 \\ k/\overline{M}_{Pl} = 1.0 \\ \Gamma/m = 15\% \\ \text{Tier (1,1), } \mathcal{B}(\mathcal{A}^{(1,1)} \rightarrow tt) = 1 \end{array} $	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to tt \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } W' \to WZ \text{ model B} \\ \text{HVT } W' \to WZ \text{ model B} \\ \text{HVT } W' \to WW \text{ model B} \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ 0 \ 2 \ e, \mu \\ 0 \ del \ C \\ 3 \ e, \mu \\ 1 \ e, \mu \\ 2 \ \mu \end{array}$	- 2 b ≥1 b, ≥2 c - 2 j / 1 J 2 j (VBF) 2 j / 1 J 1 J	– J Yes Yes Yes J – Yes Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass 340 GeV Z' mass W _R mass	2.42 TeV 2.1 TeV	5.1 TeV 6.0 TeV 5.0 TeV 4.4 TeV 4.3 TeV 3.9 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_F = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 2207.03925 2004.14636 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ	1.8 TeV 2.0 TeV 2.57 Te	v	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^- \\ & \textbf{35.8 TeV} \\ \textbf{g}_* = 1 \\ \textbf{g}_* = 1 \\ C_{4t} = 4\pi \end{array} \qquad $	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DI Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+a	— M) 0 e, μ, τ, γ DM) 0 e, μ a multi-chann	2 j 1 - 4 j 2 b el	– Yes Yes	139 139 139 139	m _{med} m _{med} 376 GeV m _{Z'} m _a	3.0 800 GeV	3.8 TeV	$\begin{array}{l} g_q = 0.25, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm TeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_Z = 0.8, \ m(\chi) = 100 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	ATL-PHYS-PUB-2022-036 2102.10874 2108.13391 ATLAS-CONF-2021-036
Ρ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ mix gen Vector LQ 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \\ 0 \ e, \mu, \geq 1 \\ \text{multi-chann} \\ 2 \ e, \mu, \tau \end{array}$	$ \begin{array}{c} \geq 2 j \\ \geq 2 j \\ 2 b \\ \geq 2 j, \geq 2 b \\ \tau \geq 1 j, \geq 1 b \\ \tau 0 - 2 j, 2 b \\ el \geq 1 j, \geq 1 b \\ \geq 1 b \end{array} $	Yes Yes Yes Yes Yes Yes Yes Yes	139 139 139 139 139 139 139 139	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass LQ ⁵ mass LQ ⁵ mass	1.8 TeV 1.7 TeV 1.49 TeV 1.24 TeV 1.43 TeV 1.26 TeV 2.0 TeV 1.96 TeV		$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(\mathrm{LQ}_3^{\mathrm{c}}\rightarrow b\mathbf{r})=1\\ \mathcal{B}(\mathrm{LQ}_2^{\mathrm{c}}\rightarrow t\mathbf{r})=1\\ \mathcal{B}(\mathrm{LQ}_3^{\mathrm{c}}\rightarrow t\mathbf{r})=1\\ \mathcal{B}(\mathrm{LQ}_3^{\mathrm{c}}\rightarrow t\mathbf{r})=1\\ \mathcal{B}(\mathrm{LQ}_3^{\mathrm{c}}\rightarrow b\mathbf{r})=1\\ \mathcal{B}(\mathrm{L}_3^{\mathrm{c}}\rightarrow b\mathbf{r})=1, \ \mathrm{Y}\mathrm{M} \ \mathrm{coupl}. \end{array}$	2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-052 2303.01294
Vector-like fermions	$ \begin{array}{l} VLQ\;TT \rightarrow Zt + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{5/3}\;T_{5/3} \neg Wt + \\ VLQ\;T \rightarrow Ht/Zt \\ VLQ\;T \rightarrow Ht/Zt \\ VLQ\;Y \rightarrow Wb \\ VLQ\;B \rightarrow Hb \\ VLL\;\tau' \rightarrow Z\tau/H\tau \end{array} $	$\begin{array}{c} 2e/2\mu/{\geq}3e,\\ \text{multi-chann}\\ X 2(\text{SS})/{\geq}3 \ e,\\ 1 \ e,\mu\\ 1 \ e,\mu\\ 0 \ e,\mu\\ \end{array}$ multi-chann	$\begin{array}{l} \mu \ge 1 \ b, \ge 1 \ j \\ el \\ \mu \ge 1 \ b, \ge 1 \ j \\ \ge 1 \ b, \ge 3 \ j \\ \ge 1 \ b, \ge 1 \ j \\ \ge 2b, \ge 1j, \ge \\ el \ \ge 1 \ j \end{array}$	- Yes Yes 1J - Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass τ' mass	1.46 TeV 1.34 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV 898 GeV		$\begin{array}{l} & \mathrm{SU}(2) \text{ doublet} \\ & \mathrm{SU}(2) \text{ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} \ Wt) = 1 \\ & \mathrm{SU}(2) \text{ singlet}, \ \kappa_T = 0.5 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \mathrm{SU}(2) \text{ doublet}, \ \kappa_B = 0.3 \\ & \mathrm{SU}(2) \text{ doublet} \end{array}$	2210.15413 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 2303.05441
Exctd ferm.	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton τ^*	- 1 γ - 2 τ	2 j 1 j 1 b, 1 j ≥2 j	- - -	139 36.7 139 139	q* mass q* mass b* mass τ* mass	3.1	6.7 TeV 5.3 TeV 2 TeV 4.6 TeV	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 4.6 \text{ TeV}$	1910.08447 1709.10440 1910.08447 2303.09444
Other	Type III Seesaw LRSM Majorana γ Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles Magnetic monopoles	$2,3,4 e, \mu$ 2 μ 2,3,4 e, μ (S 2,3,4 e, μ (S	$ \frac{\geq 2 j}{2 j} $ S) various S) $\sqrt{s} = 1$	Yes Yes - 3 TeV	139 36.1 139 139 139 34.4	Nº mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged particle mass monopole mass	910 GeV 3.3 1.08 TeV 1.59 TeV 2.37 TeV	2 TeV	$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	2202.02039 1809.11105 2101.11961 2211.07505 ATLAS-CONF-2022-034 1905.10130
		partial data	full d	ata		10	1	10	⁷ Mass scale [TeV]	

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-008/

Overview of CMS HNL results

 νMSM , $|V_{eff}|^2 = 1.0$, $|V_{\mu ff}|^2 = 1.0$

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/

March 2024	
	36 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 138 fb ⁻¹
	137 fb ⁻¹ 137 fb ⁻¹
	36 fb ⁻¹ 36 fb ⁻¹
	$\begin{array}{c} 137\ \mathrm{fb}^{-1}\\ 138\ \mathrm{fb}^{-1} \end{array}$
V 2206.08956 (2µ + 2j)	137 fb ⁻¹

https://atlas.web.cern.ch/ Atlas/GROUPS/ PHYSICS/PUBNOTES/ ATL-PHYS-PUB-2023-008/

Sta	atus: March 2023					••	$\int \mathcal{L} dt = (3)$	$3.6 - 139) \text{ fb}^{-1}$	\sqrt{s} = 13 TeV
	Model	ℓ , γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Limit	0		Reference
Extra dimen.	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \gamma \\ - \\ 2 \gamma \\ - \\ 2 \gamma \\ multi-chann \\ 1 \ e, \mu \\ 1 \ e \ \mu \end{array}$	1 – 4 j − 2 j ≥3 j − el ≥1 b, ≥1J/2 >2 b ≥3	Yes – – – 2j Yes	139 36.7 139 3.6 139 36.1 36.1 36.1	M _D M _S M _S M _{th} M _{th} 4.5 G _{KK} mass 2.3 TeV g _{KK} mass 3.8 TeV KK mass 1.8 TeV	11.2 Te 8.6 TeV 9.4 TeV 9.55 TeV 5 TeV	$n = 2$ $n = 3 \text{ HLZ NLO}$ $n = 6$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $\Gamma/m = 15\%$ Tier (1, 1) $\mathscr{B}(A^{(1,1)} \rightarrow tt) = 1$	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678
Gauge bosons	$\begin{array}{c} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to tb \\ \text{HVT } W' \to WZ \text{ model B} \\ \text{HVT } W' \to WZ \to \ell\nu \ell'\ell' \text{ m} \\ \text{HVT } Z' \to WW \text{ model B} \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$2 e, \mu \\ 2 \tau \\ - \\ 0 e, \mu \\ 1 e, \mu \\ 1 \tau \\ - \\ 0-2 e, \mu \\ 0-2 e, \mu \\ 1 e, \mu \\ 2 \mu$	2b ≥1 b, ≥2 . ≥1 b, ≥1 . 2 j / 1 J 2 j (VBF) 2 j / 1 J 1 J	J Yes Yes J - Yes J - Yes Yes Yes Yes -	139 36.1 36.1 139 139 139 139 139 139 139 139 80	Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 4.1 ° W' mass 3.1 ° W' mass 4.3 ° W' mass 340 GeV Z' mass 3.9 ° W _R mass 3.9 °	5.1 TeV TeV 6.0 TeV 5.0 TeV 4 TeV 3 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 2207.03925 2004.14636 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b 1 b ≥1 b, ≥1 j	– – – – į Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ Λ Δ		$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^- \\ \hline \textbf{35.8 TeV} & \eta_{LL}^- \\ g_* = 1 \\ g_* = 1 \\ C_{4t} = 4\pi \end{array}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM Pseudo-scalar med. (Dirac D Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+	 M) 0 e, μ, τ, γ : DM) 0 e, μ a multi-chann	2 j 1 – 4 j 2 b el	– Yes Yes	139 139 139 139 139	mmed 3.8 Te mmed 376 GeV mz' 3.0 TeV ma 800 GeV	eV	g_q =0.25, g_{χ} =1, $m(\chi)$ =10 TeV g_q =1, g_{χ} =1, $m(\chi)$ =1 GeV tan β =1, g_Z =0.8, $m(\chi)$ =100 GeV tan β =1, g_{χ} =1, $m(\chi)$ =10 GeV	ATL-PHYS-PUB-2022-036 2102.10874 2108.13391 ATLAS-CONF-2021-036
ГØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ mix gen Vector LQ 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \\ 0 \ e, \mu, \geq 1 \\ \text{multi-chann} \\ 2 \ e, \mu, \tau \end{array}$	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ 2 \ b \\ \geq 2 \ j, \geq 2 \ b \\ \tau \geq 1 \ j, \geq 1 \ b \\ \tau = 0 - 2 \ j, \geq 1 \ b \\ \geq 1 \ b \end{array} $	Yes Yes Yes Yes Yes Yes Yes Yes	139 139 139 139 139 139 139 139 139	LQ mass 1.8 TeV LQ mass 1.7 TeV LQ" mass 1.49 TeV LQ" mass 1.24 TeV LQ" mass 1.43 TeV LQ" mass 1.26 TeV LQ" mass 2.0 TeV LQ" mass 1.96 TeV		$\begin{split} \beta &= 1\\ \beta &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to t\nu) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to b\nu) &= 1\\ \mathcal{B}(\tilde{U}_1 \to t\mu) &= 1, \text{ Y-M coupl.}\\ \mathcal{B}(\mathrm{LQ}_3^V \to b\tau) &= 1, \text{ Y-M coupl.} \end{split}$	2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-052 2303.01294
Vector-like fermions	$\begin{array}{c} VLQ \ TT \to Zt + X \\ VLQ \ BB \to Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} T_{5/3} \to Wt + \\ VLQ \ T \to Ht/Zt \\ VLQ \ T \to Ht/Zt \\ VLQ \ Y \to Wb \\ VLQ \ B \to Hb \\ VLL \ \tau' \to Z\tau/H\tau \end{array}$	$\begin{array}{c} 2e/2\mu/\geq 3e,,\\ \text{multi-chann}\\ X 2(\text{SS})/\geq 3e,\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu\\ \text{multi-chann} \end{array}$	$u \ge 1 \text{ b, } \ge 1 \text{ j}$ el $\mu \ge 1 \text{ b, } \ge 1 \text{ j}$ $\ge 1 \text{ b, } \ge 3 \text{ j}$ $\ge 1 \text{ b, } \ge 1 \text{ j}$ $\ge 2\text{ b, } \ge 1 \text{ j, } \ge$ el $\ge 1 \text{ j}$	i – i Yes i Yes i Yes 1J – Yes	139 36.1 36.1 139 36.1 139 139	T mass 1.46 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV T mass 1.8 TeV Y mass 1.85 TeV B mass 2.0 TeV τ' mass 898 GeV		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ SU(2) singlet, $\kappa_T = 0.5$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ SU(2) doublet, $\kappa_B = 0.3$ SU(2) doublet	2210.15413 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 2303.05441
Exctd ferm.	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton τ^*	- 1 γ - 2 τ	2 j 1 j 1 b, 1 j ≥2 j	- - -	139 36.7 139 139	q* mass g* mass b* mass 3.2 TeV τ* mass 4.	6.7 TeV 5.3 TeV .6 TeV	only u^* and $d^*,$ $\Lambda=m(q^*)$ only u^* and $d^*,$ $\Lambda=m(q^*)$ $\Lambda=4.6$ TeV	1910.08447 1709.10440 1910.08447 2303.09444
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles Magnetic monopoles	2,3,4 e, µ 2µ 2,3,4 e, µ (S 2,3,4 e, µ (S - - -	≥2 j 2 j S) various S) – – –	Yes - Yes - - - 3 TeV	139 36.1 139 139 139 34.4	N° mass910 GeVN _R mass3.2 TeVH** mass350 GeVH** mass1.08 TeVmulti-charged particle mass1.59 TeVmonopole mass2.37 TeV		$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	2202.02039 1809.11105 2101.11961 2211.07505 ATLAS-CONF-2022-034 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

42

More CMS results overview

Overview of CMS HNL results

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/

	March	2024
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	1-3.52 TeV 1811.00806 (2τ + 2j) 1-3.75 TeV 1811.00806 (2τ + 2j)	
) 1j) , ≥ 1j) , ≈ 1j) a, ≈ 1j)		
s, 1j) 1 (2μ, 1j) 2e, 1j) 11 (2μ, 1j)		
	0.05-23 TeV 2206.08956 (2µ -	20
10	10 ⁻¹ 10 ⁰ 10 ¹ Mass Scale [TeV]	

Di-Higgs -> bbbb

- κ_{2V} and κ_{λ} remain experimentally less constrained ٠
- Di-Higgs final states depend also on κ_V and κ_t
- Dedicated search for $H \rightarrow b\bar{b}b\bar{b}$ using large-*R* jets aiming to ٠
 - constrain κ_{2V}
 - and search for new heavy scalar mediator
- *H*(*bb*) candidates identified by dedicated NN double-*b* tagging for large-*R* jets

Also covered in talk by Torben on Higgs cross sections from CMS and ATLAS

15

Di-Higgs -> bbbb

- Bkg. from events with 1 double-*b* tag
- [PRD 108 (052003)]:

SMALL

- Dominant bkg: $q\bar{q}' \to W(Z/\gamma^*) \to \ell^{\pm} \nu \ell^{\mp} \ell^{\pm}$
- •

Mono S(bb)

- Target: DM production via Z' (couplings g_q and g_χ) mediator in association with scalar s (with mixing sin θ to SM-like Higgs) decaying to bb
- Resolved (150 < MET < 500 GeV) and merged (MET > 500 GeV) SRs
- Using optimised X → bb tagging [<u>ATL-</u> <u>PHYS-PUB-2020-019</u>] in boosted SR (for m_{bb} > 50 GeV) ... and DL1r for resolved and boosted SR (m_{bb} < 50 GeV)
- Control bkgs in 1- and 2-lepton CRs
- No excess: Limits in three different scenarios

 $MET \ bins \rightarrow$

INFN Matteo Franchini

. . .

Mono S(bb)

Scenario 1 ("conventional")

- *m_{Z'}-m_s* plane
- $m_{\chi} = 200 \text{ GeV} (\text{no } s \rightarrow \chi \chi)$
- $g_q = 0.25; g_\chi = 1$
- $\sin \theta = 0.01$

Scenario 2

- *m_{Z'}-m_s* plane
- $m_{\chi} = 900 \text{ GeV}$

•
$$g_q = 0.25;$$

 $\sin \theta = 0.01$

Scenario 3

- $m_{Z'}-m_{\chi}$ plane
- $m_s = 70 \text{ GeV}$
- $g_q = 0.25; \sin \theta = 0.01$

Tune g_{χ} to get $\Omega h^2 = 0.12$