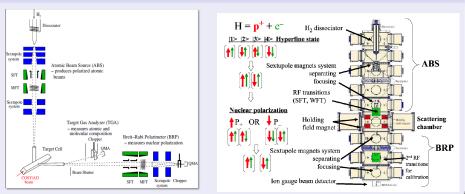
Target polarimetry


Paolo Lenisa

University of Ferrara and INFN (Italy)

December, 18 2023

Atomic beam source with Breit-Rabi polarimeter (BRP)

Storage cell vs free jet configurations

Breit-Rabi polarimeter

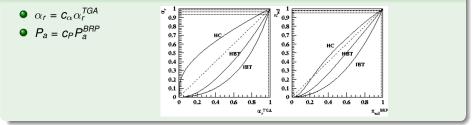
- Stern-Gerlach effect + RF-transition to determine HFS occupation number
- Only sensitive to atomic polarization (no information on molecules)
- Viable solution for free-get target (→ A. Nass' talk)
 - Measured polarization at RHIC: P_{target} = 92.4 % ± 1.8 %

Polarization measurement with BRP - Sampling Polarimeter

Polarization in a Storage Cell

$$P_T = \alpha_0 \alpha_r P_a + \alpha_0 (1 - \alpha_r) P_m$$

- $P_T \equiv$ total target polarization
- $\alpha_0 \equiv$ atomic fraction in absence of recombination
- $\alpha_r \equiv$ atomic fraction surviving recombination
- $P_a \equiv$ polarization of atoms
- $P_m \equiv$ polarization of recombined molecules

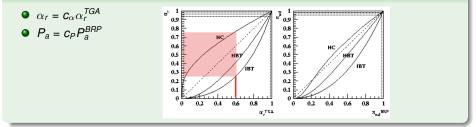

Polarization measurement with BRP - Sampling Polarimeter

Polarization in a Storage Cell

$$P_T = \alpha_0 \alpha_r P_a + \alpha_0 (1 - \alpha_r) P_m$$

- $P_T \equiv$ total target polarization
- $\alpha_0 \equiv$ atomic fraction in absence of recombination
- $\alpha_r \equiv$ atomic fraction surviving recombination
- *P_a* = polarization of atoms
- $P_m \equiv$ polarization of recombined molecules

Sampling corrections

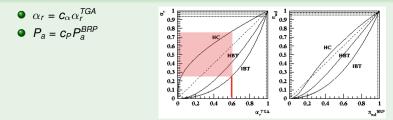

Polarization in a Storage Cell with Sampling Polarimeter

Polarization in a Storage Cell

$$P_T = \alpha_0 \alpha_r P_a + \alpha_0 (1 - \alpha_r) P_m$$

- $P_T \equiv$ total target polarization
- $\alpha_0 \equiv$ atomic fraction in absence of recombination
- $\alpha_r \equiv$ atomic fraction surviving recombination
- $P_a \equiv$ polarization of atoms
- $P_m \equiv$ polarization of recombined molecules

Sampling corrections

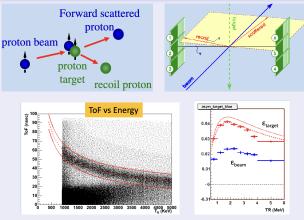

Polarization in a Storage Cell with Sampling Polarimeter

Polarization in a Storage Cell

$$P_T = \alpha_0 \alpha_r P_a + \alpha_0 (1 - \alpha_r) P_m$$

- $P_T \equiv$ total target polarization
- $\alpha_0 \equiv$ atomic fraction in absence of recombination
- α_r = atomic fraction surviving recombination
- $P_a \equiv$ polarization of atoms
- $P_m \equiv$ polarization of recombined molecules

Sampling corrections

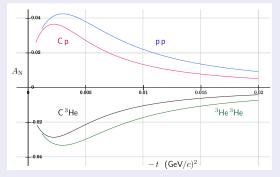

Limits of sampling polarimetry with BRP

- Systematic error increases with recombination and depolarization
- Not able to measure molecular polarization (→ R. Engels' talk)

LCHspir

Absolute Polarimetry with Carbon Nuclear Interference (CNI)

Recoil spectrometer at RHIC



- Array of Si detectors measures *T_R* & ToF of recoil proton.
- Channel no corresponds to recoil angle θ_R.
- Correlations (T_R & ToF) and (T_R & θ_R) \rightarrow elastic process
- $A_N \rightarrow$ beam/target polarization

Recoil polarimetry at LHCspin

Estimations from prof. N. Buttimore (Trinity College), Ferrara - 16.07.19)

Analyzing power:

• Cross section at 7 TeV: σ_{tot} = 47 mb (255 GeV: σ_{tot} = 39.2 mb).

- Recoil energies at 7 TeV: 1.7 MeV < T_R <4.6 MeV</p>
- Recoil angles at 90°: 30 mrad < θ < 50 mrad

A staged approach to target polarimetry for LHCspin

Stage 1: jet target + BRP + Si-detectors (recoil polarimeter)

- Use of BRP + left/right Si-detectors (\geq 500 μ m to stop 5 MeV protons)
 - Validation of theoretical predictions of analysing power at 7 TeV
 - Evaluation of detection efficiency and background
- Note: recoil polarimeter measures weighted atomic + molecular polarization

A staged approach to target polarimetry for LHCspin

Stage 1: jet target + BRP + Si-detectors (recoil polarimeter)

- Use of BRP + left/right Si-detectors (≥ 500 µm to stop 5 MeV protons)
 Validation of theoretical predictions of analysing power at 7 TeV
 Evaluation of detection efficiency and background
- Note: recoil polarimeter measures weighted atomic + molecular polarization

Stage 2: ABS and storage cell + BRP + recoil polarimeter

- Use of Storage cell with "windows" + left/right Si-detectors
 - BRP with opened cell for tuning of RF transitions of ABS
 - Recoil detector viable polarimeter for a molecular polarized target
 - Unpolarized gas for absolute calibration of target density