

Rare Decays at LHCb

1

Why Rare Beauty Decays?

Standard Model

New Physics

 $o b \rightarrow s\ell^+\ell^-$ and $b\bar{s} \rightarrow \ell^+\ell^-$ transitions, are **flavour-changing neutral current** (FCNC) processes → forbidden at tree level in the Standard Model (SM)

 \circ supressed in SM (branching fractions $\mathcal{O}(10^{-10}) - \mathcal{O}(10^{-6})$) and sensitive to New Physics (NP)

 particles associated with NP quantum fields can have masses above reach of direct searches at LHC

Last Christmas

Last Christmas

Last Christmas

Anomalies

Lakshan Mahdan

-

Analysis of $B^+ \to K^+ \mu^+ \mu^-$

- The dimuon spectrum of b->sll transition contain both local and non-local (hadronic) contributions
- Underestimated hadronic effect could potentially explain the anomalies seen
- Analysis aims to measure the local SM and NP while accounting for the hadronic effects directly using data in the full dimuon spectrum.
- Sensitive to NP enhanced tau-loop effects to dimuon spectrum

Analysis in Review within LHCb

Davide Lancierini

LFU measurements at LHCb: R_K

• $R_{H_s \equiv K}$ measurements compare the branching ratios of $B^+ \to K^+ \ell \ell$ decay to e and μ final states

- Challenging as it requires precise knowledge of the signal yield (N) and the selection efficiency
 (ε) of decays that exploit different sub-detection systems at LHCb
 - 。 Different reconstruction efficiencies, resolution, backgrounds btw e and μ
- We're involved in the measurement of R_K in kinematic region where the dilepton pair carries away most of the B^+ momentum, where existing measurements have big uncertainties (~ 18%)

R_K at high dilepton invariant mass q^2

- We extract the signal yield (N) via unbinned maximum likelihood fits to the B^+ mass shape.
- In this kinematic region, lower efficiency and resolution in the electron mode induce a warping of the combinatorial background shape (strong contrast with muons).
- For combinatorial background events, the B^+ mass cannot be arbitrary low and q^2 arbitrary high $\rightarrow B^+$ mass shape warping due to phase-space.
- We developed a "physically" inspired model to describe this phase-space cut at low B^+ mass:
 - Allows to minimise the number of parameters needed to describe the combinatorial shape and maximise the sensitivity to R_K at high q^2 (est. ~ 8% tot uncert.)

Richard Willi

Search for $B^+ \rightarrow \pi^+ e^+ e^-$

Close to final selection in our search for the as yet unobserved decay, splitting our signal region to help model backgrounds, with 2.2σ expected sensitivity.

Thomas Long

B Decays to Multiple Muons

Motivation

• Enhanced *B* decays to multiple muons arise naturally in non-minimal composite Higgs models, with flavourviolating heavy vectors (*V*) and light resonances (*a*) [arXiv:1902.10156, arXiv:2206.01759].

 B_0^s

• Depending on the invariant mass of these light resonances, decays of the form B_s $\rightarrow a_1 a_2$ and B^+ $\rightarrow K^+ a_1 a_2$ could give rise to 4μ or 6μ .

•Aim: Measure (or set limits on) BFs for $B_s \rightarrow 4\mu/6\mu$ and $B^+ \rightarrow K^+ 4\mu/K^+ 6\mu$ (both prompt and long-lived *a*) relative to $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(\mu^+\mu^-)$ as the normalization mode using Run 2 data.

Progress

- Simulation corrections mainly complete.
- Signal selection and efficiency calculation framework established complete selection yet to be finalised.
- Yield of normalisation mode $B_s^0 \rightarrow J$ $/\psi(\mu^+\mu^-)\phi(\mu^+\mu^-)$ determined from fit to the invariant mass distribution.
- Systematic uncertainties and potential exclusive background sources in signal window to be studied.
- Prepare fitting strategy for signal modes and calculate expected upper limits.

A search for the rare decay $\Lambda_{h}^{0} \rightarrow pK^{-}\tau^{+}\tau^{-}$ at LHCb

- Motivation? •
 - Rare loop level process, sensitive to new physics entering at tree level.

- Models explaining $R(D) R(D^*)$ anomalies predict enhanced $b \rightarrow s\tau\tau$ branching fractions (expected even for LFU in light lepton generations). [1]
- Progress highlight?
 - Work on selection, for which central feature is BDT to discriminate against combinatorial, prompt, and semileptonic background classes.
 - Lack of tau vertex requires many backgrounds to be considered. Most important backgrounds are semileptonic, e.g. the background in the bottom right-hand plot: Λ_b^0 $\rightarrow D^0 p \ell^- \overline{\nu_\ell}, D^0 \rightarrow K^- \mu^+ \nu_\mu^-$

[1] J. Aebischer, G. Isidori, M. Pesut, B. A. Stefanek and F. Wilsch, Eur. Phys. J. C 83 (2023) no.2, 153

 A_{CP} in $B^+ \rightarrow K^+ \mu^+ \mu^-$

New physics can induce differences between the CP asymmetries in electronic and muonic decays. Updated measurement of A_{CP} in $B^+ \rightarrow K^+ \mu^+ \mu^-$ decays a first step.