

High Field Magnets

Update on Common Coil activities at CIEMAT

J. García-Matos, C. Martins, F. Toral, CIEMAT

J. C. Pérez, CERN

Table of contents

- Prototype magnet laboratory commissioning
- ISAAC design
- 14 T magnetic design

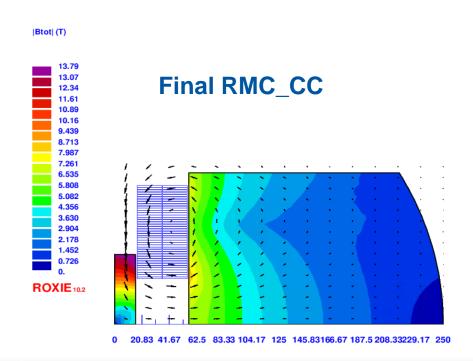
Prototype magnet laboratory commissioning (I)

- Some problems with the building: air conditioning, roof leaks, space for winding machine.
- Procurement of small equipment in good progress.
- Call for tenders for reaction furnace and collaring press is ongoing.
- Production of coils for HL-LHC correctors is resumed in-house: important dedication of resources for two years.

Prototype magnet laboratory commissioning (II)

Table of contents

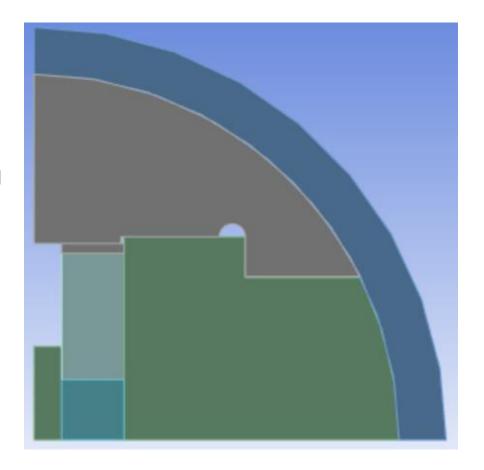
Prototype magnet laboratory commissioning


December 20th 2023

- ISAAC design
- 14 T magnetic design

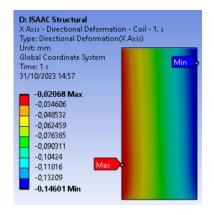
ISAAC magnetic design to provide 14T

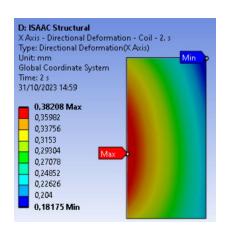
- ISAAC: Investigating Superconducting Assembly to Address Common coil mechanics
- Aperture decreased from 50 to 34 mm
- Yoke very close to the coil (only 1.2 mm distance)
- Intra-beam distance tuned to decrease a2
- Middle yoke has a strong influence despite its assembly could be not straightforward
- **Protection** is possible using a dump resistor according to first simulations: $R_{dump} = 45 \text{ m}\Omega$ yields a hotspot temperature of 286K and 900V voltage (adiabatic simulation)

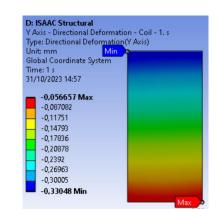


Design ID	Block	Final RMC_C	C	CC	CC*	Units
Aperture	74	34		74	74	mm
Intra-beam dist.	-	150		152	252	mm
I_nom	14486	19083		21353	20460	Α
Yoke outer radius	246	250		246	246	mm
В	14	14		11.3	11.96	Т
Peak field	16.16	14.8		14.27	14.51	Т
Peak Field/B	1.154	1.0571		1.263	1.213	-
Load	99.99	99.99		100.2	100.36	%
Stored energy	1752	1038		1701	1733	kJ/m
Static Self Induct.	16.7	5.7		7.46	8.28	mH/m
L*I	242	109		159	169	HA/m
Stray field (20 mm)	1.188	0.44		0.65	1.56	Т
Sum Fx Q1	5.1	6.636		5.79	6.53	MN/m
Sum Fy Q1	-4.3	0.474		3.02	0.73	MN/m

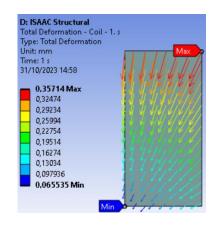
ISAAC mechanical design: stiff support structure

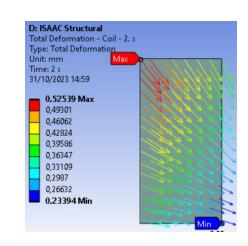

- Let's explore the use of yoke as support structure
- Upper part is made in stainless steel: it may help to contain the large Lorentz horizontal force
- Aluminium shell also contributes to hold the forces
- The coil would lose contact with this part during cooling down: it could move horizontally without friction
- Assembly with bladder and keys is not modeled yet
- Slight preload just to keep contact between parts

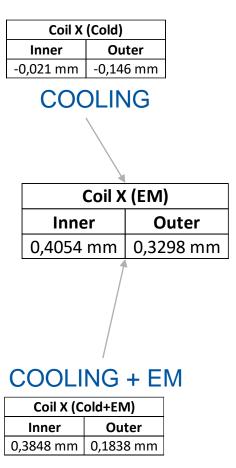



Mechanical design: coil displacement

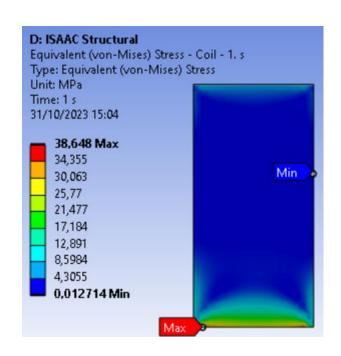
Horizontal coil displacement below 0.5 mm


X displacement

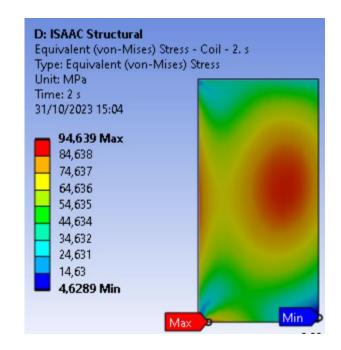



Y displacement

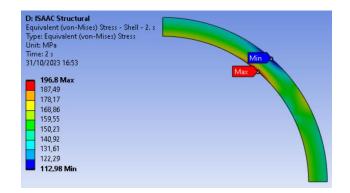
Total displacement

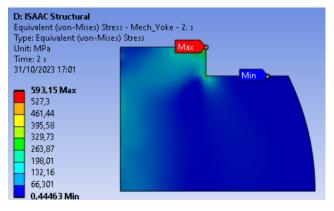


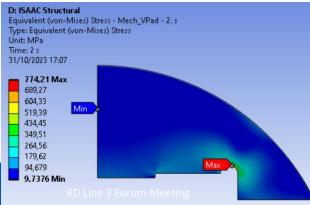
December 20th 2023


RD Line 3 Forum Meeting

Mechanical design: stress distribution

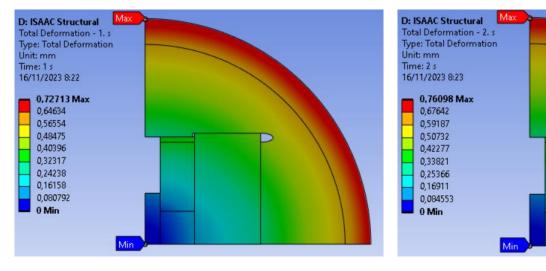

- Coil stress below 95 MPa!!
- No significant problems for the structural parts.
- Detailed design is ongoing.

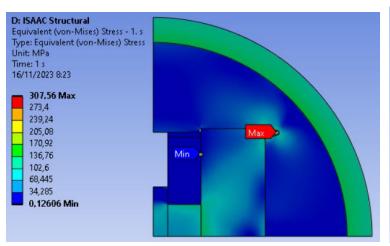


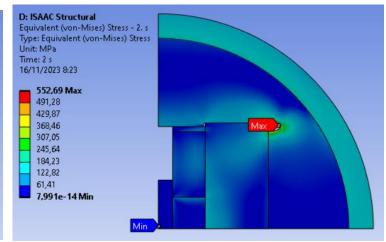


COOLING + EM

10


ISAAC mechanical design optimization


 We are exploring different design options to minimize stresses and coil displacements.


- No final results yet.
- Next step is to adapt the geometry to the use of bladder and keys for assembly.

COOLING

11

Table of contents

Prototype magnet laboratory commissioning

December 20th 2023

- ISAAC design
- 14 T magnetic design

RD Line 3 Forum Meeting

12

14 T CC demonstrator: magnetic design

- Based on existing strands at CERN.
- Aiming at 14 T at 50 mm aperture, 2 m long.
- First choice is 1.1 mm strand for high field coil and 1 mm strand for low field coil.
- 1.1 mm strand is requested by CEA, PSI and CIEMAT.
- We are also exploring the use of NbTi for the low field coil.
- No final design yet.

13

Conclusions

- Progress on magnet laboratory commissioning, but long way still to finish. Full operation for the end of 2024.
- Detailed mechanical design of ISAAC model magnet is ongoing.
- Magnetic design of 14 T common coil demonstrator is ongoing to define the needs for 1.1 mm strand.

