

An experiment for LHCspin

L. L. Pappalardo (pappalardo@fe.infn.it)

LHCspin Kick-off Meeting – December 18 2023

The LHCspin apparatus

The "final" LHCspin apparatus consists of a **new-generation polarized gaseous target** to be installed in the LHCb spectrometer usptream of the VELO

LHCspin Kick-off Meeting - December 18 2023

The plan for the upcoming years

Necessary pre-requisites for the approval of the project at LHCb (Run5):

- R&D campaign for the apparatus towards the final setup for LHCb
- feasibility studies in a dedicated experimental area served by LHC beams

Plan:

- LS3 (2026-28): Installation of existing setup (ABS + polarimeter from COSY) + minimal spectrometer for simple (but unique!) physics measurements
- Run4 (2029-32):
 - In-beam polarimetry studies (Paolo's talk)
 - first polarized measurements at the LHC
- Two sites have been identified in the LHC tunnel (IR3, IR4)

IR3 vs IR4

Essentially free from instrumentation

IR4 provides several advantages

Beam Gas Vertex using Gas jet Target

Not in use, could be replaced by our apparatus

IR4 provides several advantages

There are racks available

Detector concept

In the following only some general ideas are presented. Detailed studies will follow once the consistency, the composition and the expertise of the proto-collaboration will be established.

Detector concept at IR4

Goals:

- proof of principle of the future (large-scale) experiment with LHCb.

- measurement of single-spin asymmetries in inclusive hadron production in pH^{\uparrow} and PbH^{\uparrow} (see next slides)

Needed expertise (apart from pol. target):

- dipole magnet
- tracking detectors (Si strip, SciFi, drift chambers?)
- muon chambers (MWPC?)
- electronics
- DAQ
- slow control
- tracking/reconstruction algorithms

- ...

Apparatus:

- jet-target (but could be done also with storage cell)
- full (minimal) spectrometer: dipole magnet, tracking stations, muon system
- simple PID detectors (Calo, RICH)?

Detector concept at IR4

Some preliminary ideas for physics measurements

Possible physics measurements (I)

Single-spin asymmetries in inclusive J/ψ production in pH^{\uparrow} and pD^{\uparrow}

$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \left[f_{1T}^{\perp g}(x_a, k_{\perp a}) \otimes f_g(x_b, k_{\perp b}) \otimes d\sigma_{gg \to QQg} \right] \sin \phi_S + \cdots$$

 \blacktriangleright provides access to polarized gluon TMDs (e.g. gluon Sivers function $f_{1T}^{\perp g}$)

- describes spin-orbit correlations of unpol. gluons inside a transv. pol. proton
- sensitive to (unknown) gluon OAM
- Presently only a few points measured by Phoenix (BNL)
- Promising predictions for full measurement with LHCb + pol. target

find more in backup slides

LHCspin Kick-off Meeting - December 18 2023

Possible physics measurements (II)

Measurement of A_N single-spin asymmetries for hadron production in PbH^{\uparrow} UPC ($p^{\uparrow}Pb \rightarrow hPbX$)

- Two mechanisms can contribute:
 - TMD approach: process dominated by Sivers function
 - collinear twist-3 approach: process dominated by twist-3 fragmentation functions
- > A Phoenix measurement exists on forward neutron production in $p^{\uparrow}Al$ and $p^{\uparrow}Au$ UPC at $\sqrt{s_{NN}} = 200 \ GeV$

Phys. Rev. D98, 094025 (2018)

More ideas for physics measurements will be considered once the features of the apparatus will be more definite.

Predictions available (based on twist-3 approach)

Conclusions

- > LHCspin allows for a rich and peculiar physics program at LHC at unique conditions (backup slides)
- Full-scale experiment with LHCb proposed for Run5
- Exploit Run4 for R&D and first polarized measurements
- > Experimental setup to be installed during LS3 at IR3 or IR4
- Complexity of the apparatus (and physics goals) critically dependent on the consistency and expertise of proto-collaboration

Kinematic conditions for fixed-target collisions at LHC

Assuming pA collisions with $E_p \approx 7 \ TeV \implies \sqrt{s_{NN}} \approx 115 \ GeV$

$$2 \leq y_{LHCb} \leq 5 \quad \Longrightarrow \quad -3 \leq y_{CM} \leq 0$$

$$x_F = \frac{p_L^*}{|max(p_L^*)|} \sim x_1 - x_2 < 0$$

In the fixed-target configuration LHCb allows to cover **mid-to-large** x**at intermediate** Q^2 **and negative** x_F .

Complementarity is the key!

- Partial overlap with RHIC kinematics
- 12 GeV Jlab probes large-x at small Q^2
- EIC will mainly focus at small-x and large Q^2

The LHCspin apparatus

- Compact superconductive dipole magnet for static transverse field to maintain polarization inside the ($B = 300 \ mT$; $\Delta B/B \sim 10\%$)
- Need to modify main flange of VELO vessel (inward)
- No need for additional detectors!
- Possibility to switch from dipole magnet to solenoid to realize a Longitudinal polarized target

The jet target option

Alternative solution with **jet target** also under evaluation:

- lower density (~ 10^{12} atoms/ cm^2) \rightarrow about a factor of 40 smaller
- higher polarization (up to 90%)
- lower systematics in P measurement (virtually close to 0)
- Compatible with SMOG2 setup

Kinematic conditions for fixed-target collisions at LHC

Assuming pA collisions with $E_p \approx 7 \ TeV \implies \sqrt{s_{NN}} \approx 115 \ GeV$

$$2 \leq y_{LHCb} \leq 5 \quad \Longrightarrow \quad -3 \leq y_{CM} \leq 0$$

$$x_F = \frac{p_L^*}{|max(p_L^*)|} \sim x_1 - x_2 < 0$$

In the fixed-target configuration LHCb allows to cover **mid-to-large** x**at intermediate** Q^2 **and negative** x_F .

Complementarity is the key!

- Partial overlap with RHIC kinematics
- 12 GeV Jlab probes large-x at small Q^2
- EIC will mainly focus at small-x and large Q^2

Quark TMDs

Unpolarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\overline{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- suppressed: $q(x_{beam}) + \bar{q}(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small *x*
- target valence quarks probed at large x

- Lattice QCD: $\bar{s}(x) \neq s(x)$ [arXiv:1809.04975]
- proton sea more complex than originally thought!
- intrinsic heavy quarks?
- Still a lot to be understood
- H & D targets allow to study the antiquark content of the nucleon
- SeaQuest (E906): $\bar{d}(x) > \bar{u}(x) \implies$ sea is not flavour symmetric!

Quark TMDs

Transv. polarized Drell-Yan

• Sensitive to quark TMDs through TSSAs

$$A_N^{DY} = \frac{1}{P} \frac{\sigma_{DY}^{\uparrow} - \sigma_{DY}^{\downarrow}}{\sigma_{DY}^{\uparrow} + \sigma_{DY}^{\downarrow}} \implies A_{UT}^{sin\phi_S} \sim \frac{f_1^q \otimes f_{1T}^{\downarrow q}}{f_1^q \otimes f_1^q}, \quad A_{UT}^{sin(2\phi-\phi_S)} \sim \frac{h_1^{\downarrow q} \otimes h_1^q}{f_1^q \otimes f_1^q}, \quad \dots$$

(ϕ : azimuthal orientation of lepton pair in dilepton CM)

- Extraction of qTMDs does not require knowledge of FF
- Verify sign change of Sivers function wrt SIDIS

 $\left.f_{1T}^{\perp}\right|_{DY} = -f_{1T}^{\perp}\big|_{SIDIS}$

• Test flavour sensitivity using both H and D targets

Gluon TMDs

Theory framework well consolidated ...but experimental access still extremely limited! Similar naming/notation of quark TMDs, but there are important differences!

- the **linearity gTMD** (h_1^g) is completely unrelated to the quark transversity (h_1^q) , and has no collinear counterpart
- different naïve-time-reversal properties

	T-even	T-odd
q	$\mathbf{h_1^q}$	$\mathbf{h_1^{\perp q}}$
g	$\mathbf{h_1^{\perp g}}$	h ^g

- Also the gTMD phenomenology is enriched by the **process dependence** originating by ISI/FSI encoded in the **gauge links**.
- The gluon correlator depends on 2 path-dependent gauge links, resulting in a more complex process dependence

- Depending on their combinations, there are 2 independent versions of each gTMD that can probed in different processes and can have different magnitude and width and different x and k_T dependencies!
- E.g. there are 2 types of f_1^g and $h_1^{\perp g}$: [++] = [--] Weizsacker-Williams (WW) ; [+-] = [-+] DiPole (DP)
- 2 indep. GSF: $f_{1T}^{\perp g[+,+]}$ "f-type" \rightarrow antisymm. colour structure ; $f_{1T}^{\perp g[+,-]}$ "d-type" \rightarrow symm. colour structure

Probing the gluon TMDs

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-quark observables**

• Inclusive quarkonia production in (un)polarized pp interaction $(pp^{(\uparrow)} \rightarrow [Q\bar{Q}]X)$ turns out to be an ideal observable to access gTMDs (assuming TMD factorization)

• TMD factorization requires $q_T(Q) \ll M_Q$. Can look at **associute quarkonia production**, where only the relative q_T needs to be small:

E.g.: $pp^{(\uparrow)} \rightarrow J/\psi + J/\psi + X$

• Due to the larger masses this condition is more easily matched in the case of **bottomonium**, where TMD factorization can hold at larger q_T (although very challenging for experiments!)

Predictions based on CSM + TMD evolution for $x_1 \sim x_2 \sim 10^{-3}$ at forward rapidity [EPJ C 80, 87 (2020)] \implies Azimuthal amplitudes $\sim 5\%$!!

Probing the gluon Sivers funct.

 $\Gamma_T^{\mu\nu}(x, \boldsymbol{p}_T) = \frac{x}{2} \left\{ g_T^{\mu\nu} \frac{\epsilon_T^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M_n} (f_{1T}^{\perp g}(x, \boldsymbol{p}_T^2) + \dots \right\}$

	2		gluon pol.	
		U	Circularly	Linearly
pol.	U	f_1^g		$h_1^{\perp g}$
eon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

- sensitive to gluon OAM
- can be accessed through the measurement of the TSSAs in inclusive heavy meson production

$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \left[f_{1T}^{\perp g}(x_a, k_{\perp a}) \otimes f_g(x_b, k_{\perp b}) \otimes d\sigma_{gg \to QQg} \right] \sin \phi_S + \cdots$$

Predictions for pol. FT meas. at LHC (LHCspin-like) [Phys. Rev. D 102, 094011 (2020)]

L. L. Pappalardo

LHCspin Kick-off Meeting - December 18 2023

A synergic attack to gTMDs

[D. Boer: Few-body Systems 58, 32 (2017)]

	DIS	DY	SIDIS	$pA \to \gamma \operatorname{jet} X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$	$pp \to \eta_{c,b} X$ $pp \to H X$	$\begin{array}{c} pp \to J/\psi \gamma X \\ pp \to \Upsilon \gamma X \end{array}$
$f_1^{g[+,+]}$ (WW)	×	×	×	×	\checkmark	\checkmark	\checkmark
$f_1^{g[+,-]}$ (DP)	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×

Can be measured at the EIC

Can be measured at RHIC & LHC (including LHCb+SMOG2/LHCspin)

	$pp \to \gamma \gamma X$	$pA \to \gamma^* \text{ jet } X$	$e \ p \to e' \ Q \ \overline{Q} \ X$ $e \ p \to e' \ j_1 \ j_2 \ X$	$pp \to \eta_{c,b} X$ $pp \to H X$	$pp \to J/\psi \gamma X$ $pp \to \Upsilon \gamma X$
$h_1^{\perp g [+,+]} (WW)$	\checkmark	×	\checkmark	\checkmark	\checkmark
$h_1^{\perp g [+,-]}$ (DP)	×	\checkmark	×	×	×

	DY	SIDIS	$p^{\uparrow} A \rightarrow h X$	$p^{\uparrow}A \to \gamma^{(*)} \text{ jet } X$	$ \begin{array}{c} p^{\uparrow}p \rightarrow \gamma \gamma X \\ p^{\uparrow}p \rightarrow J/\psi \gamma X \\ p^{\uparrow}p \rightarrow J/\psi J/\psi X \end{array} $	$e p^{\uparrow} \rightarrow e' Q \overline{Q} X$ $e p^{\uparrow} \rightarrow e' j_1 j_2 X$
$f_{1T}^{\perp g [+,+]} (WW)$	×	×	×	×	\checkmark	\checkmark
$f_{1T}^{\perp g [+,-]}$ (DP)	\checkmark	\checkmark	\checkmark	\checkmark	×	×

Can be measured at RHIC and LHCb+LHCspin

UPC and gGPDs

3D maps of parton densities in coordinate space

Can be accessed at LHC in Ultra-Peripheral collisions (UPC)

- Impact parameter larger than sum of radii
 - Process dominated by EM interaction
 - Gluon distributions probed by pomeron exchange
 - Exclusive quarkonia prod. sensitive to gluon GPDs [PRD 85 (2012), 051502]

LHCspin could allow to access the GPD E^g (a key ingredient of the Ji sum rule)

$$J^{g} = \frac{1}{2} \int_{0}^{1} dx \Big(H^{g}(x,\xi,0) + E^{g}(x,\xi,0) \Big)$$

5

р

photon $flux \propto Z^2$

GPDs

NPA

(2019)

24

Merging spin physics with heavy-ion physics

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

More physics reach with unpolarized FT reactions

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
 - 5-quark Fock state of the proton may contribute at high x!
 - charm PDFs at large x could be larger than obtained from conventional fits
- pA collisions (using unpolarized gas: He, N, Ne, Ar, Kr, Xe)
 - constraints on nPDFs (e.g. on poorly understood gluon antishadowing at high x)
 - studies of parton energy-loss and absorption phenomena in the cold medium
 - reactions of interest for cosmic-ray physics and DM searches
- PbA collisions at √s_{NN} ≈ 72 GeV (using unpolarized gas: He, N, Ne, Ar, Kr, Xe)
 Study of QGP formation (search for predicted sequential quarkonium suppression)

 $c\overline{c}$ states: J/ψ , χ_c , ψ' ,... Different binding energies, different dissociation temperatures \rightarrow **medium thermometer**

L. L. Pappalardo

LHCspin Kick-off Meeting - December 18 2023