

CP violation

No matter how charming

HEP Extravaganza 2023

Jordy Butter 06/12/2023

Overview of activities

- Charmless $B \rightarrow VV$ analyses:
 - $\circ \quad B^0_{(s)} \to K^{*0} \overline{K}^{*0}$
 - $\circ \quad B^0 \to \rho^0 K^{*0}$
 - $\circ \quad B^0_{(s)} \to \phi K^{*0}$
 - $\circ \quad B^+ \to \rho^0 K^{*+}$
- Measuring CKM-angle γ :
 - $\circ \quad B^0_s \to D^\mp_s K^\pm$
 - Gammacombo

Decay topologies of non-leptonic beauty decays

CP violation

- *CP* violation reveals itself in the interference of two decay amplitudes
 - Must be a weak and strong phase difference
- Sometimes, neutral meson mixing necessary: interference in mixing and decay
 - Decay-time dependent analysis required
 - Situation for $B^0_{(s)} \to K^{*0}\overline{K^{*0}}$ decays actually a bit more complex due to loop

Other parameters of interest

- Time-integrated *CP* violation in $B^0 \rightarrow \rho^0 K^{*0}$
- Branching fractions
- Fractions of angular contributions

 $f_{L,\parallel,\perp} = \frac{|A_{0,\parallel,\perp}|^2}{|A_0|^2 + |A_\parallel|^2 + |A_\perp|^2}$

- Tensions between theory and experiment
- Easier to compare the ratio:

$$L_{K^*\overline{K}^*} = G \frac{\mathcal{B}(B^0_s \to K^{*0}\overline{K}^{*0})}{\mathcal{B}(B^0 \to K^{*0}\overline{K}^{*0})} \frac{f_L^{B^0_s \to K^{*0}\overline{K}^{*0}}}{f_L^{B^0 \to K^{*0}\overline{K}^{*0}}}$$

B⁰→K^{*0}R^{*}

B⁰-+K⁺⁰

 $= B^0 \rightarrow K^{*0}\rho$ $= B^0 \rightarrow K^{*0}\rho$

5600

Data

 χ^2 /ndof = 297.75/84 = 3.54

Branching fraction of $B_{(s)}^0 \to K^{*0}\overline{K^{*0}}$ decays

- Almost there for branching fraction measurement
- Simultaneous fit to signal and misID backgrounds
 e.g. m(KPiPi), m(KKKPi), m(KPiPiPi)
- Normalisation channels: $B^0 \rightarrow D^- \pi^+$ and $B^0_s \rightarrow D^-_s \pi^+_{\overline{a}}$
- Train Combinatorial and PID BDTs
- Amplitude analysis and time-dependent
 - measurement will follow

12000 W

∽ 10000

8000

6000 F

4000

2000

5200

Normalisation channels

Signal

Run 1 and Run 2 data

Study of $B^0 \rightarrow \rho^0 K^{*0}$ decays

- Also involves amplitude analysis of $B^0 \to (\pi^+\pi^-)(K^+\pi^-)$
 - Including various resonances 0
- *CP* violation due to penguin-tree interference
 - Similar decay signature as
 - Combinatorial BDT in place
 - **Observe** $B_s^0 \rightarrow \rho^0 K^{*0}$?

Preliminary mass fit with loose BDT cut

Leading Feynman diagrams

 B^0

B2VV acceptance studies

- Model the 5D acceptance of $m(K^{*0}), m(\overline{K^{*0}}), \cos(\theta_1), \cos(\theta_2), \phi$
- Model using Legendre Polynomials
- Verified using a BDT method
- Method can be used across
 B2VV analyses

Results for $\cos(\theta_1)$ vs $\cos(\theta_2)$

B2VV angular fitter

- Work in progress
- Angular fit to the vars: $m(V_1), m(V_2), \cos(\theta_1), \cos(\theta_2), \phi$
- Depending on the decay, many amplitudes and interferences can contribute

14 amplitudes in $B^0 \rightarrow \rho^0 K^{*0}$

Determination of γ

- **CKM Fitter:** $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$
- LHCb Combination:

 $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$

• New: Run 2 measurement $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$

Thanks for your attention!

Tianqi

Jordy

LHCb

Davide

Matthew

Francesca

Callum

a, b, c and d well known

