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What to measure in High Eenefrgy Physics?

I
For all the particles produced In ;’én interactionx;;"
« Directions of the incoming :‘-.T\ b
outgoing particles S A=
* Their energy
« Charge
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How to measure a radiation

* To measure radiation one needs to find out

* Type of radiation

Its losses in an assumed detector (will we get a signal, is it above the existing noise?)
Energy : How much, in which form ?

Interaction type and the profile in time

Position : Interaction point, depth

* The ability of a particular instrument to measure the incident
radiation can be measured by its

* Efficiency : of the detector we choose
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Different types of radiation detectors

e Radiation detectors can be made on the basis of different materials

* Gas : Gas filled detectors such as ionisation chambers, proportional counters and Geiger
Muller (GM) tubes utilise a gas as the detection medium.

* The above also includes the air in the atmosphere.

* Scintillation detectors : Utilise either a liquid or solid state scintillator as the detection
medium.

* Semiconductor detectors : An elemental or compound semiconductor crystal is used as the
detection medium.

* Every type has its own advantages

* A composite approach can often provide much more information
about a radiation source.



Gas detectors

* Gas detectors in general offer the following:

* Poor energy resolution
* Time resolution
* Excellent position resolution (MWPC)
* Low Efficiency:
* Large volume possible
* Low density/Z — very low stopping power



Solid state detectors

* The use of a solid state detection medium is used in many radiation
detection applications.

* For the measurement of high-energy electrons or gamma-rays
detector dimensions can be kept much smaller than equivalent gas

filled detectors because solid densities are some 1000 times greater
than that for a gas.

e Scintillation detectors offer:

* Average energy resolution.

* Good/very good time resolution (sub ns)
* Reasonable position resolution (*mm)

* High efficiency



Scintillation detectors
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The energy required to produce one information carrier is of
the order of 100eV, the number of carriers created in a
typical interaction is usually no more than a few thousand —
statistical fluctuations — poor energy resolution.



A dream detector

Should respond to all types of particles, providing:
» particle identification

« measurement of energy/momentum

« measurement of trajectory (direction/origin)
» cover the full 4z solid angle

* time response

In addition:

» provide short dead-time (allow for high rate)
 Wide dynamic range

* high radiation hardness

* long-time operation

As arule, a real detector is a compromise

Ideal domestic animal -
Eilerliegende Wollmilchsau



Different particle detection techniques

Particle can interact with matter by producing:

* lonisation of atoms

« Bremsstrahlung and photon conversions
 Inelastic nuclear interactions

» Cherenkov or transition radiation

« Emission of scintillation or fluorescence light

How can we “visualise” these processes?

By taking snapshots

« By collection of induced by ionisation charge
By detecting of photons
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Detection technique: P
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Charged particles ionise atoms along | e e
their trajectory. S
(I) lons act as seeds for: - i

» condensation in super saturated gas (Wilson chamber)
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» bubble-formation in super-heated liquid

« electrical discharge or plasma formation ~
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(1) lonisation can also be made visible #:r N\ i de™ . £l
chemically in emulsion targets | o
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Detection technique: Collect electrical charge

Particle causes ionisation in a material.
Charge is separated/collected by an electric field. ‘

Requirement on material: \/

* no/few free charge carriers (non-conducting)

« mechanism for transport of charge

\

Proportional chambers, Drift chambers, .. A

Insulating gas/liquid between anode and
cathode (transport through drift). Sometimes
also low conductivity solids.

Silicon strip detectors, CCDs, ..

Using a semi-conducting material: Mostly in the
form of a reverse-biased pn-junction diode.
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How Functions a Charge Coupled Device (CCD)
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Detection technique: Photo-detection

Charged particles can produce photons via scintillation, Cherenkov or transition-
radiation effects. One can detect these by using:
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developed by us together
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Silicon Photo Multiplier (SIPM)

[ndividual surface resistors

Metal (Al) grid

2 4 6

X, pm
Topology Electric field distribution
in epitaxial layer

Si” Reststor

Al - conductor
Real topology is
patented and
Total number of pixels — 5§76 different from it

for 1x1 mm photodetector

The pixel size — 32x32 pm?
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Vacuum detector HPD R9792U-40 developed for MAGIC
18mm GaAsP HPD by us with Hamamatsu

Compact HPD Operating Principle
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¢, DELPHI

Global detector layout:

» barrel-shape surrounding beam-pipe

» 2 cone- or wheel-shaped end-caps

Collision point

Solenoid magnet

Nearly 47 coverage and good accessibility!




Particle signatures (first glance)

Charged hadrons: Neutral hadrons:
* leave a bent track * leave no track
« stopped deep in calorimeter « stopped deep in calorimeter

Second (+) layers of calorimeter: “Hadron calorimeter”
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Particle signatures (at first glance)

Muons:

* leave a bent track

* not stopped in calorimeter

e track in muon detectors

(Calorimeter, tracking and muon-detector information)
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Charged particle ina  Magnetic force: E:q(\7x§) or |F|=qv,B
magnetic field

mv?

Centrifugal force: |F|=
L r
- >
x ‘
mv, P,

Y Radius: r = —

] 7? R 4B o8’
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Measurement of the sagitta  [For3measured points:
X, X, X;aty=0, L/2,L

X
‘ < L > S:XZ_X1;X3

Y 3
X, o(s) = EG(X)
x3
P otz
| o) _o(s) V27"
P s 03Bl

For N equidistant measurements :

Xy |o(P)  o(X)P, \/7720
: P, 0.3BL2\VN+4
|

(R.L.Gluckstern, NIM 24 (1963) 381)

Thus for precise measurement momentum we need: high B field, large volume tracking detector,
many measurements along the trajectory. But ...




Multiple Scattering

e Particle
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MS Theory

- Average scattering angle is roughly Gaussian for small

deflection angles , _13.6 MeV | x

6,

« With sep Xo

X, = radiation

« Angular distributions are given by
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Electron and muon images In Superkamiokande
detector demonstrate the effect of multiple scattering

~

Kajita, 2004

The Superkamiokande detector in Japan

uses 11200 PMTs of 0.5m size
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Cherenkov Radiation

« Charge motion in a transparent dielectric medium

= ov<c D
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Cherenkov Radiation (2)

» \Wave front comes out at certain angle

AN

7
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Different Types of Cherenkov Detectors

» Threshold Detectors
— Yes/No on whether the speed is f>1/n

 Differential Detectors
— Brmax> B > Prin

* Ring-Imaging Detectors
— Measure f3
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Differential Detectors

cylindrical mirror

radiator

« Will reflect light onto PMT for certain angles
only < B Selecton

12.11.2024 Teachers from Razmik Mirzoyan: Particle Detectors
Armenia at CERN, Geneva



Ring Imaging Detectors (1)

detector surface spherical mirror

radiating medum

particle
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Shape of muon images versus the impact parameter in an

Imaging Atmospheric Cherenkov Telescope

Imagine a downward going muon
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Ring Imaging Detectors (3)

» More clever geometries are possile
— Two radiators <> One photonfetector

Cherenkov

light
‘\_\\

photo

electron C_E. gas radiator

.
T s

Cherenkoy__——— \ /
Tight o
/ / C E  Tliquid radiator

i\

12.11.2024 Teachers from / Razmik Mirzoyan: Particle Detectors
Armenia at CERN, Geneva



Transition Radiation (3)
 Consider relativistic particle traversing a

boundary from material (1) to material (2)
N Z’a , 1 R
=0 X 577 = 2~ T2 2
dodQ 7w w,lo°+¢"+1ly" ¢ +1ly
w, = plasma frequency
 Total energy radiated

2
ETR = EDE h{ﬂp] Y

 Can be used to measure vy



Transition Radiation Detector

amplification strips
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