

Corfu 2024 workshop on Future accelerators the 25th of May 2024

Mieczyslaw Witold Krasny (Gamma Factory group leader) LPNHE, CNRS and University Paris Sorbonne and CERN, BE-ABP

1

"New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to <u>discover</u> new things that have to be explained" - F. Dyson

"Gamma Factory" studies

The Gamma Factory proposal for CERN †

[†] An Executive Summary of the proposal addressed to the CERN management.

Mieczyslaw Witold Krasny* LPNHE, Universités Paris VI et VII and CNRS–IN2P3, Paris, France

e-Print: 1511.07794 [hep-ex]

~100 physicists form 40 institutions have contributed so far to the Gamma Factory studies

A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴,
G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengut⁵, E.G. Bessonov⁶, N. Biancacci²,
J. Bieroń⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Budker^{9,10}, M. Bussmann³⁸, P. Constantin³⁴,
K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Curasou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Dupraz¹¹, Y. Dutheil², K. Dzierżęga⁷, V. Fedosseev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster
Martinez², S.M. Gibson¹, B. Goddard², M. Gorshteyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶,
T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁹, R. Kersevan², M. Kowalska²,
M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh²,
A. Martens¹², C. Michel⁴⁰ S. Miyamoto³¹ J. Molson², D. Nichita³⁴, D. Nutarelli¹¹, L.J. Nevay¹, V. Pascalutsa²⁸,
Y. Papaphilippou², A. Petrenko^{18,2}, V. Petrillo¹², L. Pinard⁴⁰ W. Płaczek⁷, R.L. Ramjiawan², S. Redaelli²,
Y. Peinaud¹¹, S. Pustelny⁷, S. Rochester¹⁹, M. Safronova^{29,30}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann²,
R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Sorq³², T. Stoehlker¹⁷, A. Surzhykov²¹, I. Tolstikhina⁶,
F. Velotti², A. Viatkina⁹ A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{23,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹¹

Gamma Factory studies are anchored and supported by the CERN Physics Beyond Colliders (PBC) framework. More info on all the GF group activities:

We acknowledge the crucial role of the CERN PBC "framework" in bringing our accelerator tests, GF-PoP experiment design, software development and physics studies to their present stage!

Outline of the talk

- Rationale behind the Gamma Factory initiative
- Basic principles and feasibility studies
- Scientific programme selected examples
- Proof-of-Principle experiment at the SPS
- Outlook

Rationale behind the Gamma Factory initiative

1. Curiosity

- How to efficiently "accelerate" photons?
- The science of high energy atomic beams (production, storage, cooling, collision aspects) has so far, not been developed. Atomic beams are very special -- they can be controlled with unprecedented precision -- a path to the ultimate-luminosity hadronic colliders?
- New quantum physics beam effects (beams of "Schrödinger cats")
- No simulation framework existed -- it had to be created and benchmarked
- New challenges for the laser technology
- Sociological curiosity: Can the particle, nuclear, atomic and accelerator physics expertise be merged into a joint multidisciplinary project?

2. Balance of the high-energy and high-intensity frontiers

- High energy frontier (detailed Higgs studies at the FCC-ee, etc...)
- High intensity frontier (dark Matter, neutrino mass puzzle(s), families, lepton universality, etc...
 FCC-ee potential ~10⁵ Z/sec, 10 W/sec, ...)

Gamma Factory can improve the present intensity limits of the:

- γ -beams by a factor >10⁶ \rightarrow 10¹⁸ γ /sec,
- muon beams by a factor of 10^3 , \rightarrow 7 x $10^{13} \mu$ /sec,
- polarised positron beams by a factor of 10^3 , $\rightarrow 10^{16} \text{ e+/sec}$,
- monochromatic neutron beams
- radioactive ion beams
- ...

3. LHC extracted beams

- SPS has demonstrated operation with cycle intensity 2-4x10¹³ protons delivering 4x10¹⁹ protons/year for the SPS fixed target programme, (PSB can deliver 10²⁰ protons/year for the ISOLDE programme)
- If LHC is used in the future as the source of extracted beams (3.5 10¹⁴ circulating protons with ~1 hour filling/ramping), then maximally 10¹⁸ (fast extraction) protons/year can be delivered for the LHC fixed target programme

Gamma Factory could extract $\sim 10^{25} \gamma/year$ for a fixed target programme With $\sim 100\%$ efficiency

4. Empty time slot for the Gamma Factory physics programme?

- Gamma Factory can extend significantly the scope of the LHC-based physics programme (with new questions and new tools)
- ... at a relatively low cost (~1% of the cost of the FCC-ee)

5. Energy consumption and sustainability

	Cost-estimate /BCHF	AC-Power /MW	Comments
Infrastructure	5.5		100km tunnel and surface infrastructure
FCC-ee	5	260-350	+1.1BCHF for the Top stage (365GeV)
FCC-hh	17	580	

Gamma Factory beam-driven, subcritical reactor (with the efficient transmutation of its waste) could potentially provide the necessary AC plug power needs of the growing CERN accelerator infrastructure.

6. Opening new research opportunities at CERN

- particle physics (precision QED and EW studies, vacuum birefringence, Higgs physics in γγ collision mode, rare muon decays, precision neutrino physics, QCD-confinement studies, …);
- **nuclear physics** (nuclear spectroscopy, cross-talk of nuclear and atomic processes, GDR, nuclear photo-physics, photo-fission research, gamma polarimetry, physics of rare radioactive nuclides,...);
- atomic physics (highly charged atoms, electronic and muonic atoms, pionic and kaonic atoms);
- astrophysics (dark matter searches, gravitational waves detection, gravitational effects of cold particle beams, ¹⁶O(γ,α)¹²C reaction and S-factors...);
- fundamental physics (studies of the basic symmetries of the universe, atomic interferometry,...);
- accelerator physics (beam cooling techniques, low emittance hadronic beams, high intensity polarised positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and flavour-tagged neutrino beams, ...);
- **applied physics** (accelerator driven energy sources, fusion research, medical isotopes and isomers precision lithography).

Gamma Factory – basic principles and status of the feasibility studies

Gamma Factory photon source

Novel technology: Resonant scattering of laser photons on ultra-relativistic atomic beam

Resonant absorption and emissions of photons by **atoms**

Photon acceleration -- Energy leap:

High energy atomic beams play the role o passive light-frequency converters:

 $\gamma_{L} = E/M$ - Lorentz factor for the ion beam

<u>Photon acceleration – Intensity and efficiency leap:</u>

large cross-section for atomic collisions

nverse Compton scattering	Cross-section	Requirements
Muy-ray Laser electron	Electrons: $\sigma_e = 8\pi/3 \times r_e^2$ r_e - classical electron radius $\sigma_e = 6.6 \times 10^{-25} \text{ cm}^2$	$E_{beam} = 1.5 \text{ GeV}$ LINAC or LWFA Electron fractional energy loss: emission of 150 MeV photon: $E_{\gamma}/E_{beam} = 0.1$ (electron is lost!)
Gamma Factory	σ x 10 ⁹	
γ-ray PSI Laser • Laser • Example: Pb, hydrogen-like ions,	Partially Stripped lons: $\sigma_{res} = \lambda_{res}^{2}/2\pi$ λ_{res} - photon wavelength in the ion rest frame $\sigma_{res} = 5.9 \times 10^{-16} \text{ cm}^{2}$	$E_{beam} = 574\ 000\ GeV$ (LHC) Electron fractional energy loss: emission of 150 MeV photon: $E_{\gamma}/E_{beam} = 2.6 \times 10^{-7}$ (ion undisturbed!)
stored in LHC γ_L = 2887		

Re-use of already existing accelerator infrastructure – CERN

Gamma Factory (additional) beam requirements:

- modification of the ion stripping scheme,
- storage of atomic beams

18

Achievements : Requisite TT2 stripper system installed

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

Felix M. Kröger,* Günter Weber, Simon Hirlaender, Reyes Alemany-Fernandez, Mieczyslaw W. Krasny, Thomas Stöhlker, Inga Yu. Tolstikhina, and Viacheslav P. Shevelko

R. Alemany-Fernandez (BE.OP), E. Grenier-Boley and D. Baillard (SY.STI)

The two tanks of the new stripper system were installed during YETS 2021-2022 and YETS 2022-2023. Four stripper foil mechanisms are operating at ~Hz frequency.

topics 🔹

follow +

A joint Fermilab/SLAC publication

LHC accelerates its first "atoms"

07/27/18 | By Sarah Charley

Lead atoms with a single remaining electron circulated in the Large Hadron Collider.

https://home.cern/about/updates/2018/07/lhc-accelerates-its-first atoms https://www.sciencealert.com/the-large-hadron-collider-just-successfully-accelerated-its-first-atoms https://www.forbes.com/sites/meniameberboucha/2018/07/31/lhc-at-cern-accelerates-atoms-for-the-first-time/#36db60ae5cb https://www.livescience.com/63211-lhc-atoms-with-electrons-light-speed.html https://interestingengineering.com/cerns-large-hadron-collider-accelerates-its-first-atoms https://www.sciencenews.org/article/physicists-acselerate-atoms-large-hadron-collider-first-time https://insights.globalspee.com/article/9461/the-lhc-successfully-accelerated-its-first-atoms https://www.maxisciences.com/lhc/le-grand-collisionneur-de-hadrons-lhc-accomplit-une-grande-premiere_art41268.html https://www.symmetrymagazine.org/article/lho-accelerates is-first-atoms

Achievements: Atomic beams stored in in the LHC

21

Laser photons

Towards the first integration of the Fabry-Pérot (FP) cavity in the hadron storage ring

GF at SPS and LHC rings mirror mirror Laser pulses Fabry-Pérot cavity GF requirements:

- < 5mJ pulses @ 20MHz, (100kW photon beam)
- Stable remote operation of the laser system in the hadron storage rings (to be demonstrated in the GF proof-of-Principle experiment)

Achievements: World record of the stored laser photon beam power – satisfying the full GF research programme

Stable 500 kW average power of infrared light in a finesse 35,000 enhancement cavity

X.-Y. Lu,^{1, a)} R. Chiche,¹ K. Dupraz,¹ F. Johora,¹ A. Martens,¹ D. Nutarelli,¹ Y. Peinaud,¹ V. Soskov,¹ A. Stocchi,¹ F. Zomer,¹ C. Michel,² L. Pinard,² E. Cormier,³ J. Lhermite,⁴ X. Liu,⁵ Q.-L. Tian,⁵ L.-X. Yan,⁵ W.-H. Huang,⁵ C.-X. Tang,⁵ V. Fedosseev,⁶ E. Granados,⁶ and B. Marsh⁶

¹⁾Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

²⁾Laboratoire des Matériaux Avancés - IP2I, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France

³⁾Laboratoire Photonique Numérique et Nanosciences (LP2N), UMR 5298, CNRS-IOGS-Université Bordeaux, 33400 Talence, France

⁴⁾Université de Bordeaux- CNRS-CEA, Centre Lasers Intenses et Applications (CELIA),

351 cours de la Libération F- 33405 Talence, France

⁵⁾Department of Engineering Physics, Tsinghua University, Beijing 100084, China ⁶⁾CERN, CH-1211, Geneva, Switzerland

(*Electronic mail: aurelien.martens@ijclab.in2p3.fr.)

(Dated: 23 April 2024)

Paper has just been submitted to *Applied Physics Letters*

Achievements: Requisite precision of the momentum and beam position control at the collision point with laser photons

SPS MD5044 : machine stability characterisation of Gamma Factory SPS Proof-of-Principle Experiment

R. Ramjiawan, G. Arduini, H. Bartosik, Y. Dutheil, W. Hofle, M. W. Krasny, A. Martens, Y. Papaphilippou, A. Petrenko, F. M. Velotti, CERN, CH-1211 Geneva, Switzerland

IP x offset [mm]

0.0003

Expected values

Achievements: Measurement of vibration modes of the laser photon transport line (and their mitigation)

<u>A concrete example</u>: Nuclear physics application: He-like, LHC Calcium beam, $(1s \rightarrow 2p)_{1/2}$ transition, TiSa laser, 20 MHz FP cavity

<u>Highly-collimated monochromatic γ–beams:</u>

- the beam power is concentrated in a narrow angular region (facilitates beam extraction),
- the (E_γ, Θ_γ) correlation can be used (collimation) to
 "monochromatize" the beam

Polarised (and/or twisted) GF photon beams

... for Gudrid A trick: Pauli blocking GF-POL-CAIN: He-like Ca with $P_3^i = 1$ GF-POL-CAIN: He-like Yb with $P_2^i = 1$, r < 5 mm @ z = 50 m ×10¹⁵ ٦ dn/dP₃[1/s] 00 00 Radial hP3 collimation: 0.8 n=2 221393 Entries R<5 mm@z=50 Mean -0.9905 0.6 m Std Dev 0.01538 800 0.4 n=1 0.2 600 0 $nS_0 \rightarrow n'P_1 \rightarrow nS_0$ -0.2 400 -0.4 Closed transition in Helium-like atoms (n=1, n' =2) preserve -0.6 200 initial polarisation of the laser -0.8 light -10 0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0.5 1.5 2 2.5 1 $\gamma_{\mu}\theta_{\gamma}$ [rad] $1s^2 1S_0 \rightarrow 1s^1 2p^1 P_1$ transition \rightarrow Circular polarization $\approx 99\%$

in He-like atoms

For more details see presentations at our recent, Gamma Factory workshop: https://indico.cern.ch/event/1076086/

Extraordinary properties of the GF photon source

1. Point-like, small divergence

 $\blacktriangleright \Delta z \sim I_{\text{PSI-bunch}} < 7 \text{ cm}, \Delta x, \Delta y \sim \sigma^{\text{PSI}}{}_{x}, \stackrel{\text{PSI}}{}_{y} < 50 \text{ }\mu\text{m}, \Delta(\theta_{x}), \Delta(\theta_{y}) \sim 1/\gamma_{L} < 1 \text{ }mrad$

2. Huge jump in intensity:

> More than 7 orders of magnitude w.r.t. existing (being constructed) γ -sources

3.Very wide range of tuneable energy photon beam :

> 10 keV – 400 MeV -- extending, by a factor of ~1000, the energy range of the FEL photon sources

4. Tuneable polarisation:

> γ -polarisation transmission from laser photons to γ -beams of up to 99%

5. Unprecedented plug power efficiency (energy footprint):

LHC RF power can be converted to the photon beam power. Wall-plug power efficiency of the GF photon source is by a factor of ~300 better than that of the DESY-XFEL!

(assuming power consumption of 200 MW - CERN and 19 MW - DESY)

Scientific programme – selected examples

GF studies: published papers (INSPIRE) and books

1. Experimental programme with "small-size" atoms

Trapped stationary atoms

Exposed to pulsed magnetic

Atomic rest-frame

letters to nature

Crystalline beams?

2. Experimental programme with "cold" ion beams

Beam cooling speed: the laser wavelength band is chosen such that only the ions moving in the laser pulse direction (in the bunch rest frame) can resonantly absorb photons. Opens a possibility of forming at CERN hadronic beams of the required longitudinal and transverse emittances within a seconds-long time scale

Simulation of laser cooling of the lithium-like Ca(+17) bunches in the SPS: transverse emittance evolution.

Gamma Factory (complementary) path to HL-LHC:

Studies of the implementation scheme with laser-cooled isoscalar Ca beams

Two complementary ways to **increase** collider **luminosity** for fixed n₁,n₂, and f :

reduce β_x* and β_y*
 reduce ε_x and ε_y

HL-LHC – β^* reduction by a factor of 3.7 (new inner triplet)

Reduction of the transverse x,y, emittances by a facto of 5 can be achieved in 9 seconds (<u>top SPS energy</u>)

The merits of cold isoscalar beams

- higher precision in measuring SM parameters in CaCa than in pp collisions
- Possible unique access to exclusive Higgs boson production in photon–photon collisions?
- Lower pileup background at equivalent nucleon-nucleon (partonic) luminosity.
- New research opportunities for the *EW symmetry breaking sector.*

If necessary: add optical stochastic cooling time for the Ca beam at the LHC top energy $t_{cool} \sim 1.5$ hours (V. Lebedev)

3. Studies of ep collisions at LHC

(in the ATLAS, CMS, ALICE and LHCb interaction points)

Atomic beams can be considered as **independent electron** and nuclear beams as long as the incoming proton scatters with the momentum transfer q >> 300 KeV! Opens the possibility of collecting, by each of the LHC detectors, over one day of the **Pb+81–p** operation, the effective ep-collision luminosity comparable to the HERA integrated luminosity in the first year of its operation (1992) – in-situ diagnostic of the emittance of partonic beams at the LHC!

Initial studies:

35

4. Gamma Factory research programme with extracted beams

4.1 DM searches and studies (if discovered), ALP example

Three principal advantages of the Gamma Factory photon beams:

- Large fluxes: ~10²⁵ photons on target over year (SHIP 10²⁰ protons on target)
- Multiple ALP production schemes covering a vast region of ALP masses (sub eV GeV)
- Once ALP candidate seen → a unique possibility to tune the GF beam energy to the resonance.

4.1 DM searches and studies (ALP example)

4.1 DM searches and studies (dark photon example)

4.2 Photon-beam-driven energy source studies

Best use of the CERN expertise to produce rather than buy the plug-power:

GF- Photon-beam-driven energy source (ADS)

Satisfying three conditions;

- requisite power for the present and future CERN scientific programme
- operation safety (a subcritical reactor)
- efficient transmutation of the nuclear waste (very important societal impact if demonstrated at CERN –given its reputation)

APS April Meeting 2023 Minneapolis, Minnesota (Apr 15-18)

M06 Invited Accelerate Solving Energy Crisis: From Fission to Fusion

Room: MG Salon F - 3rd Floor **Sponsor**: DPB FIP **Chair**: Christine Darve, European Spallation Source **Invited Speakers**: Hamid Ait Abderrahmane, Mieczyslaw Witold Krasny, Ahmed Diallo, Alireza Haghighat

40

5. Research programme with tertiary beams'

- Polarised positrons potential gain of up to a factor of 10⁴ in intensity w.r.t. the KEK positron source, satisfying both the LEMMA muon–collider and the LHeC requirements
- Muons potential gain by a factor of 10³ in intensity w.r.t. the PSI muon source, charge symmetry ($N\mu^+ \sim N\mu^-$), polarisation control
- Neutrinos fluxes comparable to NuMAX but: (1) Very Narrow Band Beam, driven by the small spectral density pion beam and (2) unique possibility of creating flavour- and CP-tuned beams driven by the beams of polarised muons
- Neutrons a comparable neutron flux w.r.t the future neutron spallation sources e.g. at ESS but quasi monoenergetic neutrons
- Radioactive (neutron-rich) ions potential gain of up to a factor 10⁴ in intensity w.r.t. e.g. ALTO

Novel paradigm for high brightness μ and ν sources: resonant photo-excitation of Δ resonances

The potential use of the Gamma Factory muon source:

- Muonium studies
- Lepton universality
- Rare muon decays
- Neutrino factory
- Muon-catalysed nuclear fusion
- Atomic physics studies of muonium atoms
- Electroweak studies with muon atoms
- Measuring nuclear radius and neutron skin
- Muon collider??? at present ⊗

Gamma Factory Proof-of-Principle experiment at the SPS

The remaining Gamma Factory R&D step – the PoP experiment

What has been achieved?

- Demonstration of efficient production, storage and operation of the atomic beams n the SPS and LHC
- Demonstration of the stable, high power, laser photon beam storage in the Fabry-Perot cavity (world record of 500 kW stored power)
- Demonstration of the requisite precision of the beam steering in the collision point of laser pulses with atomic beam bunches
- Creation and benchmarking of the requisite software to simulate the production of the atomic beams, GF-photon beams and tertiary beams

What remains to be done?

Proof of the stable <u>remote</u> operation of the laser + FP system incorporated to hadronic rings → Gamma Factory PoP experiment

Gamma Factory Proof-of-Principle experiment location

Gamma Factory Proof-of-Principle (PoP) SPS experiment

SPS LSS6 zone

F-P cavity – "in beam" position

48

GF Proof-of-Principle (PoP) experiment -- next steps

- Ultra low-phase noise laser and amplification chain procurement and commissioning
- Laser photon beam transport system -- vibration tests, controls and diagnostic at IP (an experiment using a reference Fabry-Perot cavity and a single-frequency CW laser
- Final design of the F-P cavity (beam impedance)
- Conversion of the TL18 area to a laser lab during LS3
- Installation of the F-P cavity in the SPS tunnel
- Installation of the BTV system and its associated cameras
- Initial phase of the of the GF PoP experiment: demonstrate full remote end-to-end operation of laser beams and Fabry-Perot cavity
- Advanced phase of the GF-PoP experiment: demonstrate beam cooling, atomic physics studies

Conclusions and outlook

Conclusions

- Gamma Factory can create, at CERN, a variety of novel research tools, which could open novel research opportunities in a very broad domain of basic and applied science
- □ The Gamma Factory research programme can be largely based on the existing CERN accelerator infrastructure it requires "relatively" minor infrastructure investments
- Its "quest for diversity of research subjects and communities" is of particular importance in the present phase of accelerator-based research, as we neither have any solid theoretical guidance for a new physics "just around the corner", accessible by FCC, ILC, or CLIC, nor an established "reasonable cost" technology for a leap into very high energy " terra incognita"
- Gamma Factory project needs to make the last step in R&D studies and demonstrate its feasibility by the SPS GF-Proof-of-Principle experiment prior to reaching advanced phase of the HL-LHC programme the CERN management and wide scientific community support for this project is a "sine qua non" condition for its further development 53

A lesson from DESY: 1995 – HERA needs substantial upgrade

- The DESY research programme must include a development of high intensity sources of both isoscalar ions (including deuterium) and the highest Z ions, and their low emittance pre-injector(s)
- One of its detectors for must have a full 4π acceptance (allowing to detect all the fragments of the nucleus)
- The "HERA leg" of this programme requires a factor of O(100) increase of the collider luminosity :
 - -- statistics: F_2^c , F_2^b , F_L , EW, multidimensional studies
 - -- systematics: drastic reduction of syst. errors (e.g. x and Q2 scans at fixed theta as a unction of $(E_n \ E_e)$
- RHIC expected to start in 2000 and the LHC in 2006 -> the DESY QCD program -- capable to provide a vital input for the interpretation of the RHIC and the LHC data -- must start before (or soon after) RHIC and LHC became operational

A lesson from DESY (the need for the plan B,C,...)

DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY DESY - TX 2 15 124 dery d - TTX 40 31 73-DESY - FAX D4009 54 43 04 Der Vorsitzende des Direktoriums	
Dr. M.W. Krasny	
Universites Paris 6 + 7 LPNHE 4, Place Jussieu, Tour 33 F-75252 Paris Cedex 05	
August 19, 1996	
Dear Dr. Krasny,	
Thank you very much for your contribution to the HERA workshop and for your remarks to the HERA programme.	
I agree with you that HERA will make a solid contribution to strong interaction physics and that colliding electrons with nuclei may open up new vistas and should be explored further. Indeed we want to do this in collaboratoin with GSI and I hope that you will be able to participate and contribute to this work. In order to carry out a programme in this direction there must be a well reasoned physics programme, a strong support including funds from the community, and GSI must be interested in a collaboration.	
I'm not so sure that I agree with your comments concerning the luminosity frontier - at least I would feel somewhat uneasy if we neglected this frontier.	
With my best wishes	
Björn H. Wiik	
DESY director	

Bjorn Wiik plan B: strong (even if hidden) support for the joint DESY/GSI QCD-Lab project (if TESLA project is not approved)

- B. Wiik's unfortunate accident (TESLA abandoned)
- GSI started working towards a local FAIR PROJECT (low energy, QCD nonperturbative regime), European ELFE groups joined the CEBAF program
- The electron-ion collider concept exported to US (thanks to a strong commitment to this project by Peter Paul – the BNL director → at the moment the leading financed (2.5x10⁹ \$) accelerator project in the US)
- End of the HEP era at DESY