Cosmic Rays Seen in Particles and in Light

Razmik Mirzoyan

Max-Planck-Institute for Physics (Werner-Heisenberg-Institute) Munich, Germany National Academy of Sciences of Republic of Armenia

The electromagnetic spectrum

Credit: NASA / Ruth Jennings

12.11.24 Physics Teachers from Armenia @ CERN

Transparency of atmosphere to incident electromagnetic radiation

Discovery of Cosmic Rays by V. Hess in 1912

12.11.24 Physics Teachers from Armenia @ CERN

Energies and Rates of the Cosmic-Ray Particles

12.11.24 Physics Teachers from Armenia @ CERN

Then, why not charged CR astronomy?

Charged CR particles, deflected by magnetic fields, do not carry information on the location of the emission site (unless E is very large)

12.11.24 Physics Teachers from Armenia @ CERN

p, α , etc

Extensive Air Showers

12.11.24 Physics Teachers from Armenia @ CERN

Cherenkov Radiation

- Emitted whenever a charged particle traverses a dielectric medium at a speed larger than that of light in that medium
- The radiation results from the reorientation of electric dipoles induced by the charge in the medium. When v > c/n the contributions from different points of the trajectory arrive in phase at the observer as a narrow light pulse

12.11.24 Physics Teachers from Armenia @ CERN

Cherenkov radiation

Analogous to "sonic boom"

 $\cos \theta = 1 / (\beta n)$ $\theta_{max} = \cos^{-1}(1/n)$

12.11.24 Physics Teachers from Armenia @ CERN

Cherenkov radiation in the atmosphere

In 1948, P.M.S. Blackett suggested that secondary CR's should produce Cherenkov radiation which would account for a fraction 10⁻⁴ of the total night sky light

Pulses of Cherenkov light from air showers were first recorded by Galbraith and Jelley in 1953

Index of Refraction and Cherenkov Emission Angle versus Altitude

12.11.24 Physics Teachers from Armenia @ CERN

Number of emitted Cherenkov photons in the atmosphere

 A relativistic particle at a given height (slanth depth) a.s.l. will emit in the atmosphere, in the wavelength range of 300-600 nm, the following number of photons per 1m path length:

Slanth depth, g/cm ²	100	300	800	1036
Height a.s.l., km	16	10	2.2	0
Number of emitted C- photons/m	4.5	13	35	45

Spectrum of atmospheric Cherenkov light

12.11.24 Physics Teachers from Armenia @ CERN

Light of Night Sky (LoNS) is a strong background emission

Integral of LoNS in 300-600nm: 2x10¹² ph/m².sr·s

12.11.24 Physics Teachers from Armenia @ CERN

More light from EAS: Air fluorescence

Particles of the air shower excite air molecules, which fluoresce in the UV: $N_2^* \rightarrow N_2 + hv$, in competition with $N_2^* + N_2 \rightarrow 2N_2$ (the excited state may also be collisionally quenched).

The emitted isotropic light is proportional to the number of electrons at all depths: as dE / dx per unit length goes up with higher atmospheric pressure, the efficiency of light production decreases linearly with pressure \Rightarrow a fast electron produces roughly the same amount of light per unit path length at all altitudes. The downside - it is rather dim (isotropy) and is affected by atmospheric absorption.

12.11.24 Physics Teachers from Armenia @ CERN

Good news: the effects of the interaction of a VHE γ -ray in the atmosphere are spread over a large area on the ground \Rightarrow very large effective areas are achievable \Rightarrow VHE γ -ray astronomy is feasible despite the low fluxes Drawback of ground-based γ -ray astronomy:

Charged CR showers are much more numerous than gamma showers (x $10^3 - 10^5$), even for strong sources!

12.11.24 Physics Teachers from Armenia @ CERN

Fluorescence detectors

Wide field of view imaging light detector viewing the EAS "sideways" \Rightarrow determination of a plane containing the shower

12.11.24 Physics Teachers from Armenia @ CERN

Fluorescence detectors

Stereo observations: better determination of shower direction and impact point

12.11.24 Physics Teachers from Armenia @ CERN

Fluorescence detectors

Due to the low intensity of fluorescence light, these instruments are only sensitive to showers of $E > 10^{18} \text{ eV}$

Too high a threshold for γ -ray astronomy! (but good for CR studies)

12.11.24 Physics Teachers from Armenia @ CERN

Ground-based γ -ray astronomy in the World TIBET

MILAGRO

"Air Shower" detectors

By this name we refer to instruments based on the *direct* detection of the shower secondary particles and gamma rays

By *direct* I mean that the e^{\pm} and the secondary gamma rays actually enter the man-made artifacts (hence excluding atmospheric Cherenkov devices)

Typical air shower detector: array of ~100's of ~1m² particle detectors spread over >10⁴ m² operated in coincidence, measuring $\rho(x_i, y_i, t_i)$ _____ (particle density and arrival time)

Air Shower arrays

Typical AS array detector station: Scintillator + PMT(s)

Air Shower arrays

Common additional component of AS arrays: muon detectors, aiming at the discrimination of hadron-initiated showers through their muon content

One just needs a particle detector protected from γ 's and e[±] by a thick shield

The HEGRA scintillator array

HEGRA (High Energy Gamma Ray Array) ORM, 2200 m a.s.l. 1991 - 2000, E thresh,γ ≈ 25 TeV

12.11.24 Physics Teachers from Armenia @ CERN

CASA-MIA

Ground array - Chicago Air Shower Array (Dugway, Utah)

Tibet Air Shower array

4300 m a.s.l., Yangbajing

1999: Crab detection above 3 TeV (5.5 σ) in 500 days

12.11.24 Physics Teachers from Armenia @ CERN

ARGO-YBJ

Going further down in E: better coverage of the detection area

Resistive Plate Chambers (RPCs) are gaseous ionisation detectors with parallel resistive electrodes Good time and spatial resolution

12.11.24 Physics Teachers from Armenia @ CERN

MILAGRO (moved to \rightarrow HAWC)

Achieves full coverage in a different way: Cherenkov light emission in water

12.11.24 Physics Teachers from Armenia @ CERN

HAWC

12.11.24 Physics Teachers from Armenia @ CERN

HAWC

HAWC is located at an altitude of 4100 meters on the slope of the Volcanoes Sierra Negra and Pico de Orizaba at the border between the states of Puebla and Veracruz in Mexico.

Currently all 300 Cherenkov detectors are deployed and taking data. Each Cherenkov detector consists of 180,000 liters of extra pure water stored inside an enormous tank (5 meters high and 7.3 meters in diameter) with four highly sensitive light sensors fixed to the bottom of the tank

Hybrid Detection of EASs by LHAASO

LHAASO in China

Last couple of years LHAASO discovered several tens of PeVatrons

Inauguration of HAWC, Mexico, 20.03.15

12.11.24 Physics Teachers from Armenia @ CERN

IceCube detector at South Pole

Neutrino interactions

The 1st telescope (of 5 planned) we've built: 1989

The HEGRA detector, including 6 air Cherenkov imaging telescopes Location: ORM @ La Palma Operation 1992 - 2002

Teachers from

CT6

CT3

VERITAS, H.E.S.S. & MAGIC: pushing the VHE γ-astro-physics to its limits

12.11.24 Physics Teachers from Armenia @ CERN

Today's VHE γ -ray Sources in the Sky

12.11.24 Physics Teachers from Armenia @ CERN

Outlook : the next 5-7 years Next generation VHE γ ray Observatory: CTA

>1500 scientists

~130 institutions

MAGIC

HESS Phase II

EU, US, JAPAN, India, Brazil,...

12.11.24 Physics Teachers from Armenia @ CERN Razmik Mitzoyan: Cosmic Rays

СТА

Cherenkov Telescope Array

~1000 sources will be discovered

Cherenkov Telescope Array

12.11.24 Physics Teachers from Armenia @ CERN

The 1st 23m diameter LST (between 2 MAGICs) of CTA is in the end phase of commissioning

12.11.24 Physics Teachers from Armenia @ CERN