

High Field Magnets

Modelisation of impregnated Nb₃Sn cable composite at CIEMAT

Jesús A. García Matos, Carla Martins, Fernando Toral

December 5th, 2023

December 5th, 2023

Modelisation of impregnated Nb3Sn cable composite at CIEMAT

Outline

- Previous experience (NbTi)
 - Cyclotron AMIT
 - MCBXF
- Approach foreseen for Nb₃Sn cables
- Conclusions

Previous experience (NbTi): Cyclotron AMIT

Cable smeared properties obtained through FEA

Winding smeared-out properties (4.2 k)

	Young's modulus [Gpa]	Poisson ratio	Shear modulus[Gpa]	Integrated contraction @296-4.2K [mm/m]
θ	94			2.99
r	35			3.90
z	35			3.93
rθ		0.08		
zθ		0.08		
rz		0.35	24	

Courtesy J. Munilla, CIEMAT

J. Munilla, 'Development of a novel concept of efficient superconducting magnet for radioisotope production cyclotron', Universidad Pontificia de Comillas, Madrid, 2020.

Previous experience (NbTi): MCBXF cable

J. Á. García-Matos, 'Nested Cos-Theta Superconducting Accelerator Dipoles with High Radiation Resistance: Application to the HL-LHC Orbit Correctors', PhD, E.T.S.I. Industriales (UPM), 2022. doi: 10.20868/UPM.thesis.72080.

Previous experience (NbTi): MCBXF coils

Smeared properties obtained trough FEA (+ analytical cross-check)

- Assume **20/20 GPa** (295/4K) due to experimental results and safety margin for preload calculations.
- Smeared azimuthal stiffness of the impregnated coil was 29 GPa (FEA)
- Due to convergence issues (low Young's modulus of the Kapton), ground insulation is included in the mix, yielding 25 GPa, 4.22 mm/m

Parts	Material	E [GPa]	U [-]	Secant coefficient of thermal expansion [10 ⁻⁵ /K]	Integrated contraction (295/4 K) ε _{int} [mm/m]
Coil block (smeared)	Impr. & ins. cables	20/20	0.35	1.44	4.19
Wedges	Cu-ETP	127/138	0.344/0.338	1.064	3.1
Interlayer & outer insulation	Impregnated Nomex®/S2-glass	13/20	0.35	3.1	9
Loading plates	Stainless steel	196/210	0.3	0.997	2.9

J. Á. García-Matos, 'Nested Cos-Theta Superconducting Accelerator Dipoles with High Radiation Resistance: Application to the HL-LHC Orbit Correctors', PhD, E.T.S.I. Industriales (UPM), 2022. doi: 10.20868/UPM.thesis.72080

Modelisation of impregnated Nb3Sn cable composite at CIEMAT

Previous experience (NbTi): MCBXF empiric validation

Ten-stack compression test: 20 GPa impregnated cable (RT)

Power tests: Coil = 23-24 GPa, <u>5.8 mm/m</u>

J. Á. García-Matos, 'Nested Cos-Theta Superconducting Accelerator Dipoles with High Radiation Resistance: Application to the HL-LHC Orbit Correctors', PhD, E.T.S.I. Industriales (UPM), 2022. doi: 10.20868/UPM.thesis.72080.

Compressive tests at RT and 77 K:

Slightly higher stiffness but close to the previous results using linear regression despite non-linearity.

Ó. Sacristán, 'MCBXF Magnet Cablestack Compressive Tests at Room Temperature and 77K', CERN, EDMS 2706612, Mar. 2021. [Online]. Available: https://edms.cern.ch/document/2706612/1

12/5/2023

Modelisation of impregnated Nb3Sn cable composite at CIEMAT

Approach foreseen for Nb₃Sn cables

- Early stages of the simulations due to parallel activities.
- Combination of previous analytical and FEA approaches will be explored to obtained the smeared properties of the cable.
- ISAAC, using RMCs made with well-known MQXF cable, will help to find the proper approach for the cable of the future 14 T common coil demonstrator.

ISAAC (Investigating Superconducting Assembly to Adress Common coil mechanics)

Conclusions

- Validated experiences with NbTi using analitycal and FEA approaches for the Young's Modulus. Some uncertainties in thermal contraction.
- Similar approaches will be applied to Nb₃Sn cables, taking advantage of well-known MQXF strands as first step on ISAAC.

Thanks for your attention

