QCD/top physics in the era of future accelerators

Alexander Mitov

Cavendish Laboratory

E BUNIVERSITY OF

Introduction

 \checkmark We had a lot of related talks ...

- \checkmark Will not discuss EW physics (see talk by Fulvio Piccinini)
- \checkmark This talk is about trying to guess what QCD may look like at FCCee
- \checkmark ... we can start by looking at the LHC today and extrapolate
- \checkmark The situation at present is pretty amazing: we have many, more-precise calculations for a more complicated machine (LHC) than for e⁺e^{-!}
- \checkmark A brief LHC status:
	- \checkmark Fully differential NNLO for 2->2 and 2->3.
	- $\sqrt{N^3LO}$ already exists for 2->1 processes.

On a 10-year timescale we can expect N3LO calculations for the LHC, produced at scale

- \checkmark These developments directly translate to e^+e^- :
- \checkmark There are not as many e⁺e implementations currently simply because there is no pressing need for them.

 \checkmark The bottleneck at the LHC currently, and for the foreseeable future, is the calculation of multiloop amplitudes (translates directly to e+e-).

 \checkmark Progress in multiloop amplitudes

- \checkmark Definition of the set of functions needed to describe such processes
- \checkmark Example 1: the description of massless 2->3 processes at NNLO required a new set of functions, the pentagon functions Papadopoulos, Tommasini, Wever '15 Gehrmann, Henn, Lo Presti '16 '18
- \checkmark They evolved in a set which is fully useable for practical calculations Chicherin, Sotnikov '20
- \checkmark Approach currently being generalized up to V+4j at 2 loops

Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia

 \checkmark Example 2: Elliptic functions

 \checkmark These appear in multiscale problems

 \checkmark first such collider example was the NLO tt total inclusive cross-section).

en de la component de la compo
Se de la component de la compo

- √ These functions need to be systematized in order to have efficient algebra. Tremendous work ongoing work ongoing.
- \checkmark Computing amplitudes will become particularly tricky for multiscale processes (like different masses)
	- \checkmark Likely only fully numeric calculations are feasible. But this is OK: for example, tt@LHC@2 loops is known numerically and not yet fully analytically.

lines represent cuts (cut lines are on-shell). Notice the crossed momentum flow in the b), c) and d)

Figure 4: *Cut forward Feynman integrals whose differential equations introduce a priori unex-*Chen, Czakon, Poncelet '17

 \checkmark Finally, even one-loop amplitudes for N³LO calculation will require additional improvements

 \checkmark What can we conclude from the discussion up to here?

By the time FCCee becomes operational many/most e⁺e⁻ processes will have NNLO or N³LO precision

 \checkmark One should expect fully differential calculations, not just inclusive observables

 \checkmark This will be a huge progress relative to where we are today for e^+e^-

Overview of e+e- processes and their current status

Top quark pair production

- \checkmark A major aim and potential major achievement for the FCCee
- √ A threshold scan allows a very precise measurement of the top quark mass, width and even its mass scheme. α *g* α the top
- \checkmark Theory known at N³LO in QCD

Beneke et al, '15

Top quark pair production

 \checkmark Top Yukawa can also be constrained indirectly (albeit weakly).

Nice connection to the talk by Gauthier Durieux

 \checkmark Sensitivity to the top Yukawa coupling

Top quark pair production

- \checkmark Further prospects for ttbar at threshold:
	- \checkmark A main remaining uncertainty is ISR
	- \checkmark Going beyond N³LO will likely require a multi-decade effort...
- Continuum top pair production
	- \checkmark Essentially available only at NLO via MadGraph5 aMC@NLO, Whizard, ...
	- \checkmark No reason not to have full NNLO at present
- \checkmark Note: the state of continuum b and c production is similar.
	- \checkmark Single inclusive production at high p_T is known at NNLO (will revisit later in this talk)

Jet production and alpha_s

 \checkmark 3-jet production at the LHC is known at NNLO (in full color)

 \checkmark 3-jet is also known for e⁺e at NNLO Gehrmann-De Ridder, Gehrmann, Glover, Heinrich '07 Weinzierl '08 Del Duca, Duhr, Kardos, Somogyi, Szor, Trocsanyi, Tulipant '16

 \checkmark 4-jet at NNLO is doable (integrals were just derived for the LHC)

- \checkmark Studies of jet substructure, jet algorithms, including flavor, has advanced tremendously during the lifetime of the LHC.
- Ultimately, N³LO for 3 jet production at e^+e^- will likely be possible within a decade or so.

ATLAS arXiv:2301.09351

precision.

 \checkmark Measurements of the strong coupling

constant at e+e- will offer exciting possibilities

reviewed in talk by Stefan Kluth

alpha_s at scales $\sim M_Z$. This is unlike the LHC

 \checkmark A remark: FCCee will only give us access to

where the running of alpha_s has already

been probed to 2 TeV or so with full NNLO

 \pm

Two selected aspects

we can learn from at future e+e- colliders

Terra Z

- \checkmark Precision remeasurement of SM parameters and processes is going to be essential for the future precision program we all hope for.
- \checkmark It is just like building a house: it can be only as good as the foundation it sits on.
- \checkmark Zoltan Ligeti gave an exhaustive introduction to this. Let me just add couple of more examples:
	- \checkmark B and D fragmentation measurements from LEP are rather limited.
	- \checkmark Only a mixture of B mesons available
	- \checkmark Only a single D meson measurement available
	- \checkmark Quality of available data is currently a major limiting factor on heavy flavor production
- \checkmark Another potential great benefit: measurements at different c.m. energies
	- \checkmark Measurements at higher energies (240GeV, 365 GeV) will be the first time we have high precision high-energy data to test precision DGLAP evolution for heavy flavors.
	- \checkmark B fragmentation is currently restricted to x>0.1 ~m_z/(2m_B). Higher c.m. energies will allow access to fragmentation measurements with $x < 0.1$.
	- \checkmark And a bigger lesson: acquiring confidence in treating small mass effects in unrelated processes (including muon colliders, how to properly treat the muon or electron mass – even in QED context, etc.).

Small mass effects

- \checkmark Identified heavy flavor production (fragmentation) is among the basic processes QCD offers and has been measured at many colliders.
- \checkmark e⁺e⁻ the gold standard for such measurements (due to lack of pdf, clean environment and ease of directly relating the observable to the fragmentation function)
- \checkmark Open B and D production have so far (in the last almost 30 years) been treated in FONLL (NLO+NLL).
- \checkmark It has been a great success and a major step forward; its main limitation is a significant NLO scale uncertainty.
- \checkmark NNLO calculations expected to improve this. Indeed, the Tevatron B-production anomaly completely disappears at NNLO

Czakon, Generet et al, to appear

Tevatron fiducial x-section for bb **at quark level**

Could also be inferred from

Catani(a), Devoto, Grazzini, Kallweit, Mazzitelli '20

Small mass effects

 \checkmark Full NNLO + resummation prediction for B mesons and their decays

Czakon, Generet et al, to appear

 \checkmark At future e⁺e- machine we should expect this observable to be known to N³LO.

 \checkmark Uncertainties dominated by measurements of input parameters and treatment of mass effects.

Small mass effects

 \checkmark Example: fitting LEP data is not trivial

arXiv:2210.06078

Figure 16. NPFF fits from one dataset at a time (blue) versus the combined fit (orange). The four datasets are (from left to right): ALEPH, DELPHI, OPAL and SLD.

HighTEA time

 \checkmark A very legitimate question:

- \checkmark How do you make the above results available?
- \checkmark If I need a new prediction, where can I get it?
- \checkmark There are just two options:
	- If there is a public code one can use it to compute what one needs
		- Ø Problem 1: serious/huge CPU expense
		- \triangleright Problem 2: is the user using the code correctly?
	- No public code: ask the authors. Hope they are free and have spare
- Can one bypass all of th[ese problems at once?](https://www.precision.hep.phy.cam.ac.uk/hightea/)

YES!

The answer can be found here:

https://www.precision.hep.phy.cam.ac.uk/hightea

 P D

\checkmark Dedicated website

https://www.precision.hep.phy.cam.ac.uk/hightea/

Czakon, Kassabov, Mitov, Poncelet, Popescu 2023

- \checkmark What is HighTEA? A library of precomputed events $+$ all the required infrastructure.
	- \checkmark No specialized knowledge needed to fully use it
	- \checkmark It allows the user to compute any infrared safe n-dimensional differential distribution in any process which has already been added to the library
	- \checkmark The output of a HighTEA computation is a histogram, and the input is the histogram's specification.
	- \checkmark Users can define their own kinematic variables and scales.
	- \checkmark No need for major computing infrastructure (typically, a large cluster). Example: A quick calculation takes 50k CPUh; the most demanding ones – over 10M CPUh.
	- \checkmark Predictions derived from HighTEA are very fast (~minutes).
	- \checkmark All one needs is a computer (or a smart phone) and a free Google account.
- \checkmark HighTEA's limitations
	- \checkmark Only processes already included can be computed
	- \checkmark Fixed statistics: fine bins will result in large MC uncertainty (estimate always provided)
	- \checkmark Fixed parameters like LHC energy and particle masses.

HighTEA's logic:

Next: $t_{\rm heat}$ rche.

A webform (restricted functionality): https://www.hep.phy.cam.ac.uk

V Our Library implemented in Jupyter notebooks on Google Colab. Has One needs a device and a free Google account https://colab.research.google.com/github/HighteaCollaboration/high examples/blob/master/Start.ipynb

Conclusions

 \checkmark Steady progress on NNLO and already N³LO calculations for the LHC

 \checkmark Future FCCee program will benefit from these developments

 \checkmark Expect fully differential NNLO and N³LO to be the standard for FCCee

 \checkmark We need FCCee, among others, for (much) more precise measurements of basic SM parameters and processes.

 \checkmark This will be critical for the success of the future precision program.