POLARIZATION AND RECOMBINATION MEASUREMENTS

18.12.2023 I RALF ENGELS FZ JÜLICH / GSI DARMSTADT

Member of the Helmholtz Association

THE EXPERIMENTAL SETUP

Problem:

Hydrogen Atoms are Radicals

 \rightarrow chem. reactions normally destroy the polarization

Main reaction: **Recombination**

Beam

Target Density: increased by a factor ~100 : 10¹⁴ atoms/cm²

Member of the Helmholtz Associat

STORAGE CELL COATING

Which surface coatings are working?

- 1.) Aluminium cells -> Bad secondary-electron yield -> Beam disturbance
- 2.) Teflon cells -> Isolator -> Beam disturbance
- 3.) Water ice -> Vacuum problems !!!

\rightarrow What about a carbon coating ???

RECOMBINATION ON CARBON IN THE ISM

- Direct recombination is not probable due to energy and momentum conservation
- 3-particle interactions are very rare at these densities
- Recombination on a carbon surface as catalyser?

RECOMBINATION ON CARBON IN THE ISM

Possible Recombination Mechanisms:

WWU Münster; Phys. Institute, Prof. H. Zacharias

Strong C-H Bond (~ 4.3 eV) prevents recombination

THE EXPERIMENTAL SETUP

Problem:

Hydrogen Atoms are Radicals

 \rightarrow chem. reactions normally destroy the polarization

Main reaction: **Recombination**

Beam

Target Density: increased by a factor ~100 : 10¹⁴ atoms/cm²

HD MOLECULES

Lyman Spectrum of HD Molecules

CH

Forschungszentrum

Member of the Helmholtz Association

R. Engels et al., Phys. Rev. Lett. 124 113003 (2020)

RADIATION TEST FOR LYMAN-ALPHA

Possible Light Source: Dissociator of the ABS

Bright Balmer light visible -> are there even Lyman photons ?

Reflections on aluminum surface for Lyman photons ~ 100%

STORAGE CELL COATING

Which surface coatings are working?

- 1.) Aluminium cells -> reflects Lyman- α photons
- 2.) Teflon cells -> transmission through the surface ?
- 3.) Water ice -> reflects Lyman-α photons / transmission through the surface ? (O-H: ~ 4.8 eV)

Expectation for Carbon: -> Large Recombination in Combination with Lyman-α radiation !

PREPARATION OF NEW STORAGE CELL

- A 200 nm amorphous carbon-coated storage cell was provided by Pedro Costa Pinto from CERN
- Requirements:
 - High polarization preservation
 - No recombination
- 4 gold plated tungsten wires run along the inside of the storage cell
- Installation into the interaction chamber

MASS SPECTROSCOPY

LYMAN SPECTRA FOR H

Polarization spectrum of the Weak Field Transition Unit for H

Forschungszentrum

LYMAN SPECTRA FOR H₂

Polarization spectrum of the Weak Field Transition Unit for H₂

Forschungszentrum

POLARIZATION OF THE PROTONS

Member of the Helmholtz Association

CONCLUSION

- (Exceptionally) high recombination rate: 95.5% < c < 100% driven by Lyman-α photons.
- No dominant water layer present; no buildup of water layer on amorphous carbon.
- Initial molecular polarization (fit): $P_m = 0.57 \pm 0.03$ ($P_a = 0.78$).
- Max. polarization for H_2 from direct measurements: $p_z = -0.54 \pm 0.01$.

Corresponding Paper is in Preparation by Tarek El-Kordy

