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The radiation transport problem
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Photons

Leptons (e±, μ±, τ±, ν)
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Ions (Z,A)

Radioactive sources

Cosmic rays

Colliding particle beams
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…

“Monoenergetic”/Spectral

Energies: 

- keV-PeV

- down to thermal energies for neutrons

Arbitrary geometry

Various shapes

materials, compounds

Radiation-matter interaction

Secondary particles

Particle shower

Material activation

Magnetic and electric fields…

Measure/estimate/score:

- Energy-angle particle spectra

- Deposited energy

- Material damage

- Biological effects

- Radioactive inventories…
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Terminology
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• Radiation field: an ensemble of particles, possibly of different species (𝛄,e±,p,n,…), 

each at a position r moving with energy E along a direction Ω=(θ,ɸ) with polar and 

azimuthal angles θ and ɸ

• Every particle species can undergo a series of interaction mechanisms, each 

characterised by a differential cross section:

• The integrated cross section σ (area) measures the likelihood of the interaction

• Consider a medium with N0 scattering centers per unit volume

• N0 σ gives the probability of interaction per unit path length, AKA

macroscopic cross section

• 1/(N0 σ) gives the mean free path or

scattering length between consecutive

interactions



The transport equation
• Let n0(r,E,Ω,t=0) be the particle density at the radiation source with energy E, moving 

in a direction Ω.

• The transport equation determines the radiation field (consisting of several particle 

species i, with different energies E, and different directions Ω) at another position r at 

a later time t by looking at the particle balance in a small volume V (with surface S) 

around r:

Notation: Ω’’ is a direction such that scattering angles Ω’ bring it to Ω.
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(unscattered particles)

(particles scattered out)

(particles scattered in)

(production of secondaries)

(source)



Solution strategies
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• Transport equation to be solved for an arbitrary source density n0(r,E,Ω,t), an arbitrary 

geometry, and realistic interaction cross sections. 

• Solution strategies:

• Analytical: only for restricted geometries and restricted interaction models

• Spectral: exploit symmetries and expand in appropriate basis functions. Only for restricted cases

• Numerical quadrature integration: general, but inefficient for high-dimensional integrals

• Monte Carlo method: general, efficient, can treat arbitrary radiation fields and geometries

• Monte Carlo is a stochastic method, exploiting random numbers to:

• Simulate an ensemble of particle histories governed by known interaction cross sections

• Track them in arbitrary geometries

• Accumulate contribution of each track to statistical estimator of the desired physical observables



The origins
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Probability and statistics primer
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Random variables
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• A random variable X describes the outcome of a process whose value we cannot predict 
with certainty, but nevertheless we know:

• Its possible values.

• How likely each value is, governed by the probability density function (PDF), p(x)

• Properties of p(x):

• Positive defined: p(x)>=0 for all x 

• Unit-normalized:  ∫dx p(x) = 1

• Integral gives probability: ∫a
b dx p(x) = P(a<x<b)

• The expectation value                                          measures the average value of X

• The variance σ2 measures the average square deviation from <X>

• The standard deviation σ is the square root of the variance and is widely used as 
measurement of data spread



Relevant examples
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Uniform distribution

Basic PDF for sampling Probability of survival Natural distribution of large samples

Exponential Gaussian



Generation of homogeneously distributed random numbers
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• For reasons of reproducibility, we use pseudo-random numbers: uniformly distributed 

numbers between 0 and 1 obtained from a deterministic algorithm (not random!) which pass 

all tests of randomness.

• Needs one/several seed values, X1, from which the sequence starts: X2,X3,X4,…

• Different seed values yield different random number sequences



Sampling from arbitrary distributions

• Sampling: generation of random values according to a given distribution

• Various quantities are sampled
• step length

• event type

• energy loss

• deflection…

• Fundamental problem: we know how to sample uniformly distributed values, but how do we 
sample from arbitrary distributions?

• There’s a whole array of sampling 
techniques:

• Inverse sampling

• Rejection sampling

• …
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(Analytical) Inversion

• 𝑓 𝑥 = 𝑥, 𝑥 ∈ [𝐴, 𝐵]

𝐴׬
𝑥
𝑓 𝑡 𝑑𝑡 𝐴׬=

𝑥
𝑡 𝑑𝑡 =

𝑡2

2
|𝐴
𝑥 =

𝑥2−𝐴2

2
𝐴׬
𝐵
𝑓 𝑡 𝑑𝑡 =

𝐵2−𝐴2

2

𝐹 𝑥 = 𝐴׬
𝑥
𝑓 𝑡 𝑑𝑡/ 𝐴׬

𝐵
𝑓 𝑡 𝑑𝑡 =

𝑥2−𝐴2

𝐵2−𝐴2
= x

𝑥 = 𝐴2 + (𝐵2 − 𝐴2)x x random number uniformly sampled over (0,1]

• 𝐹 𝑥 can also be computed numerically and the 𝑥 = 𝐹−1 x inversion performed by 

a lookup table

𝑥 = x1

if x2 > 𝑓(x1)/𝑓(𝑥𝑚𝑎𝑥), then resample x1 and x2, otherwise keep 𝑥 = x1
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Rejection



Simplified Monte Carlo simulation algorithm
Loop over np primary events:

1. Initialize source particle position and momentum

2. If particle is in vacuum, advance it to next material boundary 

(or sample step length to decay if unstable)

3. Determine total interaction cross section at present energy and material: σ

4. Evaluate the mean free path to the next interaction: λ =1/(Nσ)

5. Sample step length to next interaction from p(s) = (1/λ) e-s/λ

6. Decide nature of interaction:   Pi = σi / σ,   i=1,2,…,n

7. Sample the final state of the selected interaction mechanism i. Add generated 

secondary particles to the stack if any

8. Score contribution of the track/event to the desired physical observables

9. Go to 2 unless particle energy drops below user preset threshold or particle exits the geometry
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Example: 100-MeV proton beam on water
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10 simulated proton trajectories in water (Ep=100 MeV):

Protons (red)
Electrons (green)



Statistical uncertainties

- Results from Monte Carlo simulations are affected by statistical uncertainty

- How does it depend on the number of simulated primary particles?
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Example: 100-MeV proton beam on water
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Example: 100-MeV proton beam on water
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Example: 100-MeV proton beam on water
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• Results from MC simulations are affected

by statistical uncertainty

• The larger the number of primaries, 

the smaller the error bars



A numerical experiment
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• Imagine a source emitting particles with a flat energy distribution which deposit all 

their energy in a detector

• Let the detector/estimator measure the average deposited energy:

• What can one say about the estimated <E>?

• It is a random variable

• As such, it follows a certain distribution    

• Which one? It depends on the number of events

p(E)

0 1

Detector
<E>

Source

E



Distribution of <E> if source emits N=1 particle
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Distribution of <E> if source emits N=2 particles
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p(E)

0 1

Detector
<E>

Source
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Distribution of <E> if source emits N=3 particles
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p(E)

0 1
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<E>

Source

E



Distribution of <E> if source emits N=10 particles
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p(E)

0 1

Detector
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Distribution of <E>

• For sufficiently large number of 

contributions, the estimate mean <E> 

follows a Gaussian!

• The standard deviation (~width) of this 

Gaussian is a measure of the statistical 

uncertainty when estimating <E>.

• The standard deviation (statistical 

uncertainty) decreases with the 

number of contributions N

• We now check how the statistical 

uncertainty drops with N
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Standard deviation

• For a very large number of samples the detector would 

yield the estimated mean <E>=1/2 with sigma=0.

• Statistical uncertainty decreases with the number of 

contributions N as 1/sqrt(N).
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Central Limit Theorem

• In the numerical experiment above, the “detector” plays the role of the expectation value of 
any physical observable estimated à la Monte Carlo.

• If the estimator receives a sufficiently large number of contributions N, the distribution of its 
expectation value tends to a Gaussian centered around the true expectation value, with 
standard deviation that goes like 1/sqrt(N). That is, the statistical uncertainty of a MC 
estimate reduces as 1/sqrt(N) with the number of primary events.

• This is essentially the Central Limit Theorem.

• Note that:

• When doing a Monte Carlo simulation, quoting a result without a measure of the statistical uncertainty 
is meaningless.

• Quoting a result obtained with a low number of contributions is dangerous: the distribution of the 
mean may still be far from the Gaussian centered around the actual expectation value!
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Recommendations

• Remember that the variance itself is a random variable. E.g., runs with the same 

number of primaries but different random seeds will give different values of the 

variance. The larger the number of primaries, the smaller the difference (MC results 

for different seeds converge to the same value).

• It is wise to examine how convergence is attained: verify that error bars drop with 

1/sqrt(N). Sudden/isolated spikes indicate poor sampling in some corner of phase 

space.

• It is often a good idea to plot 2D and 3D distributions. The human eye is a good tool 

for judging statistical convergence of 2D/3D estimators!
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Statistical uncertainty

Statistical errors, due to sampling (in)efficiency

Relative error Quality of Tally (from an old version of the MCNP Manual)

50 to 100% Garbage

20 to 50% Factor of a few

10 to 20% Questionable

< 10% Generally reliable

• The MCNP guideline is based on experience, not on a mathematical proof. But it has been 
generally confirmed also working with other codes.

• Small penetrations and cracks in a geometry are very difficult to handle by MC, because 
the “detector” is too small and too few non-zero contributions can be sampled, even by 
biasing.
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Assumptions, limitations, and
sources of uncertainty
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Assumptions and limitations

• Materials are static, homogeneous, and isotropic.

• Radiation transport is treated as a Markovian process: the fate of a particle depends 

only on its actual state, and not on its history.

• Material properties are not affected by previous histories.

• Particles follow trajectories and interact with individual atoms/electrons/nuclei.

• A general order-of-magnitude measure: the particle’s de Broglie wavelength must be small 

compared to typical interatomic distances (Angstroem).
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Validity of the trajectory picture
• De Broglie wavelength:

where EK is the particle’s kinetic energy, m0 is 

its rest mass, h is the Planck constant, and c

is the speed of light.

• Typical interatomic distances are in the order 

of ~Angstroem.

• E.g.: MC simulation of electron transport at 

energies much below 100 eV is questionable.

• The assumption of scattering on single target 

puts a lower energy bound on applicability of 

MC
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Systematic uncertainties [1/2]

• We have discussed statistical uncertainties above.

• That’s only part of the uncertainty in the results of any MC simulation. The rest are 

systematic uncertainties, due to:

• Adopted physics models: different codes are based on different physics models. Some models are 

better than others. Some models are better in a certain energy range. Model quality is best shown by 

benchmarks at the microscopic level (e.g. thin targets)

• Transport algorithm: due to imperfect algorithms, e.g., energy deposited  in the middle of a step, 

inaccurate path length correction for multiple scattering, missing correction for cross section and 

dE/dx change over a step, etc. Algorithm quality is best shown by benchmarks at the macroscopic 

level (thick targets, complex geometries)

• Cross-section data uncertainty: an error of 10% in the absorption cross section can lead to an error of 

a factor 2.8 in the effectiveness of a thick shielding wall (10 attenuation lengths). Results can never 

be better than allowed by available experimental data
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• Systematic errors due to incomplete knowledge:

• material composition not always well known. E.g. concrete/soil composition (how much water 

content? Can be critical)

• beam losses: most of the time these can only be guessed. Close interaction with engineers and 

designers is needed.

• presence of additional material, not well defined (cables, supports...)

• Is it worth to do a very detailed simulation when some parameters are unknown or badly known? 

• Systematic errors due to simplification:

• Geometries that cannot be reproduced exactly (or would require too much effort)

• Air contains humidity and pollutants, has a density variable with pressure 
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Systematic uncertainties [2/2]



Errors, bugs, mistakes

• Monte Carlo codes can contain bugs:

• Physics bugs

• Programming bugs (as in any other software, of course)

• User mistakes:

• mistyping the input (precious help from the user interface)

• error in user code

• wrong units

• wrong normalization: quite common

• unfair biasing: energy/space cuts cannot be avoided, but must be done with much care
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Continuous processes
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• EMFP: mean free path between consecutive Coulomb scattering 

• IMFP: mean free path between consecutive ionization losses

• RANGE: estimated distance traveled to rest

• Estimate number of ionization losses:

• N=RANGE/IMFP

• e.g. for a 1-MeV electron, N~104

• Estimate number of Coulomb scatterings:

• N=RANGE/EMFP

• e.g. for a 1-MeV electron, N~104

• Too many to simulate explicitly!

• A more practical approach is necessary to keep CPU time within acceptable bounds.

Electrons in Al

Too frequent
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• Ionization loss cross sections     1/T2

→ Small losses are dominant

Expensive CPU-wise to simulate them all

• Need for aggregation along particle step:

• Determine average energy loss per unit path 

length up to Tδ (restricted stopping power)

• Random fluctuations applied on top

Energy is deposited locally along the step

Two different treatments: small vs large energy losses

Ionization energy losses

• Transferred energy sets target electron in motion

→ δ ray

• δ rays

• are energetic

• can transport energy away from origin

→ are explicitly produced/transported

• Cross sections depends on projectile

• Moller (e-)

• Bhabha (e+)

• generic spin-0, spin-1/2…

0 T
δ

Energy loss

T
max

δcontinuous - local discrete -
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• Use of an algorithm based on the Moliere multiple-scattering theory
• screened Rutherford differential cross section for an individual collision

• small-angle approximation

• via analytical manipulations → minimum applicable step length (energy-dependent)

• at every step t, aggregate deflection is sampled from FMol

• There are situations where the Moliere theory is not applicable:
• Transport in residual gas

• Interactions in thin geometries like wires or slabs (few elastic collisions)

• Electron spectroscopies at sub-10-keV energies

• Micro-dosimetry → single scattering
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Discrete processes
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Nuclear reactions
i. to decide the process occurrence

Nucleus description

Pre-equilibrium stage

(non-nucleons are emitted/decayed )

IntraNuclear Cascade

Evaporation/Fragmentation/Fission

γ de-excitation

t (s)

10-23

10-22

10-20

10-16

ii. to decide the reaction final state

Reaction 

model
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Low-energy neutrons

No general effective model is able to reproduce the complex resonance structure.

Transport codes rely on libraries of evaluated nuclear data to describe neutron interactions below ~20 

MeV for a reasonably comprehensive list of isotopes, including elastic scattering, capture, fission, and many 

explicit inelastic channels.
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Photon interactions

+ photonuclear reactions

+ + / - pair production

[PENELOPE manual]
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Electron/positron interactions

[PENELOPE manual]

+ electronuclear reactions
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Thresholds

In a MC simulation, particles are tracked until either

• they leave the simulation geometry;

• their energy drops below a predefined value, the transport threshold.

Too high thresholds imply premature tracking end, preventing further traveling. 

Too low thresholds imply waste of time with no gain in the simulation results.

Thresholds should be set such as the particle residual range is smaller than the 

desired resolution.

Electromagnetic particle thresholds play a major role in CPU-time consumption.

Photons travel farther than electrons of the same energy, hence require lower 

thresholds.



Scoring
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• It is said that Monte Carlo (MC) is a “mathematical experiment”; the MC equivalent of the result of 

a real experiment (i.e., of a measurement) is called an estimator

• Just as a real measurement, an estimator is obtained by sampling from a statistical distribution and 

has a statistical error (and in general also a systematic one)

• There are often several different techniques to measure the same physical quantity: in the same 

way, the same quantity can also be calculated using different kinds of estimators

The concept

Where?

In geometry regions, across boundaries,

on independent spatial grids

When?

At the end of a history batch or at 

each event

What:

Energy deposition and associates (power, dose), fluence or current versus energy, angle or 

other kinematic variables, time, DPA, residual activity…
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• 𝑁 : number of identical particles

• 𝑁0 : number of atoms per unit volume

• 𝜆 : mean free path, i.e. average distance travelled by a particle in a material before an 

interaction. It depends on the material, particle type and energy

• 𝑙 : total distance travelled

• 𝑣 : average particle velocity

Definitions
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• Σ [𝑐𝑚−1] = 1/𝜆 [𝑐𝑚] : macroscopic cross-section, i.e. probability of interaction per unit 

distance. It depends on the material, particle type and energy.

• 𝜎 =
Σ

𝑁0
(atom effective area [barn = 10-24 cm2 ]) : microscopic cross-section, i.e.

• the area of an atom weighted with the probability of interaction (hence the name “cross-section”) 

• or the probability of interaction per unit length, with the length measured in atoms/cm2

• The microscopic and macroscopic cross-section have a similar physical meaning of

“probability of interaction per unit length”, with length measured in different units. Thus, the

number of interactions can be obtained by multiplying them by the corresponding particle

track-length

Cross section
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• 𝑅 = 𝑁𝑙Σ = Φ𝑉Σ : number of reactions in a given time interval inside the volume V 

(where Φ is the fluence and the product ΣΦ is integrated over energy or velocity)

• ሶ𝑅 = 𝑁
𝑑𝑙

𝑑𝑡
Σ = 𝑁𝑣Σ : reaction rate

•
𝑑 ሶ𝑅

𝑑𝑉
=

𝑑𝑁

𝑑𝑉
𝑣 Σ = 𝑛 𝒓, 𝑣 𝑣Σ : reaction rate inside the volume element 𝑑𝑉

• Φ 𝒓, 𝑣 = 𝑛 𝒓, 𝑣 𝑑𝑙 [cm-2 ] : fluence, i.e. time integral of the flux density

• Fluence is expressed in particles per cm2 but in reality represents the density of particle tracks [cm / cm3] !

• ሶΦ 𝒓, 𝑣 = 𝑛 𝒓, 𝑣 𝑣 [cm-3 cm/s = cm-2 s-1 ] : fluence rate or flux density

Reaction rate and fluence
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Fluence vs current
Surface crossing estimation

• Consider the volume generated by a surface S

times an infinitesimal thickness dt.

A particle incident with an angle θ with respect to the normal to the surface S

travels a segment dt/cosθ inside the volume.

• The average fluence F over the surface S is defined as:

• While the average current J over the surface S is given by the number of particles crossing the 

surface divided by the surface area: J = N/S

• Fluence is independent of the orientation of the surface S, while current is not !

• On a flat surface in an isotropic particle field J = F/2

• Current is meaningful in case one needs to count particles (e.g. for a signal trigger)

• But to estimate dose, activation, radiation damage, instrument response… the relevant 

quantity to be used is fluence, since it is proportional to the interaction rate

dt

1 =0o

2

3 =90o

S

dtS

dt
i

i

dt



→
=

cos
lim

0

total tracklength

inside the volume

volume
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• taking the average of the values for each 

z-bin (i.e. over all X, Y or R, Φ)

• taking the highest value for each z-bin

the integral is the 

total energy deposition in water

the integral has no meaning

after multiplying by the transverse 
XY or R2Φ/2 scoring surface [cm2]

From 3D spatial meshes of energy deposition density (GeV/cm3), 

different 1D plots can be obtained:  

Energy deposition profiles



Biasing

Monte Carlo method                     F. Cerutti                     CERN, Dec 4, 2023 53



Monte Carlo method                     F. Cerutti                     CERN, Dec 4, 2023 54

Quantification of radiation levels in the CR 

badly converges.

The problem

Experimental
Hall

Control
Room

Concrete shielding

average over the third dimension!



Monte Carlo method                     F. Cerutti                     CERN, Dec 4, 2023 55

Deliberate alteration of simulation parameters to reduce the product between variance and 

CPU time (figure of merit). 

To preserve a sound mathematical treatment, this bias is compensated for by changing the 

statistical weight of simulated particles. Nonetheless, physical correlations are no longer 

preserved.

Several techniques are employed (not exhaustive list):

• Region Importance Biasing

• Mean Free Path Biasing

• Leading Particle Biasing

• Multiplicity Tuning

• Decay-length Biasing

• Weight Windows

• Neutron non-analogue absorption

• Direction biasing

The concept

They require user’s time to be implemented 

as well as active reasoning and experience!
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• Moving toward a higher importance (I) region

• n = I2/I1 particle replicas are created

• Weight of replicas is w = 1/n = I1/I2  < 1

• Total weight of all replicas is equal to the weight of the original particles

Reduces variance

WARNING: The variance reduction achieved 

through particle replicas is authentic only if

they experience independent histories, which 

may not be the case when they travel in low-density regions (air, vacuum!).

Splitting



Monte Carlo method                     F. Cerutti                     CERN, Dec 4, 2023 57

• Moving toward a lower importance (I) region

• Particles get a survival probability Ps = I2/I1

• Weight of surviving particles is increased to w = 1/ Ps = I1/I2  > 1

• Weight of all surviving particles is equal to the weight of the original particles

Reduces CPU time

Russian Roulette
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Good convergence

(for the same CPU time)

As a result
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Weight windows

No action

Splitting

Russian 

Roulette

WU

WL

weightA particle of weight w is

• split on average into w/WU replicas if w > WU

• is subject to Russian Roulette if w < WL
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Background at the (very) forward physics LHC 
experiments

FPF

SND

[M. Sabaté-Gilarte, FPF 
experiments meeting, May 2022]
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2022 collimator gap 2022 collimator gap

[M. Sabaté-Gilarte, 12th SND@LHC 
Collaboration meeting, Feb 2023]

Muons at SND@LHC [1/2]

for further propagation
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[S. Ilieva, 12th SND@LHC 
Collaboration meeting, Feb 2023]

Muons at SND@LHC [2/2]
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MC codes for simulation of radiation transport
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BACKUP



The mean free path and its distribution
• Let n particles per unit time and surface impinge normally on a thin material slab of width ds 

with a density of N scattering centers per unit volume, each having a cross sectional area 

σ.

• Number of particles that interacted:   dn    = n Nσ ds.

• The interaction probability in ds:        dn/n = N σ ds

• Let p(s) be the distribution of path lengths to the next interaction.

• The probability that the next interaction is within ds of s is
p(s) =[ 1 - ∫0

sds’ p(s’) ] (N σ) = ∫s
inf p(s’) (N σ) ds’

• The solution of this diff eq is
p(s) = (N σ) e-s(N σ)

• Thus, the path length to the next interaction follows an 
exponential distribution. The average distance to the next interaction is:

<s> = 1/(N σ) = λ, 
i.e., we recover the expression of the mean free path given above.
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