միջուկային \$իզիկա

What is the Universe Made of?

©2010 HawStutfWorks

Warman Alger and Area and a second second

Over 99.9 percent of the mass of all the universe comes from the nuclei found at the center of every atom. These nuclei are made of protons and neutrons that themselves formed a few microseconds after the big bang as the primordial liquid known as quark-gluon plasma cooled and condensed.

Entire history of the universe entangled with the nuclear physics....

Elements and Isotopes

1	H		1	P	ERI	OD		TA hemi	BL cal G	E C Group)FE	ELE	ME	ΕΝΤ	S								
Hydrogen 1.00794													Pubicihem 18 13 14 15 16 17										
2	2 Lithium Alkali Meta				Atomic N	umber] Name	Chlorine Halogen Chemical Group Block					5 10.81 6 12.011 7 B C Boron Metaloid			7 14.007 8 15.999 918.9984 10 N 0 Nitrogen Normital Normital			10 20.180 Neo Neon Noble Gas					
3	12 42/99%. 12 22 43.05 3 Na Sodium Alail Meal Alaile Earth Me 3 4 5 6							7 8 9 10 11						13 26.981 14 28.085 15 30.973 16 32.07 17 35.45 18 39.9 Aluminum Past-Taration M Silicon Meatilidi Phosphorus Normetal Suffur Viormetal Chorine Hologen Apon Noble Gas									
4	19 39.0983 K Potassium Alkali Metal	20 40.08 Ca Calcium Alkaline Earth Me	21 44.95591 SC Scandium Transition Metal	22 47.867 Ti Titanium Transition Metal	23 50.9415 V Vanadium Transition Metal	24 51.996 Cr Chromium Transition Metal	25 54.93804 Man Manganese Transition Metal	26 55.84 Fe Iron Transition Metal	27 58.93319 CO Cobalt Transition Metal	28 58.693 Nickel Transition Metal	29 63.55 Cu Copper Transition Metal	30 65.4 Zn Zinc Transition Metal	31 69.723 Ga Gallium Post-Transition M	32 72.63 Ge Germanium Metalloid	33 74.92159 As Arsenic Metalloid	34 78.97 Se Selenium Nonmetal	35 79.90 Br Bromine Halogen	36 83.80 Kr Krypton Noble Gas		\mathbf{C}			~ ~
5	37 85.468 Rb Rubidium Alkali Metal	38 87.62 Sr Strontium Alkaline Earth Me	39 88.90584 Y Yttrium Transition Metal	40 91.22 Zr Zirconium Transition Metal	41 92.90637 Nb Niobium Transition Metal	42 95.95 MO Molybdenum Transition Metal	43 96.90636 TC Technetium Transition Metal	44 101.1 Ru Ruthenium Transition Metal	45 102.9055 Rh Rhodium Transition Metal	46 106.42 Pd Palladium Transition Metal	47 107.868 Ag Silver Transition Metal	48 112.41 Cd Cadmium Transition Metal	49 114.818 In Indium Post-Transition M	50 118.71 Sn Tin Post-Transition M	51 121.760 Sb Antimony Metalloid	52 127.6 Te Tellurium Metalloid	53 126.9045 Iodine Halogen	54 131.29 Xe Xenon Noble Gas		U	vxy	/9	en
6	55 132.90 CS Cesium Alkali Metal	56 137.33 Ba Barium Alkaline Earth Me		72 178.49 Hf Hafnium Transition Metal	73 180.9479 Ta Tantalum Transition Metal	74 183.84 W Tungsten Transition Metal	75 186.207 Re Rhenium Transition Metal	76 190.2 OS Osmium Transition Metal	77 192.22 Iridium Transition Metal	78 195.08 Pt Platinum Transition Metal	79 196.96 Au Gold Transition Metal	80 200.59 Hg Mercury Transition Metal	81 204.383 TI Thallium Post-Transition M	82 207 Pb Lead Post-Transition M	83 208.98 Bi Bismuth Post-Transition M	84 208.98 PO Polonium Metalloid	85 209.98 At Astatine Halogen	86 222.01 Rn Radon Noble Gas		Q			-
7	87 223.01 Fr Francium Alkali Metal	88 226.02 Ra Radium Alkaline Earth Me		104 267.1 Rf Rutherfordium Transition Metal	105 268.1 Db Dubnium Transition Metal	106 269.1 Sg Seaborgium Transition Metal	107 270.1 Bh Bohrium Transition Metal	108 269.1 HS Hassium Transition Metal	109 277.1 Mt Meitnerium Transition Metal	110 282.1 DS Darmstadtium Transition Metal	111 282.1 Rg Roentgenium Transition Metal	112 286.1 Cn Copernicium Transition Metal	113 286.1 Nh Nihonium Post-Transition M	114 290.1 Fl Flerovium Post-Transition M	115 290.1 Mc Moscovium Post-Transition M	116 293.2 LV Livermorium Post-Transition M	117 294.2 TS Tennessine Halogen	118 295.2 Og Oganesson Noble Gas			-		
				57 138.9055 La Lanthanum Lanthanide	58 140.116 Ce Cerium Lanthanide	59 140.90 Pr Praseodymium Lanthanide	60 144.24 Nd Neodymium Lanthanide	61 144.91 Pm Promethium Lanthanide	62 150.4 Samarium Lanthanide	63 151.964 Eu Europium Lanthanide	64 157.2 Gd Gadolinium Lanthanide	65 158.92 Tb Terbium Lanthanide	66 162.500 Dy Dysprosium Lanthanide	67 164.93 Ho Holmium Lanthanide	68 167.26 Erbium Lanthanide	69 168.93 Tm Thulium Lanthanide	70 173.05 Yb Ytterbium Lanthanide	71 174.9668 Lu Lutetium Lanthanide					
				89 227.02 Actinium Actinide	90 232.038 Th Thorium Actinide	91 231.03 Pa Protactinium Actinide	92 238.0289 U Uranium Actinide	93 237.04 Np Neptunium Actinide	94 244.06 Pu Plutonium Actinide	95 243.06 Am Americium Actinide	96 247.07 Cm Curium Actinide	97 247.07 Bk Berkelium Actinide	98 251.07 Cf Californium Actinide	99 252.0830 ES Einsteinium Actinide	100 257.0 Fm Fermium Actinide	101 258.0 Md Mendelevium Actinide	102 259.1 No Nobelium Actinide	103 266.1 Lr Lawrencium Actinide		15	xygen 5.9994		
Three Isotopes of Hydrogen																							
•	4		Θ	4		0	4												8	8 p	rot	ons	5
(P)	Č	P		(e												8	8 n	eut	tror	าร

³Н

Tritium

²H

Deuterium

Protium

otons utrons 8 electrons

What is an *isotope*?

Q value of nuclear reaction process

projectile

В

target

 $Q = (m_B + m_b) \cdot c^2 - (m_A + m_a) \cdot c^2$ recoil $Q = (B_B + B_b) - (B_A + B_a)$ Q > 0 exothermic reaction Q < 0 endothermi c reaction

<mark>կես կյանք</mark> ²³²Th = 1.4x10¹⁰ տարի 90 պրոտոններ 142 նեյտրոններ

Radioactivity in our daily life

Radioactivity is not only an extreme phenomenon associated with nuclear bombs and nuclear reactors but also with a number of daily utensils and activities. We don't notice it, but we can detect it!

What do you think, radioactive or not ????

Salt from the underground US nuclear Waste Isolation Pilot Plant (WIPP) 1999-2015

Uranium Ore I

Uranium Ore II

Trinitite from Nuclear Bomb test 1945

Terminology of nuclear decay

- radioactive nucleus (parent) decay process decay product (daughter)
- Activity, A(t): number of decay events per time
- Decay constant, λ : probability of decay
- Half life, $t_{1/2}$: time for the activity to be reduced to 50%
 - Activity corresponds to the number of sand particles dripping through hole
 - Decay constant is associated with the size of the hole

Changing Z to N or N to Z Adding a proton (electron)

Ածխածին-->ազոտ

Isotopes of carbon

nucleus becomes unstable and decays by internally converting neutrons to protons (beta-decay)!

What are the physical laws that govern the decay process?

Types of decay

Basics of Instruments

- A radiation detector is based on the detection of secondary effects caused by radiation
- Radiation effects depend on the kind of radiation, not every radiation detector is sensitive to each kind.
- Radiation ionizes material by energy deposition, ionization can be measured by electric current
- Radiation excites atoms by energy deposition, deexcitation via light emission can be measured

The collection of early instrumentation

Early Scintillator screens for visual counting

Geiger Counter 1955 version

Dosimeter 1955 version

Dosimeters today

Geiger Counter 2015 version

Scintillators

Mostly salt crystal, but increasingly also plastic material that emits light when hit by radiation, ZnS, NaI, CsI, BaF₂, BGO,

Principle of Scintillators

Nal (Sodium lodide) detector for γ radiation

When an ionizing particle or gamma passes into the scintillator material, atoms are ionized along a track. The molecules along the track become excited and emit multiple low-energy photons, typically near the blue end of the visible spectrum. The number of such photons is in proportion to the amount of energy deposited by the ionizing particle.

Photomultiplier (PMT)

Principle of Ionization chamber

Pierre Curie invented the prototype of an ionization chamber.

The apparatus consisted of two parallelmounted metallic electrodes between which an electric field was applied. Nuclear radiation has sufficient energy to ionize atoms in a gas, generating free negatively charge electrons and free positively charged ions that can be separated by electrical potential and detected.

One electrode was loaded with a powder of the material to be tested and the very small electric current produced in the air by the rays and flowing between the electrodes was measured with a highly sensitive and reliable weight compensation method. Today the electrical current can be directly measured and corresponds to the level of radioactivity.

Geiger or Geiger-Müller Counter

Variation of ionization counter, instead of two parallel plates, cathode (-) and anode (+) the anode is now a central wire in a cylindrical geometry, attracting electrons from the ionized gas and measuring the current proportional to the ionization, which is proportional to the intensity of the radiation. There ate different modes of operation depending on the applied voltage for charge collection.

Voltage applied – linear scale

SIMPLE GEIGER COUNTER

DIGI01 2011.4.9

տարրական առատություներ =տիեզերքի պատմություն + միջուկային ֆիզիկա

•How were elements Fe to U made?

Facility for Rare Isotope Beams: 2022 Michigan State University

Cowan et al. 2011

Origin of more than 50% of all the elements beyond iron

Temperature, density as a function of time, initial compositions, neutrons

Neutron star – neutron star merger observed on 17 Aug. 2017 by LIGO and Virgo (gravitational radiation), FERMI (gamma ray telescope) and ~ 70 other electromagnetic observatories. Neutron star – neutron star merger observed on 17 Aug. 2017 by LIGO and Virgo (gravitational radiation), FERMI (gamma ray telescope) and ~ 70 other electromagnetic observatories.

LIGO, Virgo, and partners make first detection of gravitational waves and light from colliding neutron stars

In galaxy NGC 4993

GW170817 + 70 Electromagnetic transients

GW170817 70 Electromagnetic Transients

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L18 (8pp), 2017 October 20

Implications for nuclear physics

LIGO, VIRGO, GAGRA began new observation run on May 24, 2023

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L18 (8pp), 2017 October 20

Lu visible signatures go into the IR James Webb ինֆրակարմիր

Are there more elements?

where is the site of the r-process?

Merging neutron stars versus core collapse supernovae, gravitational wave detection identified neutron star mergers as a source of the very heavy elements!

Abundances from other neutron induced nucleosynthesis processes

The s-process in comparison to the r-process. The scaling depends on the strength of the s-process neutron source

The i-process in CEMP stars, again the scale depends on the strength of neutron source

Were the Superheavy elements made in space?

Snapshot of the r-process path in a neutron star merger scenario. Grey boxes indicate nuclei that are unbound. Purple boxes show the isotopes measured in the BRIKEN campaign [S32].

Members of the BRIKEN collaboration [S33].

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

November 2018, Dubna

New cyclotron DC-280

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

DGFRS-II separator

700

SIGMA

SIGMAPHI

HIII Da

Progress at SHE-Factory

Luminosity (target 30 mg)

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

AN ASSESSMENT OF U.S. BASED ELECTRONION COLLIDER SCIENCE

Mass of a proton/neutron? Spin of the nucleon? Gluons?

Asia

Europe

Oceania

 Other North America

South America

U.S.

The Electron-Ion Collider

A machine that will unlock the secrets of the strongest force in Nature

The Electron-Ion Collider (EIC) will be the world's first polarized electron-ion collider, a set of accelerator rings that bring polarized electrons and polarized ions into millions of head-on collisions at nearly the speed of light.

Electron Ion Collider

Relativistic Heavy Ion Collider

FIGURE 5.3 View of the COMPASS experiment in a target hall of the Super Proton Synchrotron accelerator at the European Organization for Nuclear Research (CERN). SOURCE: CERN, "View from the Crane of the COMPASS Experiment Facility," © 2011-2018 CERN, http://cds.cern.ch/record/1370231, accessed August 13, 2018.

FIGURE 5.5 A collision between a lead nucleus, with a total energy of 533 TeV and a proton of energy 6.5 TeV, yielding an average 8.16 TeV per colliding nucleon pair, recorded in detail by the ALICE detector at the Large Hadron Collider in late 2016. SOURCE: ALICE Experiment, European Organization for Nuclear Research (CERN).

Investments in Science

<u>https://youtu.be/Xsf_EqGHSDI</u>