SEE Rate Calculation

- 1. Heavy ion test and rate calculation
- 2. Single Event Effect rate calculation

SEE Basic Mechanisms and Model

- Charge deposition and collection
 - There are plenty of different SEE that can potentially occur in a device
 - They are all initiated by the same scheme
 - An energetic particle passes through the device
 - Energy is transmitted to the semi-conductor by ionization
 - A large amount of charge is generated on the ion path
 - The generated charge is collected and leads to an event
- SEE are « isolated » events taking place in a device, caused by only one particle strike
 - The SEE sensitivity is not represented by an irradiation level (like for TID/TNID)
 - The SEE sensitivity is represented by a probability of occurrence
 - Specific to the event type
 - Specific to the device

SEE Basic Mechanisms and Model

- This probability is called the device Cross Section
 - The device cross section represents the sensitivity of a device to a given SEE under specific conditions
 - The cross section is represented as a function of
 - The LET under heavy ions
 - The energy under protons
- LET concept
 - Linear Energy Transfer
 - The LET characterizes the amount of energy that a particle yields along its path in the matter
 - The higher the LET, the more the energy deposition in the device is important

LET and Energy are two different things...

Cross Section

• The Cross Section is the ratio of counted events divided by received ions

$$\sigma = \frac{event_number}{fluence} = \frac{\#}{\phi}$$

- The Cross Section can be measured
 - It is a test data
 - Events counted under beam for a fixed fluence

) File:	C:\OMERE\crossLet.dat		
🖲 Data Inp	put		
	LET MeV.cm2.mg-1	Cross Section cm² /device	
	3.00e+000 6.00e+000 1.50e+001 3.00e+001 4.50e+001 6.00e+001	1.00e-007 6.00e-007 8.00e-006 5.00e-005 1.00e-004 2.00e-004	
Ascending order			
) Fit parar	neters only (Weibull)		
🔘 Step fur	nction:		
	Limit cross section	on: cm²	
	LET thresho	MeV cm	² / mg

Cross Section

Calculated Weibull Par	ameters: W = S =	45 2.5	MATERIAL = SILICO 2.33 g/cm3	ERIAL = SILICON 2.33 g/cm3	
			View Data	Export data	
Limit Cross Section:	2e-004	cm² /device	•		
LET Threshold:	1 N	1eV cm² / mg	Use the fit parameters		
Critical charge:	0.02062	pC	estimated by OMERE		
a = b =	141.42	micrometer(s)			
			Collection efficiency:	1.00	

- Weibull fit parameters
 - W (width)
 - S (shape)
 - σ_{SAT} (saturated cross section)
 - L_{th} (threshold LET)

- Weibull curve
 - Weibull distribution (red curve) fitted to the test data (black dots)

CREME and RPP Method

- CREME (Cosmic Ray Effect on Electronics)
 - Adams, 1986
- Assumption
 - Rectangular Parallelepiped (RPP) sensitive volume
 - Constant LET all along ion path
 - Qcrit critical charge of this sensitive volume
 - If Q_{dep} > Q_{crit} then an event occur
- CREME enables to calculate the SEE rate in a given sensitive volume characterized by a specific LET threshold
 - Calculation parameters
 - a, b and c
 - L_{th}

 $\Delta Q \ge Q_{crit}$

SEE Rate

 For the SEE rate calculation, we assume that an event will occur if the charge deposited in the target by an incident ion is greater than a limit

$$\Delta Q \geq Q_{crit}$$

- The deposited charge is proportionnal to the path length Δx in the sensitive volume, and to the LET of the incident particle
- The LET depends on the ion species, the ion energy and the target material

$$\Delta Q \propto \Delta E = LET_{Si}^{ion}(E) \cdot \Delta x$$

SEE Rate

- For a given sensitive volume
 - The SEE rate is calculated with the UPSET module of CREME86 (included in OMERE)
- For the entire device
 - The single-cell rate is correlated to the device under-irradiation response with OMERE

Interpretation of Data

- LET threshold (or on-set LET)
 - Minimum LET for which an event can occur
- All cells do not have the same LET threshold in a device
 - Progressive increase of the cross section curve

- The information of the SEE susceptibility of the entire device (including all cells) depending on the LET is given by the cross section curve
 - The rate for one sensitive volume (one L_{th}) is calculated at all LET and integrated over the whole cross section curve
- This SEE rate is calculated by OMERE
 - With the CREME rate calculated for one cell with a specific LET threshold
 - Taking into account the whole device sensivity as a function of the LET

Interpretation of Data

- Weibull distribution
- Number of cells for which
 Lth < L
- LET threshold distribution
- CREME rate (at each LET)
- Device SEE rate
 - Integration over the whole cross section curve

$$\Sigma(L) = \Sigma_0 \left[1 - \exp\left(\frac{L - L_0}{W}\right)^s \right]$$
$$N(L) = N_0 \left[1 - \exp\left(\frac{L - L_0}{W}\right)^s \right]$$

$$\zeta(L) = \frac{dN(L)}{dL}$$

T(L) CREME

$$\tau = \int_{L_0}^{\infty} \mathbf{T}(L) \boldsymbol{\zeta}(L) dL$$

SEE Caused by Protons

- Proton cross section
 - Only one particle type (proton)
 - No need to use the LET
 - Proton-caused SEE are indirect
 - No geometry/angle effect taken into account
 - Cross section expressed as the function of the incident energy
- Proton SEE rate
 - Product of the cross section multiplied by the flux at each energy
- Device considered as potentially sensitive to protons if the heavy ion LET threshold is smaller than 15 MeV.cm².mg⁻¹

$$\tau_{p+} = \int_{E_0}^{\infty} \varphi(E) \Sigma(E) dE$$

SEE Caused by Protons

 Proton cross section test data (black dots) fitted to a Weibull distribution (red curve)

- The proton cross section can be deduced from the heavy ion cross section
 - PROFIT
 - SIMPA
 - METIS

Heavy lons Test and Rate Calculation

- The heavy ion test is performed to measure the device cross section curve
- The heavy ion test consists in
 - Putting the device under operation
 - Irradiate the device with a specific ion beam
 - Flux
 - Fluence
 - Ion species
 - LET
 - Count the event number with respect to the fluence at several LET
- $\sigma = \frac{\#}{\Phi}$

- LET threshold
- Saturated cross section
- Weibull parameters W and S

Effective LET

- In a heavy ion test, the LET given by the facility is the surface LET
- The LET does not keep a constant value in the device volume
- If the sensitive volume depth is known, the effective LET can be calculated
 - Averaged LET value in the die

Superstructure beyond Silicium Number of layers :	1
Layer 1: 0	Silicon dioxide (SiO2) 🔻 µm
Sensitive area on Silicium X Min of sensitive area : X Max of sensitive area	5 µm 10 µm
Particle and incident energy Incident particle : Xe	Energy : 300 MeV
Results Penetration depth in Si: Superstructure surface LET	28.90 µm : 67.30 MeV cm2 mg-1
Mean LET on the sensitive area	: 60.29 MeV cm2 mg-1 : 60.29 MeV cm2 mg-1 : 5.00 μm
Deposited charge utput : C:\OMERE\LETequivaler	: 3.11e+000 pC

Effective LET

LET Spectrum

10

Helun - U Num

Be Boron

_Cation

100

LET

1

E(MeV)

Differential Energy Spectra

SEE Rate

SEE Rate Calculation

